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Abstract 

Treatment of infections by Pseudomonas aeruginosa forming biofilms after antimicrobial testing on planktonic bacte‑
ria can result in substantial failure. Therefore, we offer a robust and simple experimental platform to test the impact 
of antimicrobials on biofilms. Antibiotic response patterns varied uniquely within biofilm formation capacity and 
minimal biofilm eradication concentrations (MBECs) has a significantly better discriminatory power than minimum 
inhibitory concentrations (MICs) to differentiate the overall efficiency of antibiotics to eradicate biofilm. Our resazurin-
based 96-well-plate platform is able to emulate bacterial responses to antibiotics under biofilm conditions in a fast, 
simple, and cost-effective screening method adaptable to automation, and warrants trials in the clinic.
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Introduction
The properties of bacteria in biofilms differ from those of 
planktonic bacteria [1, 2], and bacteria in biofilms have 
extreme tolerance to immune responses and antimi-
crobial therapy [3, 4]. Biofilm formation is therefore an 
obstacle to the treatment of chronic infections with Pseu-
domonas aeruginosa, most of which are associated with 
biofilms [1, 2]. Despite the negative impact of biofilms, to 
our knowledge, no treatment that directly targets bacte-
ria in biofilms has yet been developed [1, 5].

Biofilm recalcitrance to antibiotics is based on a mix-
ture of resistance and tolerance [1, 6]. Clinical treatments 
with antibiotics are usually determined from minimum 
inhibitory concentrations (MICs) for planktonic bacte-
ria, and, as a result, patients may suffer from persistent 

infection over the course of weeks, or even months, often 
with recurrence of even more aggressive exacerbations 
[1, 7]. Patients harboring bacteria within biofilms require 
higher doses of antibiotics and more prolonged courses 
of treatment than treatment suggested by testing with 
planktonic bacteria [1, 8].

Patients with chronic infections treated with antibiotic 
regimens based on biofilm susceptibility-testing have 
better clinical outcomes than those treated with regimens 
based on methods measuring susceptibility to planktonic 
bacteria [5, 9].

In a previous study, we developed a simplified antibi-
otic susceptibility assay based on a standardized model to 
quantify viable cells in biofilms of Acinetobacter bauman-
nii [10, 11]. Our assay is based on the quantitative meas-
urement of metabolically active cells using PrestoBlue, a 
resazurin (7-hydroxy-3H-phenoxazin-3-one-10-oxide)-
based viability indicator. The results clearly demonstrated 
the significant discriminatory power of the assay (MBEC) 
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to differentiate antibiotic efficacy on biofilms compared 
with current MIC-based assays [10, 11]. While the new 
assay has proven to present an effective model of biofilm 
formation, in this article we describe its reproducibility 
and applicability for rapid antibiotic susceptibility testing 
of P. aeruginosa biofilms in a clinical laboratory setting.

Materials and methods
Strains and culture conditions
Clinical isolates used in this study were selected from a P. 
aeruginosa strain repository in the Department of Micro-
biology, King Chulalongkorn Memorial Hospital, Bang-
kok, Thailand. The strains were stored at the repository 
collection after standard characterization and identifica-
tion, including 16S rRNA sequencing as described previ-
ously [12] (Additional file 1). Clinical strains were isolated 
during 2016–2017 from chronically-infected patients 
as part of their standard care. The P. aeruginosa clinical 
isolates were cultured on Müller-Hinton agar plates at 
37 °C. Without preference, we selected 137 unduplicated 
clinical isolates representing 137 patients and 14 col-
lection sites with relevant chronic infection (including 
urine, bile, corneal scrapings, nasal swabs, tissue, blood, 
device related, broncho–alveolar aspirates, ear swabs, 
eye swabs, conjunctival swabs, wound pus, endotracheal 
aspirates, and sputum). Strains from patients with multi-
ple sites of infection were excluded, and we only included 
samples from patients with infection at a single site. All 
isolates were stored at − 80  °C in tryptic soy broth with 
15% glycerol until used in subsequent experiments.

Antibiotics and agents
The biofilm eradication activity of 7 antibiotics was 
tested against the subset of clinical isolates (n = 137). 
Gentamicin, amikacin, ciprofloxacin, meropenem, colis-
tin, and ceftazidime were all from Sigma-Aldrich. Sus-
ceptibility testing for fosfomycin (Wako Chemicals) was 
determined by supplementation with 25 μg/mL glucose-
6-phosphate. Antibiotic stock solutions were prepared 
less than 24  h before use. Antibiotics were dissolved in 
cation-adjusted Müller-Hinton II broth (MHIIB) (Becton 
Dickinson) medium and sterilized by filtration through a 
membrane (0.22 μm pores). Serial dilutions of the stocks 
were prepared in MHIIB immediately before use.

Testing susceptibility to antibiotics
The planktonic MIC were established using standard 
techniques according to European Committee on Anti-
microbial Susceptibility Testing (EUCAST) criteria [13] 
and Clinical and Laboratory Standards Institute (CLSI) 
guidelines [14]. Escherichia coli ATCC 25922, and P. aer-
uginosa ATCC 27853 were used as quality control strains. 
Minimal biofilm eradication concentrations (MBEC) 

were established using our previously develop fluoro-
metric-based assay to calculate the number of viable cells 
within the biofilm as described previously [10]. In brief, 
MBECs were determined by adding the serially diluted 
antibiotics to mature biofilms and incubating at 37  °C 
for 24  h before staining with PrestoBlue. Before add-
ing the antibiotics, any nonadherent cells were removed 
from the mature biofilms by 3 gentle washes with MHIIB. 
Cell viability was calculated using the following for-
mula: cell viability (%) = ((mean signal of correspond-
ing well − mean signal of negative control well)/(mean 
signal of positive control well − mean signal of negative 
control well)) × 100. Two cut-off values (50% and 75% 
nonviable cells) were used to determine the MBEC. All 
experiments were performed in triplicate and repeated 3 
times. As a comparison we also used the 96‐well Calgary 
Biofilm Device (CBD) (Innovotech, Calgary, Canada) as 
described previously to determine MBEC [15].

Biofilm formation quantification and classification
Two methods were used to quantify [16] and classify [17] 
the biofilm structure by Crystal Violet staining followed 
by confocal laser scanning microscopy using live or dead 
bacterial staining as described previously [18]. Mean 
absorbances and their standard deviations (SDs) were 
calculated for all tested strains and negative controls, 
determined in triplicate and repeated 3 times. The clini-
cal isolates were classified as described previously [17].

Statistical analyses
Continuous variables are summarized using means and 
SDs, and categorical variables as counts and percent-
ages. Levels of P. aeruginosa drug susceptibility are repre-
sented in 2 ways: a continuous measure of concentration; 
and an ordinal categorical form representing biofilm 
formation (negative, weak, moderate, or strong); both of 
these outcomes were measured repeatedly over time for 
each isolate. Linear mixed modeling was used to com-
pare concentrations between test types (MIC vs. MBEC) 
over time. We then examined which test types (MIC vs. 
MBEC) were more successful in allowing concentra-
tion to be used to distinguish between biofilm forma-
tions (negative, weak, moderate, or strong) using ordinal 
logistic mixed effects regression. Finally, we examined 
whether concentration could be used to predict biofilm 
formation using multinomial logistic regression. All 
analysis was conducted using the R statistical package 
[19], linear mixed modeling was performed using the R 
library, lme4 [20], and ordinal logistic mixed effect mod-
eling using the R library, ordinal [21], and multinomial 
logistic regression using the R library, nnet [22]. P < 0.05 
was considered significant for all inferential analysis.
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Results
Association between antibiotic resistance and biofilm 
formation
The planktonic antibiotic resistance profile of each iso-
late revealed that resistance to meropenem was most 
common, followed in order by ceftazidime, ciprofloxa-
cin, and fosfomycin (Fig.  1). Most strains showed high 
susceptibility to colistin, amikacin, and gentamicin. In 
total, 127 (92%) isolates were positive for biofilm forma-
tion, and 56 (46%) isolates formed a stronger biofilm. No 
significant difference was found in terms of biovolume 
between the fluorometric assay and the Calgary Biofilm 
Device (P = 1.0092; Additional file  2). The composition 
of the biofilm formation categories with respect to resist-
ance profile showed that antibiotic resistant isolates form 
stronger biofilms than sensitive isolates (P < 0.001; Fig. 1). 
Strong and moderate biofilms showed similar levels of 
enhancement in all 3 antibiotic assessment groups.

Correlation between biofilm formation and susceptibility 
test type
To determine whether biofilm formation is correlated 
with susceptibility test type, we compared the biofilm 

forming capacities between strains with 3 types of tests 
for each of the 7 antibiotics. We found that an over-
all MBEC susceptibility test significantly modifies the 
relationship between biofilm formation and antibiotic 
concentration (P < 0.001; Fig.  2). Strong and moderate 
biofilms likely exhibit similar trends for all of the antibi-
otics tested. The trend is very pronounced for amikacin 
and fosfomycin (MBEC-75 > MBEC-50 > MIC). Variation 
of the strong and moderate biofilm in MBEC-75 is much 
more pronounced for amikacin, meropenem, and ceftazi-
dime than other antibiotics, particularly colistin, where 
variation was comparatively low. MIC tests did not show 
any differences in association with weak, moderate, or 
strong biofilms.

Relationship between susceptibility test types 
and antibiotics
A linear mixed model revealed a significant relation-
ship between the type of susceptibility test and antibi-
otics (Z2

LRT = 312.26, 12 df, P < 0.001) showing that the 
magnitude of differences between tests was modified by 
antibiotics. Figure 3 shows all antibiotics except merope-
nem and colistin tended to have the same general pattern 
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Fig. 1  Antibiotic susceptibility of clinical isolates of P. aeruginosa to 7 antibiotics among various biofilm production capacities as a percentage
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Fig. 2  Association between the level of biofilm formation (negative, weak, moderate, or strong) and susceptibility test types to 7 antibiotics for 
P. aeruginosa clinical isolates. a gentamicin, b amikacin, c ciprofloxacin, d meropenem, e colistin, f fosfomycin, and g ceftazidime. MIC minimum 
inhibitory concentration of planktonic cells based on conventional susceptibility test, MBEC minimum biofilm eradication concentration based on 
PrestoBlue cell viability indicator



Page 5 of 8Wannigama et al. Ann Clin Microbiol Antimicrob            (2020) 19:8 	

(MBEC-75 > MBEC-50 > MIC). Whereas with merope-
nem, the difference between MIC and MBEC-50 is much 
more pronounced, and for colistin the difference is much 
less pronounced. No significant difference was found in 
terms of MBEC between the fluorometric assay and the 
Calgary Biofilm Device (P = 0.998; Table 1).

Association of susceptibility test types, biofilm formation, 
and antibiotic concentrations
The associations between odd ratios of MIC, MBEC (50 
and 75) and concentration attribute of each antibiotic 
are shown in Table  2. It is important to note that for 
this analysis we employed standardized concentrations 
(Z-scores) to avoid higher (raw) values of concentra-
tions making associations appear more trivial. For each 

antibiotic, the odds ratios from MBEC-50 and 75 tests 
are a reflection of the higher level of associations than 
with MIC, except for fosfomycin. Notably, for gentamicin 
and amikacin the odds ratio of MBEC-50 was higher than 
MBEC-75, but both displayed a similar level of signifi-
cance between MBEC-50 and 75. However, for colistin, a 
similar level of significance was observed for the associa-
tion between MIC and MBEC-50.

For all the strains tested, the accuracy of biofilm classi-
fication was higher for both MBEC-50 and 75 tests com-
pared with a MIC test for each antibiotic. We can see that 
concentrations using MBEC-50 correctly predicted the 
biofilm formation in gentamicin, ciprofloxacin, merope-
nem, and fosfomycin, followed by ceftazidime. MBEC-75 
is able to predict biofilm formation for colistin with 58% 

1

2

3

4

5

6

7

0

100

200

300

MIC MBEC−50 MBEC−75

A
nt

ib
io

tic
 (m

g/
L)

Susceptibility test
Fig. 3  Relationship between susceptibility tests and 7 antibiotics for P. aeruginosa clinical isolates: (1) gentamicin, (2) amikacin, (3) ciprofloxacin, 
(4) meropenem, (5) colistin, (6) fosfomycin, and (7) ceftazidime. MIC minimum inhibitory concentration of planktonic cells based on conventional 
susceptibility test, MBEC minimum biofilm eradication concentration based on PrestoBlue cell viability indicator
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accuracy, and for amikacin both MBEC-50 and 75 dis-
played similar levels.

Discussion
Current guidelines or antibiotic therapies, based on 
planktonic bacteria are often unable to offer a success-
ful path to the treatment of biofilm infections [1, 6]. As 
biofilm bacteria are inherently more tolerant to antibiot-
ics, it is necessary to determine biofilm specific antibiotic 
susceptibility to predict therapeutic success.

Therefore, the key advantages of the present assay are: 
first, that it simplifies the steps of biofilm formation and 
is able to produce biofilms equivalent to those produced 
by the Calgary Biofilm Device, making it standard assay 
system compliant with antibiotic susceptibility testing 
for biofilm infections. The reproducibility of the results 

for biofilms formed on each well of the 96-well plate 
and reproducible biofilm categories (weak, moderate, 
or strong) attributed to each clinical isolate demon-
strate that this fluorometric assay can produce biofilms 
equivalent to those of each peg of the Calgary Biofilm 
Device lid. It is therefore possible to provide equivalent 
and clinically relevant biofilm that can be exposed to 
multiple antibiotics in a single 96-well plate with viabil-
ity assessment to provide accurate antibiotic selection 
in a clinically useful time frame. The assay requires no 
specific peg lid plates or changing bottom-well plates at 
each step, making the process much simpler to set up 
than the Calgary Biofilm Device, and thus eliminates 
possible contamination and reduces expense. The use 
of a single 96-well plate for each testing step greatly 
reduces the time required to determine the antibiotic 

Table 1  Susceptibility range for each of the antibiotics based on planktonic population (MIC) and as a biofilm population 
(MBEC) derived by the fluorometric-based assay and Calgary Biofilm Device

a  Minimal inhibitory concentrations (MIC, mg mL−1) of planktonic cells
b  Minimal biofilm eradication concentrations (MBEC, mg mL−1) were categorized as responsive reaching about 50% and 75% of the total nonviable cells within a 
given antibiotic concentration range

Antimicrobial agents Broth microdilution Fluorometric-based assay Calgary 
Biofilm 
Device

MICa MBEC-50b MBEC-75b MBEC

Gentamicin 0.25–16 2–128 4–512 2–512

Amikacin 0.25–64 2–256 2–512 2–512

Ciprofloxacin 0.25–64 0.5–128 1–512 0.5–512

Meropenem 0.25–64 2–256 2–512 2–512

Colistin 0.25–32 1–128 1–256 1–256

Fosfomycin 0.25–256 2–512 2–512 2–512

Ceftazidime 0.25–128 2–512 2–512 2–512

Table 2  Odds ratios with  95% CIs from  ordinal mixed effect regression by  susceptibility test types for  each 
of the antibiotics based on standardized (Z-score) concentrations

*P < 0.05; **P < 0.01; ***P < 0.001
a  Minimal inhibitory concentrations (MIC, mg mL−1) of planktonic cells
b  Minimal biofilm eradication concentrations (MBEC, mg mL−1) were categorized as responsive reaching about 50% and 75% of the total nonviable cells within a 
given antibiotic concentration range
c  Odds ratio with 95% confidence interval
d  Biofilm formation classification accuracy (negative, weak, moderate, or strong)

Antimicrobial agents MICa MBEC-50b MBEC-75c

ORz (95% CIs)d BFCA (%)e ORz (95% CIs)d BFCA (%)e ORz (95% CIs)d BFCA (%)e

Gentamicin 2.31 (0.00132, 0.00406)** 61 11.05 (0.00390, 0.03132)*** 65 4.18 (0.00227, 0.00769)*** 62

Amikacin 1.75 (0.00108, 0.00284)* 50 5.00 (0.00251, 0.00996)*** 64 4.06 (0.00244, 0.00676)*** 64

Ciprofloxacin 2.40 (0.00077, 0.00751) 51 3.57 (0.00196, 0.00650)*** 58 5.40 (0.00279, 0.01047)*** 55

Meropenem 2.49 (0.00135, 0.00459)** 50 2.99 (0.00196, 0.00456)*** 58 2.62 (0.00173, 0.00396)*** 54

Colistin 8.66 (0.00153, 0.048.96)* 54 7.49 (0.00154, 0.03636)* 58 18.66 (0.00427, 0.08148)*** 58

Fosfomycin 61.10 (0.00149, 2.50718)* 54 2.91 (0.00170, 0.00499)*** 58 2.84 (0.00182, 0.00444)*** 58

Ceftazidime 1.54 (0.00103, 0.00231)* 53 2.20 (0.00145, 0.00333)*** 56 3.53 (0.00216, 0.00576)*** 55
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susceptibilities of biofilms and minimized the work-
load. The fluorometric-based assay is also amenable 
to automation because it is based on typical standard 
96-well plates.

Second, the assay is a valid way to differentiate antibio-
film effectiveness based on biofilm formation capacity by 
resembling clinical situations. We observed marked dif-
ferences between MBEC concentration patterns of each 
tested antibiotics to weak, moderate, and strong biofilms. 
Some antibiotics are able to penetrate moderate biofilms 
readily, but strong biofilms poorly. This is an interest-
ing observation, in that such differences may also reflect 
more fundamental differences in the biological character-
istics of biofilm structure [4, 23], and metabolic or physi-
ological factors [1, 4, 24] of clinical isolates that are not 
accounted for in MIC testing. Third, a clear difference 
in antibiotic susceptibility was seen between planktonic 
populations of each of the isolates tested and the biofilm 
populations of the same isolate. Each of the isolates had 
a unique biofilm susceptibility to the each of antibiotics 
tested. The biofilms of clinical isolates   of P. aeruginosa 
proved to be very difficult to eradicate, with only colistin 
being effective at achievable drug concentrations, with 
the other aminoglycoside tested (gentamicin), and cipro-
floxacin showing just some activity against weak biofilms. 
Indeed, the higher levels of significant odds ratios with 
biofilm formation classification accuracy of MBEC-50 
and 75 tests suggest that they have better discriminatory 
power than an MIC test. The accuracy of biofilm forma-
tion classification reflects that, to overcome the 50% cell 
death in a biofilm is crucial for the efficacy of particular 
antibiotics. The manner in which biofilm-induced toler-
ance and intrinsic resistance become integrated to pro-
mote biofilm-specific antibiotic resistance was shown. 
These data could be interpreted to indicate that the MIC 
is predictive of antibiotic efficacy against planktonic bac-
terial cells, but not for those living within biofilms. This 
is consistent with what is often seen as symptomatic 
relief by eliminating the planktonic population [1, 6, 25]. 
However, because the biofilm is not eliminated by anti-
biotic treatment, reinfection occurs once the antibiotic is 
removed [1, 6, 25].

The present work is limited by the following considera-
tions. In the presently described assay, the effect of anti-
biotics on biofilm were determined, although appropriate 
standard reference values required to clear infections 
in  vivo remain unclear. Combining the present quanti-
tative screening of bacterial biofilm-specific antibiotic 
resistance with clinical trials of antibiotics would clarify 
the clinical applicability of the assay.

In conclusion, the presently described quantitative 
screening assay of bacterial biofilm-specific antibiotic 
resistance assay is a versatile, easy to manage, and robust 

method that should help to improve treatment of infec-
tions that are threats in the clinic.
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