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COVID-19 pandemic modifies temperature 
and heat-related illness ambulance transport 
association in Japan: a nationwide observational 
study
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Abstract 

Background:  During the COVID-19 pandemic, several illnesses were reduced. In Japan, heat-related illnesses were 
reduced by 22% compared to pre-pandemic period. However, it is uncertain as to what has led to this reduction. 
Here, we model the association of maximum temperature and heat-related illnesses in the 47 Japanese prefectures. 
We specifically examined how the exposure and lag associations varied before and during the pandemic.

Methods:  We obtained the summer-specific, daily heat-related illness ambulance transport (HIAT), exposure vari-
able (maximum temperature) and covariate data from relevant data sources. We utilized a stratified (pre-pandemic 
and pandemic), two-stage approach. In each stratified group, we estimated the 1) prefecture-level association using 
a quasi-Poisson regression coupled with a distributed lag non-linear model, which was 2) pooled using a random-
effects meta-analysis. The difference between pooled pre-pandemic and pandemic associations was examined across 
the exposure and the lag dimensions.

Results:  A total of 321,655 HIAT cases was recorded in Japan from 2016 to 2020. We found an overall reduction of 
heat-related risks for HIAT during the pandemic, with a wide range of reduction (10.85 to 57.47%) in the HIAT risk, 
across exposure levels ranging from 21.69 °C to 36.31 °C. On the contrary, we found an increment in the delayed heat-
related risks during the pandemic at Lag 2 (16.33%; 95% CI: 1.00, 33.98%).

Conclusion:  This study provides evidence of the impact of COVID-19, particularly on the possible roles of physical 
interventions and behavioral changes, in modifying the temperature-health association. These findings would have 
implications on subsequent policies or heat-related warning strategies in light of ongoing or future pandemics.
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Introduction
The novel coronavirus which was first reported in 
Wuhan, China last December 2019 [47], has been spread-
ing globally at unprecedented rate, leading to the virus 
being declared as a global pandemic by WHO [44]) on 

12 March 2020. The clinical disease, COVID-19, associ-
ated with the pandemic is caused by the pathogen severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
[47]. Several countries have introduced either granular 
(geographically-limited) or nationwide prevention and 
control measures in order to manage the progression 
of the disease [17]. In Japan, the government initially 
rolled out three main strategies; namely: a) early clus-
ter detection and timely response, b) enhancement of 

Open Access

*Correspondence:  seposo.xerxestesoro@nagasaki-u.ac.jp
1 Nagasaki University School of Tropical Medicine and Global Health, 
Nagasaki, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0339-8213
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12940-021-00808-w&domain=pdf


Page 2 of 10Seposo et al. Environmental Health          (2021) 20:122 

early diagnosis and intensive care for severely affected 
patients, and c) universal healthcare system strengthen-
ing alongside behavioral change of the general population 
[35]. Anchored within these major strategies are policy 
adaptations and requests highlighted in the “avoidance 
of the3C’s:Closed space,Crowded place andClose-contact 
setting” strategy issued on February 2020, which specifi-
cally encourages social distancing, mask donning and 
indoor space ventilation [18].

Apart from managing the COVID-19 pandemic, Japan 
faces yet another seasonal threat due to extreme heat 
during summer. The country has since documented 
record-breaking increase in heat-related illness incidence 
in recent years [19]. The main culprit for the increase in 
heat-related illnesses is the exposure to extreme heat [36], 
amplified by the changing climate. In response to this 
looming threat in the time of the pandemic, the Ministry 
of Health, Labor and Welfare (MHLW) issued guidelines, 
dated 4 May 2020, which was entitled and loosely trans-
lated to “Heatstroke prevention in “a new lifestyle” during 
the COVID-19 pandemic”, elaborating on how to prevent 
heatstroke while maintaining the 3Cs [32]. The guide-
lines explicitly cautioned about the increase in the pos-
sibility of heat-related illness risk during the pandemic, 
particularly with the use of protective face masks (PFM). 
The stern caution stems from several studies which have 
noted that PFM use may negatively impact body ther-
moregulation through increased thermal stress [28, 40] 
and thus increasing the risk of developing heat-related 
illnesses.

Contrary to expectations, a recent study observed 
that heat-related illness ambulance transport (HIAT) 
decreased during the pandemic by 22% [95% Confi-
dence Interval (CI): 18 – 25%] [16]. The authors noted 
the role of mobility restrictions as well as remote work-
ing in decreasing the exposure of the population to heat, 
and thus the reduction in HIAT. On the other hand, the 
observed reduction may also be due to the changes in 
the exposure-response function, which, most of the time, 
leads to changes in the health risk/burden. With just little 
more than a year into the pandemic, evidence regarding 
the impact of the COVID-19 pandemic on temperature 

and heat illness association is scarce, and thus making it 
challenging to attribute whether the changes observed 
in HIAT was indeed due to the changes in the exposure-
health association or otherwise. The determination of 
how the pandemic impacted the temperature-health 

outcome associations would help health managers 
understand which mechanisms may have been linked 
with these changes and at the same time will serve as a 
guide in crafting evidence-informed policies in relation 
to heat-related risk management/strategies in light of 
ongoing and future pandemics. In this study, we exam-
ined the impact of COVID-19 pandemic on the tempera-
ture-HIAT associations in Japan.

Methods
Data source
Daily summer-specific HIAT data of 47 Japanese pre-
fectures from June to September of 2016 to 2020 were 
obtained from the Fire and Disaster Management Agency 
(FDMA) database [10]. Heat-related illness diagnoses 
are coded using the International Classification of Dis-
eases (ICD) 10. Specifically, the following diagnoses are 
reported and aggregated as heat-related illness: “heat-
stroke and sun stroke” (T67.0), “heat syncope” (T67.1), 
“heat cramp” (T67.2), “heat exhaustion, anhidrotic” 
(T67.3), “heat fatigue, unspecified” (T67.5), “heat fatigue, 
transient” (T67.6), “heat edema” (T67.7), and “other 
effects of heat and light” (T67.8) [23]. Same period maxi-
mum temperature (in degrees Celsius; °C) and relative 
humidity (in %) were obtained from the Japan Mete-
orological Agency [24]. Pre-pandemic period was from 
2016 to 2019, while the pandemic period was in 2020. All 
(anonymized and aggregated) data used in this analysis 
were obtained from open-source databases and did not 
qualify for any ethical approval certification.

Statistical analysis
We utilized a two-stage analysis in estimating the prefec-
ture-specific and pooled effect modified associations. In 
the first-stage analysis, we separately modelled all-period 
and period-specific associations. In both modeling speci-
fications, HIAT was assumed to follow a quasi-Poisson 
distribution, accounting for overdispersion, per prefec-
ture. Covariates of relative humidity, day of the week, 
holiday, month, date, year and day of the season (dos), 
based on previous literature [1, 14], were adjusted in the 
model. All-period association is parameterized as shown 
in Eq. 1.

HIAT from prefecture (i) and time (t) is modeled with 
the intercept (α); cbmaxtemp is a cross-basis term of maxi-
mum temperature; rhave represents relative humidity 
with 4 degrees of freedom (df ); dos stands for day of the 
season with 4 df per year, which we allowed to vary by 
year [14, 26]; linear term for date; dow is day of the week; 

(1)yi,t ∼ quasiPoisson

yi,t ∼ α + cbmaxtemp + ns
(

rhave, df = 4
)

+ ns
(

dos, df = 4
)

: factor(year)+ date + dow + hod + ε
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hod is public holiday; ε is the error term. The cross-basis 
term implemented via a distributed lag non-linear model 
(DLNM), models the bi-dimensional associations of both 
the exposure-response and lagged dimensions [13]. The 
cross-basis term was specified with a quadratic B-spline 
for the exposure-response dimension with two internal 
knots placed at the 50th and 90th percentiles of location-
specific summer temperature distributions, and a natural 
cubic B-spline for the lag dimension with an intercept 
and two equally-spaced internal knots in the log scale. 
Lag dimension results reflect the risks at the 99th tem-
perature percentile compared to the minimum risk tem-
perature (MRT); the temperature whereby the risk is 
assumed to be the lowest; in this study it was determined 
to be at the 1st percentile, which was at 20.9 °C. Due to 
the immediate nature of HIAT, we set the lag to 5 days. 
In the period-specific associations, we employed a strati-
fied analysis with pre-pandemic association covering the 
period from 2016 to 2019 and pandemic association on 
2020. The same modeling parameterizations (in Eq.  1) 
were utilized for the stratified analysis.

In the second stage analysis, prefecture-specific esti-
mates were pooled via random effects meta-analysis 
with a multivariate meta-regression models of the first-
stage coefficients [11, 12]. Here, meta-regression models 
adjusted for prefecture-specific average maximum tem-
perature and maximum temperature range. Subsequent 
fitted multivariate meta-regression models were used to 
estimate the best linear unbiased predictor (BLUP) for 
the overall cumulative exposure-response in each pre-
fecture. In brief, BLUP allows prefectures with relatively 
low number of daily HIAT data to utilize the informa-
tion from larger prefectures sharing similar characteris-
tics [11]. Nationwide pre-pandemic and pandemic period 
associations, for both exposure and lag dimensions, 
were derived through the second stage analysis via the R 
package “mvmeta”. We further examined the difference 
between pre-pandemic and pandemic associations using 
a test of interaction [2] and estimated the ratio of rela-
tive risks (RRR) [2, 3], along the exposure and lag dimen-
sions. The test of interaction determines whether there 
is statistical difference between the periods, whereas 
the subsequent derived RRR estimates the magnitude of 
the changes in the relative risk by comparing pandemic 
risk to the baseline (pre-pandemic risk). We followed 
STROBE reporting guideline for retrospective obser-
vational study [43]. All relevant data management and 
statistical analyses were done using R Statistical pro-
gramming [39].

Sensitivity analyses
We also implemented several sensitivity analyses for 
both all-period and period-specific associations in either 

exposure or lag dimensions. Specifically, we examined 
the robustness of the estimates, in terms of the influence 
of highly-populated locations, i.e. Tokyo and Osaka, on 
the shape of exposure-response and lag association, by 
leaving one prefecture out and subsequently running 
the earlier modeling steps (in Figs. S6 and S7). Further-
more, we have also included the prefecture-specific all-
period and period-specific lag and exposure dimensions 
in the Supplementary Materials (in Figs.  S2, S3, S4 and 
S5) for more detailed appraisal of the prefecture-specific 
and pooled results. We have also varied the number of 
internal knots in the exposure dimension and lag dimen-
sions (as shown in Fig. S8) to evaluate its influence on the 
maximum temperature-HIAT association, in both pre-
pandemic and pandemic periods.

Results
A total of 321,655 HIAT cases was recorded across the 
country from 2016 to 2020, with most cases occurring 
in highly populated metropolitan locations of Tokyo 
(n = 25,081) and Osaka (n = 23,760) (summarized in 
Table  S1). We observe a discernable gradient of sum-
mer-specific maximum temperature (in Fig.  S1) with 
northern locations experiencing milder summers com-
pared to southern locations. In pre-pandemic period, 
HIAT average daily cases started to rise from the month 
of June (n = 2.9), peaks in the months of July (n = 19.9) 
and August (n = 18.2) and drops thereafter in September 
(n = 3.3). However, during the pandemic, we observed 
a delay in the peak of HIAT cases in August (n = 29.6), 
which recorded 10 additional HIAT cases than pre-
pandemic period (in Table  1). In either pre-pandemic 
or pandemic periods, the highest recorded maximum 
temperature was in August, whereas for relative humid-
ity it was recorded in July. Fitted lines in the scatter-
plot (in Fig.  S1B) suggest that the association may have 
been attenuated during the pandemic (in red), with an 
apparent difference particularly in the high temperature 
extremes.

In the whole study period from 2016 to 2020, shown in 
Fig. 1A, we observe an exponential increase in the HIAT 
risk beyond the MRT at 20.9 °C. The gradual increase 
from the MRT is followed by the steep increase in the 
risk beyond 30 °C. Whereas, in the lag dimension (in 
Fig. 1B), same-day maximum temperature exposure was 
associated with the highest HIAT risk with an RR of 49.2 
[95% Confidence Interval (CI): 40.5, 59.6].

Further examination revealed an overall reduction in 
the exposure-response association during the pandemic 
(in Fig. 2A). Statistical difference between pre-pandemic 
and pandemic RRs, represented by the RRR in Fig.  2B, 
was observed across the exposure range. While not vis-
ually discernable, risks were slightly higher during the 
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pandemic in the range of temperatures below the MRT. 
However, beyond the MRT, the risk reduction widened 
as temperature increased, which waned towards the 
extreme upper end of the exposure range. The percent 
reduction ranged from 10.9 to 57.5% between 21.7 °C to 
36.3 °C, with the maximum percent reduction at 31.2 °C 
(57.5%; 95% CI: 34.4, 72.4%). It is notable that the pre-
pandemic and pandemic exposure-response associations 
have similar risk patterns.

The lag associations in either periods were compara-
tively similar with both periods exhibiting same-day 
maximal risk (in Fig.  3A), which is followed by a sud-
den drop in the risk at Lag 1 and remains to hover near 
the null association thereafter. Pre-pandemic lag-spe-
cific association at Lag 0 was reduced though statisti-
cally not significant, by 28.1% (95% CI: − 53.3, 10.8%) 
during the pandemic. While similarly visually not dis-
cernable, we observed a statistical difference between 

Fig. 1  Pooled all-period exposure-response (A) and lag (B) associations. Centered at the minimum risk temperature (at 20.9 °C; horizontal dotted 
grey line), the heat-related relative risks increase with increasing temperature (A). Red horizontal dotted line represents the null association. 
Exponential solid line depicts the central estimate of the either exposure-response (A) or lag (B) associations, with their respective confidence 
interval (grey-shaded areas)
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pre-pandemic and pandemic risk at Lag 2 (in Fig. 3B), 
with the delayed heat risks to be higher during the pan-
demic at 16.3% (95% CI: 1.0, 34.0%) than pre-pandemic.

Discussion
In this study, we found that the COVID-19 pandemic 
modified both the HIAT exposure-response and lag asso-
ciations in Japan. An overall reduction in the HIAT risk 
was generally observed during the COVID-19 pandemic, 
which may partially be due to the attenuation of both the 
exposure-response and immediate lag associations. Aside 

from the reduction, notable risk increments were also 
apparent in the delayed lag associations. Several mecha-
nisms may have contributed to the reduction or incre-
ment of HIAT risk during the pandemic. Firstly, we draw 
comparison on how these observed changes resemble 
the impact of large-scale events on heat-related health 
risks in a more familiar concept of heat-health plans. In 
addition, we subsequently examined how these changes 
reflect the role of multi-sectoral policies as well as behav-
ioral changes on the reduction and increment of heat-
related health risks.

Fig. 2  Pooled period-specific exposure-response associations (A) and ratio of relative risk (B). A Pre-pandemic risk (green) and pandemic risks (blue) 
depicted with their respective central estimates (solid lines) and confidence intervals (color-specific shaded areas). B Central estimates of the ratio of 
relative risks (RRR) in black solid line and its corresponding confidence interval (grey-shaded area)
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In the absence of true comparison, we presuppose 
that the COVID-19 pandemic setting serves as a com-
munity-level effect modifier, which share similarities to a 
heat-health plan. Though not entirely the same, the char-
acterization of preventive measures within a heat wave 
warning system and measures against COVID-19, which, 
in part, affect the behaviors of people towards exposures, 
may be assumed to share the same concept of collec-
tive consciousness of risk aversion [30]. In Ahmedabad, 
India, Hess et  al. [20] observed a substantial reduction 

in the heat-related risk after the implementation of 
a heat action plan (HAP) in response to the 2010 heat 
wave event. The authors noted an after-to-before HAP 
unlagged mortality incidence rate ratio (IRR) of 0.95 
(95% CI: 0.93–1.22) and 0.73 (95% CI: 0.29–1.81) for 
maximum temperatures of over 40 °C and 45 °C, respec-
tively. Here, the authors noted that regardless of the cut 
off, of either over 40 °C or 45 °C, the reductions in the 
IRR are still discernable. On the other hand, Martínez-
Solanas and Basagaña [29] shares a similar observation, 

Fig. 3  Pooled period-specific lag associations (A) and ratio of relative risk (B). A Pre-pandemic risk (green) and pandemic risks (blue) depicted with 
their respective central estimates (solid lines) and confidence intervals (color-specific shaded areas). B Central estimates of the ratio of relative risks 
(RRR) in black solid line and its corresponding confidence interval (grey-shaded area)
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whereby the authors observed a weak to non-significant 
difference between the overlapping effects estimates of 
pre-HAP (percent change = 28.0; 95% CI: 22.4 – 33.9%) 
and post-HAP (percent change = 24.9; 95% CI: 21.4 – 
28.6%) periods of high temperature effects in the 50 
provinces of Spain. The reduction of heat-related risks 
due to heat-health plans has a resemblance, albeit differ-
ent, on how COVID-19 attenuated temperature-HIAT 
association. Here, a population’s response to the risks is 
influenced mainly by both physical and behavioral fac-
tors [21]. The direction of the changes in the risks would 
also vary depending on the response. However, in this 
study, we observed an apparent and consistent reduc-
tion in the heat-related risks for both exposure-response 
(Fig. 2A) and same-day lag dimensions (Fig. 3A). Though 
it is difficult to draw definitive conclusion on the cause 
of these reductions, it remains plausible that both physi-
cal factors, in terms of policy interventions, accompa-
nied with behavioral changes may have resulted to these 
changes.

The increased remote working environments as well as 
the availability of alternative services such as telemedi-
cine, home/food deliveries, may have potentially reduced 
the ambient exposure of the population [41]. Early in 
the pandemic, on March 2020, the Japanese govern-
ment encouraged firms to integrate a work-from-home 
setting to avoid cluster infections within workplaces. In 
response, 49.6% of the total number of firms adopted the 
home working system [34]. The remote work set-up was 
further complemented with innovations in alternative 
services (telemedicine and food deliveries) which accom-
panied the new lifestyle. Health facilities offering tele-
medicine in the country [22], has increased during the 
pandemic, with nearly 10,000 additional clinics offering 
online services [31]. Similarly, food deliveries have gained 
traction in the country. In an online survey, approxi-
mately 39.7% of 1100 respondents used food delivery, 5% 
of whom are first-time users [8].

Behavioral changes related to heightened health risk 
aversion may have also contributed to the substan-
tial decrease in the association [38]. In Japan, a recent 
study noted that more than 75% of 11,342 respond-
ents, aged 20 to 64 years old, had practiced any form of 
preventive measures (social distancing, handwashing, 
coughing etiquette, and immunity fortification) [35]. 
Though mobility restrictions were not that strict, the 
response of the population towards these governmen-
tal requests have been reciprocated with a significant 
reduction in trips with the number of inter-prefectural 
travel halved across the country compared to pre-
pandemic conditions [15]. Changes in human behav-
ior during the pandemic is a cognitive response to the 
immediate threat of COVID-19, which has an indirect 

effect on the reduction of heat exposure [38]. Specifi-
cally, behavioral changes related to time spent indoor/
outdoor may be related to the variability in heat expo-
sure [27]. In an online survey conducted from 3 to 25 
August 2020 in selected major cities and prefectures in 
Japan (n = 12,872), there was an approximately 13.8% 
increase in time spent indoors during the pandemic 
compared to pre-pandemic period, which subsequently 
corresponded to an 18.8% reduction in outdoor activi-
ties across the country [33]. Since HIAT occur mostly 
in roads (15.6%) and outdoor public areas (12.5%) [16], 
the increase in time spent indoor may have led to the 
attenuation of the heat-related health risks during the 
pandemic.

On the other hand, the pandemic may, in part, have 
altered the health-seeking behavior of the population. 
This is quite apparent in the significant difference in 
Lag 2, whereby pandemic risks were higher compared 
to the pre-pandemic period. It is plausible that this 
phenomenon is related to the reduction of same-day 
risks observed during the pandemic. During the pan-
demic, several studies have noted the delay of access 
to medical care [6, 9], with the fear of contracting the 
disease [5, 45]. In the US, a survey revealed that 41% 
of the respondents have foregone medical care in the 
early phase of the pandemic [4]. In another online sur-
vey, 12% of 4975 respondents opted to delay or have 
avoided urgent or emergency medical care [9]. It is rea-
sonable to believe that those populations which have 
foregone immediate medical services (i.e. hospital/
ambulance transport) may have delayed their access 
to a later period, thus mirroring the reduction in the 
same-day risk and a subsequent increase in the delayed 
association.

While we have observed a reduction in the exposure-
response association during the pandemic, there was a 
notable statistically significant delayed lag association at 
lag 2, with a 16.3% (95% CI: 1.0, 34.0%) increase in the 
risk of HIAT during the pandemic compared to pre-pan-
demic period. The increment in the delayed risk during 
the pandemic period may have potential implications to 
health service access. In part, this may be loosely related 
to the delay in accessing health services due to medi-
cal care access hesitancy during the pandemic and of 
other related barriers such as informational/technologi-
cal resource access [9, 37]. Health service providers and 
managers would then need to consider these factors and 
other potential mechanisms in order to overcome the 
barriers to healthcare access in the pandemic-stricken 
setting. In terms of heat-related health risk management, 
access to the appropriate information, such as clinic 
availability/schedule which provide telemedicine [7] as 
well as readily-accessible geographical maps of health 
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facilities catering to non-COVID-19 cases [25], may 
potentially ease up the hesitancy in accessing immediate 
health care services.

We, however, note several limitations in this study. 
The ecological nature of the study may not be able to 
capture the individual-level characteristics, which may 
possibly explain the changes in the association. Further 
studies are needed to account for these personal-level 
data. In the absence of 2019 air pollution data, we were 
not able to examine the role of air pollution, particu-
larly particulate matter with a diameter less than 2.5 μm 
in size (PM2.5), on the temperature-HIAT associations; 
a complete data is needed whenever available. How-
ever, it would be prudent to assume that the effect of 
air pollution on temperature-HIAT associations would 
be minimal, since 1) Japan has a relatively low ambient 
air pollution level [46] compared to other developed 
countries, and 2) that this low ambient air pollution 
may have been further reduced during the pandemic, 
which was similarly observed across several countries 
globally [42]. Also, the pandemic period data coverage 
is limited to 2020. Data supplementation would be nec-
essary whenever available in order to further establish 
the robustness of the results. In this study, we utilized a 
simple binary indicator to represent COVID-19 impact. 
There is merit for other studies to explore other indica-
tors which could represent the magnitude of the pan-
demic’s impact, i.e. continuous metrics. Nevertheless, 
we believe that the results provide substantial evidence 
on the magnitude of temperature-HIAT association 
reduction or increment during the pandemic. The 
results can serve as a guidepost for health managers 
and policymakers in crafting subsequent heat-health 
advisories as we enter the second year into the pan-
demic as well as future disease entities with pandemic 
potential.

Conclusion
In summary, current evidence suggests that the COVID-
19 pandemic has modified temperature-health outcome 
associations; in this case that of heat-related illness 
ambulance transports in Japan. These changes have been 
generally rooted in the physical and behavioral changes 
which have had transpired. Particularly, the differential 
impact of COVID-19 pandemic, evident in the varia-
tions in the direction of exposure and lag associations, 
requires an immediate attention and more in-depth 
examination in order to aid health managers and poli-
cymakers in assessing the true extent of the impact of 
the pandemic as well as provide guidance on subsequent 
heat-related warnings in light of ongoing and future 
pandemics.
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