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REVIEW

Can one size fit all? Approach 
to bacterial vaginosis in sub‑Saharan Africa
Zenda Woodman*

Abstract 

Bacterial vaginosis (BV) is the most common vaginal disorder affecting women of reproductive age and is associated 
with increased risk of sexually transmitted infections such as human immunodeficiency syndrome (HIV-1). Sub-Saha-
ran Africa has the highest BV and HIV-1 burden and yet very few studies have focused on understanding the aetiology 
of BV and its association with HIV in this region. It has been suggested that we need to accurately diagnose and treat 
BV to lower the risk of HIV infection globally. However, effective diagnosis requires knowledge of what constitutes a 
“healthy” cervicovaginal microbiome and current studies indicate that Lactobacillus crispatus might not be the only 
commensal protective against BV: healthy women from different countries and ethnicities harbour alternative com-
mensals. Microbiotas associated with BV have also shown global variation, further complicating effective diagnosis via 
culture-based assays as some species are difficult to grow. Antibiotics and probiotics have been suggested to be key 
in controlling BV infection, but the efficacy of this treatment might rely on reconstituting endogenous commensals 
while targeting a specific species of BV-associated bacteria (BVAB). Alternatively, therapy could inhibit essential BV 
bacterial growth factors e.g. sialidases or provide anti-microbial compounds e.g. lactic acid associated with a healthy 
cervicovaginal microbiome. But without global investigation into the mechanism of BV pathogenesis and its associa-
tion with HIV, selection of such compounds could be limited to Caucasian women from certain regions. To confirm 
this suggestion and guide future therapy we require standardised diagnostic assays and research methodologies. This 
review will focus on research papers that describe the global variation of BV aetiology and how this influences the 
identification of determinants of BV pathogenesis and potential probiotic and antimicrobial therapy.
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Background
Bacterial vaginosis (BV) is associated with sexually 
transmitted infections (STIs) as well as pelvic inflamma-
tory disease and pregnancy complications [1]. The most 
alarming association is BV’s relationship with increased 
risk of HIV infection [2]. The high prevalence of BV in 
sub-Saharan Africa (approximately 55 % of women) [3, 4] 
could be a very important contributing factor to the prev-
alence of HIV infection in this region afflicted with 60 % 
of global HIV infections (UNAIDS). It has thus been sug-
gested that successful treatment of BV could ultimately 
lead to lowering HIV infection in this region. Unfortu-
nately, the cause of BV remains unknown although it is 

generally characterised by the outgrowth of “unhealthy” 
facultative and obligate anaerobic bacteria with a con-
comitant decrease in the levels of “healthy” Lactobacillus 
spp. within the genital tract [5]. Given the polymicro-
bial nature of BV and recent evidence, it is highly likely 
that pathogenesis of BV-associated bacteria (BVAB) is 
shaped not only by the bacterial populations present in 
the genital tract but also by specific host factors. Human 
genetic host immunity and the identity of “healthy” and 
“unhealthy” genital tract bacteria differ globally, suggest-
ing that diagnosis and treatment of BV might need to be 
adjusted according to region. This approach to therapy 
is unrealistic in resource-poor settings and before we 
accept this strategy as gold standard we need to con-
firm our current understanding of “healthy” vaginal 
microflora and the identity of BVAB. This review aims 
to highlight the need for studies in sub-Saharan Africa 
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to investigate the aetiology of BV in this region using 
standardised protocols. Furthermore, understanding the 
mechanism by which BV increases the risk of HIV will 
provide new targets for antimicrobial agents.

What constitutes a healthy cervicovaginal tract 
microbiome?
Seventy percent of healthy Caucasian females carry pre-
dominantly genital Lactobacilli spp. [6] with the most 
common being L. crispatus, L. gasseri, L. jensenii and 
L. iners [7]. Meta-analysis of a number of studies indi-
cated that L. crispatus was significantly associated with 
the absence of BV, and transition to BVAB occurred via 
outgrowth of L. iners, confirming a previous study that 
L. gasseri and/or L. iners are associated with BV-related 
microflora whereas L. crispatus protected against dysbio-
sis [8, 9]. However, studies focused on sub-Saharan coun-
tries have indicated that the predominant Lactobacillus 
species varied both within and between countries. Three 
South African studies reported conflicting results: one 
indicated that L. crispatus was associated with normal 
cervicovaginal microflora (p = 0.024), supporting studies 
on Caucasian women, whereas another showed that BV- 
and HIV-negative women carried predominantly L. sali-
varius. Finally, the last study showed that most women 
carried both L. crispatus and L. jensenii and that L. jense-
nii and not L. crispatus was associated with lack of BV 
(p = 0.053) [10–12]. The majority of women from Kenya, 
Rwanda, South Africa and Tanzania had predominantly 
genital L. iners with coincident anaerobic microbes [13]. 
Another descriptive cross-sectional study observed no 
difference between South African and Kenyan women 
with L. crispatus and L. vaginalis associated with low 
Nugent scores [14]. Nigerian women were mostly colo-
nized with genital L. iners and L. gasseri and Ugandan 
women carried primarily L. reuteri, L. crispatus, L. vagi-
nalis and L. jensenii [15, 16]. Therefore, although Lacto-
bacilli were found in women from different countries, the 
dominant species differed and some healthy women car-
ried non-Lactobacilli anaerobic microflora.

These results were confirmed when women from 
different ethnicities were compared from the same 
region. It is unknown why black women have a higher 
prevalence of BV than Caucasians [17, 18]. However, 
a contributing factor could be that the cervicovaginal 
microflora of healthy women differs according to race 
[19]. Srinivasan et al. indicated that 28 taxa were differ-
entially associated with race in the USA (p < 0.05) with 
Leptotrichia amnionii, Atopobium vaginae and BVAB1 
found in more African-American BV-negative women 
than Caucasians. Furthermore, the healthy microbiomes 
of African-American—women were dominated by L. 
iners and those of Caucasians, L. crispatus [20]. Healthy 

microbiomes also varied among Hispanic, African-
American, white and Asian women where the cervicov-
aginal tracts of white and Asian women were dominated 
by Lactobacilli spp. and African-American and Hispanic 
individuals carried more non-Lactobacilli anaerobic 
bacteria (p < 0.0001) [21]. Interestingly, a study of black 
South African women also reported that most asympto-
matic women carried non-Lactobacillus species, similar 
to African-American women. The dominant Lactobacil-
lus spp. was also L. iners, suggesting that healthy women 
of African descent could be less likely to carry cervico-
vaginal L. crispatus [8]. As L. iners could play a role in 
BV pathology, this finding could in part explain the high 
incidence of BV amongst black women especially in 
Southern Africa [22]. However, Kenyon et al. cautioned 
against this suggestion given that the prevalence of BV 
in some African countries such as Burkina Faso is quite 
low [23].

BV diagnosis is usually based on four physiological 
Amsel criteria or Nugent score—a gram stain that deter-
mines the relative amounts of gram-positive Lactoba-
cilli and gram-negative rods (low score of 0–3 indicating 
mainly Lactobacilli/normal vaginal “flora”; high score of 
8–10 indicating BV). Recently, BV-associated dysbiosis 
was shown not to correlate with three of the four Amsel 
criteria and the Amsel method was unlikely to identify 
BV-positive women if they lacked dominant Lactoba-
cilli species [13]. This is not reassuring as diagnosis of 
BV based on Amsel criteria (malodour, discharge, high 
pH and clue cells) is most commonly used in developing 
countries.

How could Lactobacilli protect against BV and HIV?
Variation in healthy genital tract Lactobacilli commen-
sals across countries and ethnicities could lead to varying 
levels of protection against BV and HIV-1. Comparative 
functional genomic studies have shown that Lactoba-
cillus spp. have evolved in a species-specific manner to 
adjust to the cervicovaginal environment, each express-
ing alternative adaptive factors. Therefore, microbes 
could influence the health of the genital tract through 
multiple mechanisms [24] such as the production of bac-
teriocins, lowering of the genital tract pH, and/or release 
of hydrogen peroxide [25–27]. Lactobacilli produce 
strain-specific bacteriocins such as reuterin by L. reuteri 
and lactocepin by L. casei and L. paracase [28]. Despite 
being the focus of many earlier studies, it is unlikely that 
hydrogen peroxide plays a role in HIV acquisition as the 
level of hydrogen peroxide produced by Lactobacilli in 
the hypoxic environment of the genital tract would be 
too low to inhibit HIV [29].

Overall, high pH correlated best with high Nugent 
scores [21] and low pH prevented HIV infection [30]. 
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However, it was shown that lactic acid and not pH was 
responsible for inhibiting HIV-1 and BVAB [29, 31]. Cer-
vicovaginal microbiome pyrosequencing showed pre-
dominance of lactic acid anaerobes in black and Hispanic 
women, suggesting that the presence of lactic acid could 
play a very important role in defining healthy vaginas and 
not a specific bacterial species [21]. Furthermore, the 
presence of any Lactobacillus spp. was associated with 
lower risk of HIV infection [3] and lower levels of HIV 
RNA in cervical vaginal lavages (CVLs) [32]. However, 
another study showed that the level of protection could 
be strain-specific: L. crispatus was better associated with 
lower HIV RNA levels than L. iners [33]. These species 
rarely co-dominate, probably due to competition and the 
relative ability of each species to adapt to different envi-
ronments [24].

Witkin et al. [35] reported that Lactobacillus spp. pro-
duced either l- or d-lactic acid and only the l-isoform 
inhibited HIV-1 infection. l-lactic acid induces the 
IL-23/IL-17 T cell pathway, release of pro-inflammatory 
cytokines, lymphocyte activation and increase in metal-
loproteases responsible for disruption of the cervix. The 
release of different cytokines depended on the species of 
Lactobacillus present [34] and could be due to genetic 
differences between species as L. crispatus, L. gasseri and 
L. iners do not have the same number of copies of the l- 
and d-lactate dehydrogenase (LDH) genes [35]. There-
fore, protection might be Lactobacillus spp. dependent 
and as the commensals of healthy women differ globally, 
it is likely that microbes other than Lactobacilli could be 
protective via similar mechanisms (production of l-lactic 
acid) or novel ways, altering the definition of a “healthy” 
genital tract.

Could a specific anaerobe predict BV and HIV?
A number of studies have identified different bacteria 
associated with BV in Caucasian women such as Veil-
lonella parvula, Bacteroides, Peptococcus asaccharolyti-
cus, Gardnerella vaginalis, Mobiluncus spp., Mycoplasma 
hominis and Chlamydia trachomatis [36–38]. Unravel-
ling the BV microbiome using molecular techniques has 
helped to identify non-culturable bacteria such as Atopo-
bium vaginae, newly identified BVAB strains (BVAB1-3), 
Megasphaera spp. and Leptotrichia spp. [21]. However, 
as these bacteria are also lactic acid producers and found 
in BV-asymptomatic women, it has been suggested that 
they do not indicate unhealthy vaginas. In sub-Saharan 
Africa, BV was associated with G. vaginalis in Kenya 
but not in Uganda [39] and Prevotella bivia or Lachno-
spiraceae were identified in Tanzania [40]. Mycoplasma 
hominis infected 35 % of HIV-negative Nigerian women 
whereas G. vaginalis, Prevotella spp., Mobiluncus, Atopo-
bium spp. and E. coli, which predominate in Caucasians, 

were not identified [15]. Mycoplasma lacks a cell wall and 
thus cannot be identified using the Nugent scoring sys-
tem. It is thus possible that this organism is underrepre-
sented in Caucasian BV populations because of the type 
of diagnostic assay used in some studies [32, 41]. The 
presence of both G. vaginalis and M. hominis in the geni-
tal tract was associated with increased CVL HIV RNA. 
When analysis compared these two organisms singly only 
Mycoplasma remained significantly associated with HIV 
levels (p =  0.0001) [32]. This could suggest that Myco-
plasma plays an important role in HIV acquisition and 
that correct screening and diagnostic assays should be 
used to confirm whether it is associated with BV and HIV 
globally.

The primary bacteria associated with BV biofilms are 
G. vaginalis and A. vaginae [42, 43]. It has been suggested 
that the genital epithelium is colonised by G. vaginalis 
first and its biofilm production facilitates the colonisation 
of secondary anaerobes [44–46]. However, as G. vaginalis 
has been isolated from healthy women and introduc-
tion of vaginal secretions and not inoculation with pure 
G. vaginalis culture resulted in BV, it was thought to be 
a component of the normal genital microbiome and thus 
not the causative agent for BV [47–50]. Machado et  al. 
[45] showed that G. vaginalis adherence displaced L. 
crispatus, grew threefold better in the presence of certain 
anaerobes and encouraged the biofilm growth of mainly 
P. bivia. The authors suggest an interdependent relation-
ship between Lactobacilli and BVAB and that this asso-
ciation might be species-specific [46].

Schwebke et  al. [20] reviewed convincing evidence 
as to the role of G. vaginalis in BV as nearly 100  % of 
women with BV carry this specific bacterium whereas 
other colonising anaerobes are highly heterogeneous. 
They also suggest that G. vaginalis diversity could result 
in both pathogenic and non-pathogenic strains [45] with 
only specific biofilm-causing strains responsible for BV 
[51]. Genomic sequencing and in  vitro analysis of two 
G. vaginalis strains- one from a BV-infected woman 
and the other from a BV-negative women- showed that 
the former strain was pathogenic with enhanced biofilm 
production [52]. In support of this theory, Vaginolysin 
cytotoxicity also varied between G. vaginalis strains, 
reiterating the importance of genetic variation between 
strains. What this means for BV in sub-Saharan Africa 
where BV microbiomes differ between countries remains 
unknown.

How could BV anaerobes enhance HIV infection?
A heat stable factor found in CVLs of BV-infected women 
enhanced HIV replication, suggesting that BVAB could 
increase HIV acquisition directly [53–55]. Vaginolysin 
produced by G. vaginalis facilitates bacterial growth [56] 
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and enhances HIV infection by permeabilising the cervi-
covaginal epithelium [52].

HIV-1 Envelope (Env) glycosylation may play a role in 
HIV transmission and thus glycosidases that alter viral 
glycans could help select specific transmitted founder 
variants. Dendritic cell DC-SIGN receptor binds to HIV 
via Env glycans and enables trans-infection of CD4+ T 
cells, thus facilitating HIV transmission [57]. One study 
showed that CVLs from BV-infected women had higher 
levels of sialidase, α-galactosidase, β-galactosidase and 
α-glucosidase than uninfected women, suggesting that 
BVAB produce enzymes that have the potential to alter 
the glycome of the genital tract [58]. Using lectin micro-
array profiling of CVLs of women with and without BV 
indicated that the number of high mannose N-glycans 
decreased in the presence of BV [59]. The authors suggest 
that the high mannose residues on the glycoproteins of 
the genital mucosa outcompete HIV Env for binding to 
DC-SIGN or macrophage mannose receptor, preventing 
infection of macrophages and dendritic cells involved in 
HIV transmission [60–62].

Bacterial vaginosis was also associated with fewer CVL 
sialic acid residues as expected with an increase in siali-
dase levels associated with the onset of BV [63]. Sialidase 
levels are currently used to diagnose BV using the BVBlue 
system [64]. Sialidase secreted by Bacteroides spp. and G. 
vaginalis help produce biofilms and both mucinases and 
sialidases are involved in STIs (reviewed by Wiggins) [65] 
by disrupting the integrity of the mucosa, facilitating the 
adhesion of pathogens to mucins and/or underlying epi-
thelial cells [66]. The negatively charged sialic acid mol-
ecules at the terminal ends of the O-linked sugar chains 
determine changes in mucosal viscosity [67] influenc-
ing viral access to epithelial cells. Sialidases could also 
directly affect HIV infection as both gp120 and CD4 
carry terminal sialic acid residues. In fact, treatment of 
cells or HIV with sialidase enhanced HIV infection [68–
70], suggesting that removal of sialic acids could facilitate 
virus-target cell binding and thus enhance transmission. 
Future studies should investigate the significance of this 
finding on the transmission of HIV by evaluating the 
effect of sub-Saharan-specific BVAB on CVL sialidase 
levels of BV-positive women and their impact on HIV 
replication.

Could the immune response to BV facilitate HIV 
transmission?
It has been suggested that the genital tract immune 
response plays a very important role in the pathophysio-
logical condition of BV [71] because interactions between 
genital epithelial cells and microbiota regulate the innate 
immune response. Therefore, disruption of the delicate 
balance between microbial species could alter pathogen 

susceptiblity, facilitating HIV replication/shedding in 
the genital tract and [72] ultimately leading to increased 
female to male HIV transmission [73, 74]. Schellen-
berg et  al. [75] reviewed studies that indicated that 
BV-associated inflammation occured via activation of 
Toll-like receptors (TLRs). Royse et al. [76] indicated that 
a genetic variation in TLR4, TLR9 and TLR2 of African-
American adolescents was associated with recurrence 
of BV in HIV-infected individuals. A polymorphism in 
TLR2 was also associated with BV and these authors sug-
gest that specific bacteria could have differential effects 
on TLRs [77]. Mitchell et al. [34] reviewed findings that 
showed that different BVAB were associated with varying 
cytokines and activation of the innate immunity of fully 
differentiated vaginal epithelial cell aggregates was spe-
cies-specific: A. vaginae increased epithelial cell mucins 
and pro-inflammatory cytokines; L. iners activated pat-
tern-recognition receptor-signaling activity [77] whereas 
Prevotella bivia and L. crispatus seemed to have no 
effect. Therefore infection with A. vaginae could induce a 
pro-inflammatory immune response that disrupts barrier 
functions whereas other microbes could elicit different 
responses [78]. This reiterates the need to fully under-
stand genital immunity associated with BV in sub-Saha-
ran Africa, noting the difference in global BV-associated 
microbiomes discovered thus far.

Could probiotics and antibiotics treat BV and lower 
risk of HIV infection?
Treatment of BV with metronidazole did not prevent 
recurrent BV infections nor lower levels of viral RNA 
(shed virus) and viral DNA (cell associated) in CVLs 
[79]. One reason for this is that the biofilm barrier needs 
to be overcome before anti-microbial agents can gain 
access to the adherent bacteria. Retrocyclin not only 
inhibits Vaginolysin and thus prevents biofilm produc-
tion, it also has anti-HIV activity and is currently being 
evaluated as an anti-HIV microbicide [80]. To prevent 
microbicides from altering the genital innate immune 
response, disrupting the integrity of the mucosal epi-
thelium and enhancing HIV acquisition [81, 82], innate 
immune regulators and/or antimicrobial agents that 
eliminate BV-associated microbiota without disrupting 
beneficial Lactobacilli spp. should be included [83]. One 
potential candidate, carbohydrate binding agents (CBAs) 
has been shown to prevent CD4 T cell HIV infection, 
cell–cell fusion, binding to DC-SIGN and trans-infection 
of CD4 T cells without affecting the growth of commen-
sal Lactobacilli [84].

Metronidazole and clindamycin do not prevent recur-
rent BV infections as the Lactobacilli population is rarely 
reconstituted [85]. Probiotics could thus be highly ben-
eficial- modulating the mucosal flora, maintaining the 
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integrity of the epithelial barrier and regulating the 
immune response. Hydrogen peroxide-producing Lac-
tobacilli have been shown to be protective against a 
number of bacterial infections and have been used in pro-
biotics [86, 87]. Live Lactobacilli and the culture super-
natant of Lactobacilli inhibited HIV infection. The most 
effective of the Lactobacilli tested was L. gasseri [88]. 
As dysbiosis results in inflammation [89], selection of 
probiotics that do not disturb the natural flora and thus 
the innate immune response is very important. Numer-
ous studies have tested different Lactobacillus strains 
with varying effects [6]. Homayouni et al. [90] review on 
probiotic trials between 1990 and 2011 suggested that 
combination treatment with L. acidophilus, L. rhamno-
sus, and L. fermentum normalised cervicovaginal micro-
biome resulting in curing BV and preventing relapse. In 
contrast, L. fermentum and L. plantarum were shown by 
Vicariotto et al. [91] to reduce biofilms in vitro and cure 
BV in human trials whereas L. crispatus, L. reuteri, and L. 
iners, disrupted biofilms in another study [92].

Despite this evidence, review and analysis of a number 
of studies in 2009 indicated that there was insufficient 
evidence to support the use of probiotics in the treatment 
of BV and that large randomised trials with standard 
methodology was still outstanding [93]. Factors that need 
to be considered are the application of unsuitable bacte-
rial strains and/or colonisation difficulties in the presence 
of BVAB [86, 94–96]. A randomized double blind study 
in 2009 indicated that the L. crispatus probiotic was able 
to colonise only in the absence of endogenous L. crispa-
tus, lack of condom use and without recent sexual activ-
ity, suggesting that the choice of Lactobacillus probiotic, 
the identity of the natural microflora and sexual practices 
could affect the efficacy of probiotics [96]. Due to the 
high variability of the genital microbiome in the genital 
tract of women [35], it is most likely that a single probi-
otic strain might not be sufficient to prevent BV or HIV 
infection.

Conclusion
Studies suggest that BV pathology is highly dependent 
on Lactobacilli spp., BVAB and host genetic differences 
within the context of social behaviour. This synergy is 
complicated by differences in Lactobacilli spp. and BVAB 
across race and nationality so that diagnosis and treat-
ment within resource-poor settings such as sub-Saharan 
Africa requires new consideration. We need to know 
whether differences across regions and ethnicities reflect 
true diversity or are due to study design. Thus we need 
to first standardise a global methodology for BV screen-
ing and identification of commensals and BVAB before 
rigorous longitudinal comparisons between different 
races and countries are carried out. In conjunction with 

this, basic research needs to apply in vitro assays that cir-
cumvent CVL donor variation to identify novel markers 
of BV and potential targets for drug design. Without a 
global approach, controlling BV in sub-Saharan Africa is 
highly unlikely.
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