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Abstract

Background: Environmental chemical exposures can affect telomere length, which in turn has been associated
with adverse health outcomes including cancer. Firefighters are occupationally exposed to many hazardous
chemicals and have higher rates of certain cancers. As a potential biomarker of effect, we assessed associations
between chemical exposures and telomere length in women firefighters and office workers from San Francisco, CA.

Methods: We measured serum concentrations of polyfluoroalkyl substances (PFAS), urinary metabolites of flame
retardants, including organophosphate flame retardants (OPFRs), and telomere length in peripheral blood
leukocytes in women firefighters (N = 84) and office workers (N = 79) who participated in the 2014–15 Women
Workers Biomonitoring Collaborative. Multiple linear regression models were used to assess associations between
chemical exposures and telomere length.

Results: Regression results revealed significant positive associations between perfluorooctanoic acid (PFOA) and
telomere length and perfluorooctanesulfonic acid (PFOS) and telomere length among the whole cohort. Models
stratified by occupation showed stronger and more significant associations among firefighters as compared to
office workers. Among firefighters in models adjusted for age, we found positive associations between telomere
length and log-transformed PFOA (β (95%CI) = 0.57(0.12, 1.02)), PFOS (0.44 (0.05, 0.83)), and perfluorodecanoic acid
(PFDA) (0.43 (0.02, 0.84)). Modeling PFAS as categories of exposure showed significant associations between
perfluorononanoic acid (PFNA) and telomere length among firefighters. Significant associations between OPFR
metabolites and telomere length were seen for bis (1,3-dichloro-2-propyl) phosphate (BDCPP) and telomere length
among office workers (0.21(0.03, 0.40)) and bis (2-chloroethyl) phosphate (BCEP) and telomere length among
firefighters (− 0.14(− 0.28, − 0.01)). For OPFRs, the difference in the direction of effect by occupational group may be
due to the disparate detection frequencies and concentrations of exposure between the two groups and/or
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potential unmeasured confounding.

Conclusion: Our findings suggest positive associations between PFAS and telomere length in women workers,
with larger effects seen among firefighters as compared to office workers. The OPFR metabolites BDCPP and BCEP
are also associated with telomere length in firefighters and office workers. Associations between chemical
exposures and telomere length reported here and by others suggest mechanisms by which these chemicals may
affect carcinogenesis and other adverse health outcomes.
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Background
The International Agency for Research on Cancer
(IARC) has designated the profession of firefighting as
“possibly carcinogenic” (Group 2B) [1]. Previous studies
indicate that first responders and firefighters have ele-
vated risk of various cancers including: brain, kidney,
thyroid, breast, gastro-intestinal, bladder, testicular,
prostate, melanoma, lymphomas, and multiple myeloma
[2–10]. However, most of these studies have been con-
ducted almost exclusively on men.
There is limited research on female firefighters, despite

mounting concern about breast and reproductive cancer
risks among this population. This data gap is likely due
to the underrepresentation of women in the fire service,
however, female membership is increasing, especially in
urban areas like San Francisco, which has the highest
proportion of women firefighters in the US (15%) [11–
13]. Research on female firefighters from Daniels and
colleagues showed a non-significant increase in breast
cancer incidence and mortality compared to the general
US population [2], while research on female firefighters
in Florida has found significant increased incidence of
Hodgkin’s lymphoma, thyroid cancer, cervical cancer,
and brain cancer [8, 14].
In addition to studying cancer, researchers have begun

to examine associations between exposures to environ-
mental chemicals and biomarkers of effect with potential
relevance for cancer, including telomere length (TL)
[15–19]. Telomeres are complexes of repetitive DNA se-
quences and proteins that cap the ends of chromosomes
to protect against degradation and fusion during cell div-
ision [20, 21]. Due to incomplete DNA replication at the
terminus of DNA strands, telomeres shorten with each
cell division. This attrition may be offset by the enzyme
telomerase, which restores telomeric DNA [22–24].
Though TL is dynamic, most cells experience net telo-
mere shortening over the life course, eventually trigger-
ing cell senescence or apoptosis [24, 25]. Consequently,
human TL is negatively associated with age [26–29].
Shortened telomeres have been associated with many

diseases, including certain cancers [30–36]. However,
telomere lengthening has also been associated with

cancer [37–39], and there is evidence of an association
between telomere lengthening and breast cancer [40–
43]. Though the exact link between TL and cancer re-
mains unclear, research suggests mechanisms by which
lengthening or shortening may contribute to carcinogen-
esis. For instance, telomere shortening may increase gen-
etic instability while telomere lengthening may promote
deleterious cell survival and proliferation [25, 44–46].
Firefighters are occupationally exposed to many

health-hazardous chemicals, including carcinogens,
through activities such as fire suppression and salvage
and overhaul at fire scenes [47–53]. Firefighters are also
exposed to hazardous chemicals in fire station dust,
diesel exhaust, firefighting foams, contaminated fire
equipment, and certain firefighting gear [54–59]. Studies
have documented firefighters’ exposure to benzene, poly-
cyclic aromatic hydrocarbons (PAHs), formaldehyde, di-
oxins, polybrominated diphenyl ethers (PBDEs),
polyfluoroalkyl substances (PFAS), and organophosphate
flame retardants (OPFRs) [60–68].
PFAS, which are widely used for their ability to impart

grease, stain, and water resistance to items such as food
packaging, non-stick cookware, paints, fabrics, carpets,
and furniture [69], are of particular concern for fire-
fighters. Firefighters are exposed to PFAS through the
combustion of PFAS-containing products such as furni-
ture and carpet and through firefighting gear and fire-
fighting foams that contain these compounds [57, 64, 70,
71]. Indeed, research shows that firefighters have ele-
vated concentrations of certain PFAS relative to non-
firefighters [64, 67, 71]. PFAS exposures have been asso-
ciated with adverse health outcomes, including cancer
[72–79].
Firefighters are also occupationally exposed to flame

retardants [65, 68, 80]. While use of polybrominated
diphenyl ether (PBDE) flame retardants in consumer
products has been gradually phased out due to their tox-
icity to humans, persistence in the environment, and
ability to bioaccumulate [81], OPFRs and other haloge-
nated flame retardants have emerged as replacements
and have been found in fire stations [82–84]. There are
few epidemiological studies on the human health effects
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of OPFRs. The existing literature shows associations be-
tween OPFR levels in house dust and urine and de-
creased sperm quality and hormone dysfunction in men
[85], and lower thyroxine levels in women with higher
urinary levels of diphenyl phosphate [86]. In experimen-
tal studies, OPFRs cause endocrine disruptions in sex
hormones and thyroid hormones [75, 87–91].
Experimental studies on chemical exposures and telo-

mere length are limited and findings are inconsistent
[92]. Previous epidemiological studies have found PFAS
exposures are associated with altered TL in humans;
perfluorooctanoic acid (PFOA) has been associated with
telomere shortening [18] and perfluorooctane sulfonic
acid (PFOS) has been associated with telomere lengthen-
ing [17]. To our knowledge, no human studies have ex-
amined associations between OPFRs and TL, although
one study of chemically similar organophosphate insecti-
cides found associations with altered TL, with the direc-
tion of effect depending on the insecticide in question
[93]. As a possible intermediary between exposure and
disease, TL serves as a biomarker of effect for assessing
the potential impacts of environmental exposures on hu-
man health.
To better characterize firefighters’ exposures with rele-

vance to women’s health outcomes, a collaboration of
firefighters, scientists, and environmental health advo-
cates created a community-based participatory research
project, the Women Workers Biomonitoring Collabora-
tive (WWBC). We interviewed female firefighters and
office workers in San Francisco, CA, and collected bios-
pecimens (urine and serum). Samples were analyzed for
PFAS (serum), flame retardant metabolites (urine), and
telomere length (whole blood leukocytes). We then
assessed the relationship between PFAS and flame re-
tardant metabolite concentrations and TL in female fire-
fighters and office workers.

Methods
Recruitment and consent
The WWBC recruitment, enrollment, and sample collec-
tion protocol has been described previously [67]. Briefly,
recruitment and sample collection took place between
June 2014 and March 2015. Firefighter study partners
from the San Francisco Fire Department (SFFD) and re-
searchers collaborated on recruitment of both fire-
fighters from SFFD and office worker participants from
the City and County of San Francisco. Study inclusion
criteria included self-identifying as female, being over 18
years of age, full-time employment, and being a non-
smoker. Additionally, firefighters were required to have
at least 5 years of service with the SFFD and to be on
“active duty” (i.e., assigned to a fire station) at the time
of recruitment. Informed consent was obtained from all
participants prior to data collection activities following

protocols approved by the Institutional Review Board of
the University of California, Berkeley (#2013–07- 5512).

Data collection and sample processing
Each participant completed an hour-long exposure as-
sessment interview that captured demographics, basic
health information, and possible sources of chemical ex-
posure from occupational activities, consumer product
use, and diet. A certified phlebotomist collected blood
samples in 10 mL additive-free glass tubes and 10mL
EDTA glass tubes. Urine was collected in 60mL poly-
propylene specimen cups. All samples were transported
in a cooler with ice and processed within 3 h of collec-
tion. The serum was separated by allowing clotting at
room temperature followed by centrifuging at 3000 rpm
for 10min. The serum and whole blood were aliquoted
into 1.2 mL cryovials and urine into 3.5 mL cryovials and
stored at − 80 °C until analysis. All samples were proc-
essed and analyzed at the University of California, San
Francisco.

PFAS analysis
As described previously [67], twelve PFAS were selected
for targeted analysis in serum: perfluorobutanoic acid
(PFBA), perfluorohexanoic acid (PFHxA), perfluorohep-
tanoic acid (PFHpA), perfluorooctanoic acid (PFOA),
perfluorononanoic acid (PFNA), perfluorodecanoic acid
(PFDA), perfluoroundecanoic acid (PFUnDA), perfluoro-
dodecanoic acid (PFDoA), perfluorobutane sulfonic acid
(PFBuS), perfluorohexane sulfonic acid (PFHxS), per-
fluorooctane sulfonic acid (PFOS), and perfluorooctane
sulfonamide (PFOSA). The 12 PFAS were analyzed in
0.5 mL of serum using liquid chromatography-tandem
mass spectrometry (LC-MS/MS). An Agilent LC1260
(Sta. Clara, CA)- AB Sciex API 5500 (Foster City, CA)
platform was used in the analysis. Each sample was pre-
pared for analysis by solid phase extraction using a Wa-
ters Oasis HLB cartridge (10 mg, 1 cc). Extracted
aliquots of each sample (25 uL) were run in duplicates.
The 12 analytes were separated by elution gradient chro-
matography using Phenomenex Kinetex C18 column
(100 × 4.6 mm, 2.6 μ) at 40 °C. Electrospray ionization
(negative mode) was used as method of ionization for in-
dividual analytes.
Analytes were detected in each sample by multiple re-

action monitoring using two transitions per analyte. To
determine the presence of each analyte, retention time
matching (within 0.15 min) along with the peak area ra-
tio between its qualifier and quantifier ions (within 20%)
were used. Quantification of each detected analyte was
done by isotope dilution method using a 10-point cali-
bration curve (0.02–50 ng/mL) and employing two C13-
labelled PFAS isotopologues. Procedural quality control
materials and procedural blanks were run along with the
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calibration curve at the start, middle, and end of each
run. Two QC materials were used at low and high con-
centrations. To accept the results of a batch run, QC
materials measurements must be within 20% of their tar-
get values and the precision of their measurements
within 20% CV (coefficient of variation).
The limits of quantification for the 12 analytes range

from 0.05 to 0.1 ng/mL. Analyte identification from total
ion chromatograms was evaluated using AB Sciex Ana-
lyst v2.1 software while quantification of each analyte
was processed using AB Sciex MultiQuant v2.02 soft-
ware. Analysts were blinded to firefighter and office
worker status of the serum samples during the analysis.
Results were reported in ng/mL for all 170 study partici-
pants [67].

Flame retardant analysis
We quantified metabolites of six OPFR chemicals in
urine: bis (1,3-dichloro-2-propyl) phosphate (BDCPP),
bis (2-chloroethyl) phosphate (BCEP), dibutyl phosphate
(DBuP), dibenzyl phosphate (DBzP), di-p-cresyl phos-
phate (DpCP), di-o-cresyl phosphate (DoCP), and 4 bro-
minated flame retardants: 2,3,4,5-tetrabromobenzoic
acid (TBBA), tetrabromobisphenol a (TBBPA), 5-OH-
BDE 47, and 5-OH-BDE 100.
Quantitative analysis was performed using liquid-

chromatography-tandem mass spectrometry (LC-MS/
MS) on an Agilent LC 1260 (Agilent Technologies, Sta.
Clara, CA)- AB Sciex 5500 system (Sciex, Redwood City,
CA). Freshly thawed urine specimens (1 mL) were
deconjugated prior to LC-MS/MS analysis by addition of
450 U H. pomatia glucuronidase (Sigma-Aldrich, St
Louis, MO) and incubated at 37 °C for two hours with
constant shaking. Deconjugated urine samples were pre-
pared for LC-MS/MS analysis by solid phase extraction
(SPE) using Waters Oasis WAX cartridges (10 mg,
30 μm, 1 cc). Analytes in the extracted aliquots were sep-
arated by elution gradient chromatography using an Agi-
lent ZORBAX Eclipse XDB-C8 column (2.1 × 100 mm,
3.5um) maintained at 50 °C. Negative mode electrospray
ionization (ESI) was used to ionize analytes and mass
scanning was performed by multiple reaction monitor-
ing. Each analyte was monitored using two transitions
and retention time. Quantitation of each analyte was
performed by isotope dilution method with their deuter-
ated or C-13 isotopologues as internal standards.
Each sample was injected in duplicate. Procedural

quality control materials and procedural blanks were run
along with the calibration curve at the start, middle, and
end of each run. Two QC materials were used at low
and high concentrations. To accept the results of a batch
run, QC materials measurements must be within 20% of
their target values and the precision of their measure-
ments have ≤20% CV (coefficient of variation). Analyte

identification from total ion chromatograms was evalu-
ated using AB Sciex Analyst v2.1 software while quantifi-
cation of each analyte was processed using AB Sciex
MultiQuant v2.02 software. Analysts were blinded to
firefighter and office worker status of the urine samples
during the analysis.
For both PFAS and flame retardant analyses, each

sample extract was injected twice. Results for each sam-
ple were accepted if the difference between the average
and each value did not exceed 20% of the average. See
Additional File 5 for detailed information on PFAS and
flame retardant methods.

Telomere analysis
DNA was extracted from 200 μL of whole blood using
the Qiagen Qamp Mini Blood Kit (cat. No. 51104) ac-
cording to the manufacturer’s instructions. One micro-
gram of DNA from the samples was digested with Hinfl
and RsaI, run on 0.8% TAE gels for 6 h and Southern
transferred to Nylon membranes. The membranes were
hybridized with digoxigenin-labeled telomere probes
(Sigma TeloTAGGG Telomere Length Assay, cat. No.
12209136001) followed by incubation with anti-
digoxigenin alkaline phosphatase conjugates. DNA bands
were detected using chemilunescence and analyzed using
ImageQuant software (GE Healthcare). The mean ter-
minal restriction fragment (TRF) length was derived
from standards provided in the kit. Results were re-
ported in kilobase pairs (kbp) for 163 participants.

Statistical analysis
All chemical distributions were skewed and log-
transformed using natural logarithms to improve nor-
mality. Descriptive statistics such as geometric mean
(GM), geometric standard deviation (GSD), and 95%
confidence intervals (CI) were calculated for TL, PFAS,
and flame retardants with ≥50% detection frequency in
at least one occupational group [94, 95].
To assess the relationship between chemical exposure

and TL, we developed linear regression models for each
compound. Chemical congeners were correlated with
each other (Additional file 1) and were run in separate
models. Chemicals with ≥70% detection frequency were
included in linear models as continuous predictor vari-
ables. For models using continuous PFAS concentrations
as a predictor, values below the limit of detection (LOD)
were substituted with LOD/√2. For models using con-
tinuous flame retardant metabolite concentrations as a
predictor, we included all LC-MS/MS reported values,
including those reported below the LOD, and
substituted LOD/√2 for any remaining non-detected
values.
For chemicals with < 70% detection frequency but

≥40% detection frequency, chemical concentrations were
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categorized as either <LOD, LOD-50th%, and > 50th% or
as <LOD, ≥LOD, depending on detection frequencies.
Telomere data were roughly normally distributed and
were therefore not log-transformed.
Potential confounders were selected a priori based on

results from previous literature and prior analyses per-
formed on this data [67]. Covariates assessed include
demographic variables such as race/ethnicity and educa-
tion; health variables such as body mass index (BMI),
stress, and sleep metrics; and food frequency variables.
Spearman correlations were used to test independent re-
lationships between continuous covariates and telomere
length and chemical predictors using the Benjamini-
Hochberg procedure to control for multiple testing [96].
Analysis of Variance (ANOVA) and t-tests or Wilcoxon
rank sum tests were performed to assess differences in
TL or chemical predictors across categorical and dichot-
omous covariates, respectively. Covariates were included
in final models as confounders when the association was
p ≤ 0.10 with both TL (the outcome) and at least one
chemical congener (the exposure). For PFAS models,
ANOVA for nested models and assessment of percent
change in coefficients (Δ ≥ 10%) were also used to in-
form variable selection.
As exploratory analyses revealed disparate effect esti-

mates by occupation for both PFAS and flame retardant
metabolites, models were run on the entire study popu-
lation where possible and also stratified by occupation.
The following equation was used to interpret results
from models with a continuous log-transformed chem-
ical predictor: (β ∗ ln (1 + (x/100))) ∗ 1000, where x equals
the percent change in PFAS exposure and multiplying
by 1000 provides a result in base pairs as opposed to
kilobase pairs. For categorical models, raw model esti-
mates in kilobase pairs were multiplied by 1000 for re-
sults in base pairs. All analyses were performed in R
version 3.5.1 and R studio version 1.1.463 [97, 98].

PFAS models
We developed minimally adjusted models (Model 1) and
fully adjusted models (Model 2) to assess the association
between continuous log-transformed PFAS (logPFAS)
and TL. Due to the well-documented correlation be-
tween age and TL [26–29], age was included in all
models. Model 1 was adjusted for continuous age in
years. Based on covariate tests described above, Model 2
was adjusted for age, occupation, the number of times
dairy products were eaten per week, and the number of
times eggs were eaten per week. Models were run for
the full cohort and stratified by occupation.
Data visualization using locally weighted regression

(loess) curves mapped onto bivariate scatter plots of TL
and logPFAS suggested potential non-linear relation-
ships that compelled us to run PFAS Model 2 with

PFHxS, PFOA, PFOS, PFNA, and PFDA categorized into
quartiles. PFUnDA and PFBuS were categorized into ter-
tiles due to low detection frequency.

Flame retardant models
Few covariates were associated with flame retardant me-
tabolites within this population [68]. Age was included
in all models as well as log-transformed creatinine (log-
Creatinine) to account for differences in urine dilution
[99].
Only BDCPP had sufficient detection frequency to

model as a continuous variable for both firefighters and
office workers. To test if effect estimates of the BDCPP-
TL relationship varied significantly by occupation, we
added an interaction term to the full BDCPP-TL model.
Among firefighters, BCEP and DBuP had sufficient de-

tection frequency to include in models as continuous
variables though these metabolites were also modeled as
categorical variables for comparison across occupations.
TBBPA and DpCP were analyzed as categorical vari-
ables. The firefighter data for BCEP and DBuP were cat-
egorized as <LOD, LOD-50th%, and > 50th% since the
detection frequencies were greater than 50%, which
allowed for categorization into three groups. Office
worker data for BCEP and DbuP and all TBBPA and
DpCP data were categorized as <LOD and ≥ LOD due to
detection frequencies below 50%. Models for these
categorized compounds were stratified by occupation.

Results
In total, 176 participants enrolled in the study. Six par-
ticipants (three firefighters and three office workers)
were dis-enrolled or did not provide biospecimen sam-
ples, and seven participants (two firefighters and five of-
fice workers) did not have adequate sample to perform
the telomere analysis. The final study sample consisted
of 84 firefighters and 79 office workers (N = 163)
(Table 1). Firefighters had longer telomeres than office
workers, but were otherwise similar to office workers in
age, dairy consumption, and egg consumption. A de-
tailed description of firefighter and office worker differ-
ences in the WWBC has been previously reported [67].
In brief, office workers were more often born outside
the US, married, worked at the City and County of San
Francisco for less time, and had higher educational at-
tainment concentrations compared to firefighters, al-
though firefighters had higher incomes. Race/ethnicity
and BMI were similar across groups [67]. These vari-
ables were not associated with TL in our population.

PFAS exposure and telomere length
We measured serum for 12 PFAS, four of which (PFBA,
PFHxA, PFHpA, and PFOSA) had no measurable con-
centrations above the LOD in any participant. Seven
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PFAS congeners had detection frequencies greater than
70%, of which four had detection frequencies of 100%
(PFHxS, PFOA, PFOS, PFNA). PFHxS was found at sig-
nificantly higher concentrations among firefighters com-
pared to office workers. Higher concentrations of PFNA
were also observed among firefighters, however the
group difference was not statistically significant in this
subset of WWBC data. Distributions of the remaining
PFAS were similar across groups (Table 1). A full de-
scription of differences and predictors of PFAS concen-
trations in firefighters and office workers is described
elsewhere [67].
Of the covariates assessed as potential confounders of

the PFAS-TL relationship, only age, occupation, dairy
consumption, and egg consumption met our criteria for
inclusion in fully adjusted models. Effect estimates were
generally larger among firefighters compared to office

workers (Table 2 and Additional file 2). In both models,
exposure to PFOA and PFOS was associated with signifi-
cantly longer TL among the entire cohort. In Model 1, a
doubling (or 100% increase) of PFOA concentration was
associated with a 273 (95% CI 54, 493) base pair (bp) in-
crease in TL. In Model 2, a doubling in PFOA was asso-
ciated with a 240 (95% CI 25, 455) bp increase in TL. A
doubling in PFOS concentration was associated with a
183 (95% CI 15, 352) bp increase in TL in Model 1, and
a 172 (95% CI 5, 340) bp increase in TL in Model 2
(Table 2).
Among firefighters, exposure to PFOA, PFOS, and

PFDA was significantly associated with longer TL in
Model 1. In Model 2 (adjusted for age, dairy consump-
tion, and egg consumption), only PFOA remained sig-
nificantly associated with TL. Among firefighters, a
doubling of PFOA concentration was associated with a

Table 1 Descriptive statistics for model parameters by occupation

Full cohort
(N = 163)

Firefighters
(N = 84)

Office Workers
(N = 79)

Full cohort Fire-
fighters

Office workers

Mean (SD) or GM (GSD)a Mean (SD) or GM (GSD)a Mean (SD) or GM (GSD)a p-valueb LODc DFd(%) DF(%) DF(%)

Age (years)

47.93 (8.10) 47.38 (4.58) 48.52 (10.64) 0.23 – – – –

Dairy consumption (times per week)

14.45 (8.19) 13.98 (7.30) 14.96 (9.07) 0.47 – – – –

Egg consumption (times per week)

3.71 (1.93) 3.96 (2.00) 3.46 (1.84) 0.23 – – – –

Telomere Length (mean TRF in kbpe)

7.90 (1.12) 8.10 (1.09) 7.68 (1.13) 0.01* – – – –

PFAS (ng/mL)

PFHxS 3.68 (2.79) 4.55 (2.82) 2.94 (2.64) 0.01* 0.02 100 100 100

PFOA 1.16 (1.76) 1.13 (1.70) 1.19 (1.83) 0.44 0.02 100 100 100

PFOS 4.18 (2.08) 4.33 (1.83) 4.03 (2.35) 0.39 0.02 100 100 100

PFNA 0.69 (1.94) 0.77 (1.98) 0.61 (1.87) 0.09 0.05 100 100 100

PFDA 0.26 (2.09) 0.27 (1.77) 0.24 (2.42) 0.31 0.02 99 100 98

PFUnDA 0.18 (4.44) 0.23 (3.67) 0.14 (5.19) 0.06 0.02 80 87 73

PFBuS 0.13 (4.28) 0.13 (4.19) 0.13 (4.42) 0.85 0.02 73 74 72

OPFRs (ng/mL)

BDCPP 1.92 (5.11) 4.05 (4.59) 0.87 (3.85) ≤0.01* 0.20 95 100 90

BCEP 0.40 (6.11) 0.87 (5.72) --f --g 0.10 60 79 39

DBuP 0.20 (3.92) 0.41 (3.95) --f --g 0.10 56 82 28

TBBPA --f --f --f --g 0.20 44 46 41

DpCP --f --f --f --g 0.10 29 42 16
a Geometric mean (GM) and geometric standard deviation (GSD) computed for egg consumption, all PFAS, and all OPFRs due to skewed distributions
b p-values derived from Wilcoxon rank-sum tests
c LOD = limit of detection
d DF = detection frequency
e kilobase pairs
f GMs were not calculated for chemicals with detection frequencies below 50%
g Wilcoxon rank-sum tests were not performed for chemicals with detection frequencies below 50% in any group
h All summary statistics calculated using LOD/sqrt [2] for those chemicals with less than 100% detection frequency
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395 (95% CI 85,705) base pair (bp) increase in TL in
Model 1, and a 329 (95% CI 13,645) bp increase in TL
in Model 2. In Model 1, a doubling in firefighters’ PFOS
concentration was associated with a 304 (95% CI 33,576)
bp increase in TL, and a doubling in firefighters’ PFDA
concentration is associated with a 300 (95% CI 16,585)
bp increase in TL.
Most PFAS were positively associated with TL in office

workers, though effect estimates were smaller than for
firefighters and none were statistically significant. No
interaction terms testing for effect modification by occu-
pation were statistically significant.
To assess the shape of the exposure-response relation-

ships, we modeled locally weighted regression (loess)
curves atop unadjusted scatter plots of TL and logPFAS,
stratified by occupation. Among firefighters, the loess
curves suggested potential non-linear exposure-response
relationships, with log-transformed PFOA, PFOS, PFNA,
and PFDA exhibiting a somewhat conserved pattern
(Fig. 1). In firefighters, exposure to these four PFAS
compounds appears to be associated with increasing TL
from low to intermediate concentrations and unchanging
or decreasing TL at higher concentrations.

To further explore this relationship, we included PFAS
as categorical variables in fully adjusted models. Table 3
details the estimated base pair change for a categorical
increase of PFAS exposure relative to the referent (first
quartile) from fully adjusted models. Among firefighters,
PFNA, which had non-statistically significant associa-
tions with TL in the continuous linear Models 1 and 2,
had significant effect estimates for each quartile of ex-
posure relative to the referent, with the greatest increase
in the second quartile as was suggested by the loess
curve.

Flame retardant exposure and telomere length
We measured 10 flame retardant metabolites in urine,
two of which (5-OH-BDE 47 and 5-OH-BDE 100) had
no concentrations above the LOD. Descriptive statistics
of flame retardant data revealed disparate distributions
of chemical concentrations between occupational
groups, with firefighters’ concentrations measured at
higher detection frequencies and higher concentrations
relative to office workers (Table 1 and Additional file 4).
A more in-depth description of the differences in flame
retardant concentrations between occupational groups

Table 2 Estimated base pair change in telomere length for a doubling of PFAS concentration

Full Cohort Δbpc (CId) Firefighters Δbp (CI) Office Workers Δbp (CI)

PFHxS

Model 1a 103 (−16,223) 72 (−92,235) 88 (−98,275)

Model 2b 84 (− 35,202) 91 (−69,252) 69 (−116,254)

PFOA

Model 1 273 (54,493)* 395 (85,705)* 175 (−135,485)

Model 2 240 (25,455)* 329 (13,645)* 165 (−140,470)

PFOS

Model 1 183 (15,352)* 304 (33,576)* 91 (− 125,308)

Model 2 172 (5340)* 272 (− 4548) 124 (−95,342)

PFNA

Model 1 126 (−60,312) 103 (− 144,350) 65 (− 233,362)

Model 2 68 (−117,253) 52 (−195,299) 116 (−183,416)

PFDA

Model 1 137 (−27,302) 300 (16,585)* 34 (−170,239)

Model 2 104 (−58,266) 255 (−31,541) 60 (−148,267)

PFUnDA

Model 1 26 (−55,106) 79 (−50,209) −31 (−136,75)

Model 2 13 (−67,93) 61 (−67,190) 2 (−114,117)

PFBuS

Model 1 10 (−72,92) −33 (− 151,84) 50 (−67,168)

Model 2 23 (−58,104) −4 (−123,114) 46 (− 72,165)
a Model 1 adjusted for age (years)
b Model 2 adjusted for age (years), dairy and egg consumption (times per week), and occupation (in full group only)
c change in base pairs
d CI = 95% confidence interval
* statistically significant (p ≤ 0.05)
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and associated covariates is discussed in Trowbridge
et al., 2020 [68]. In brief, BDCPP, BCEP, DBuP, and
DpCP were all measured at significantly higher concen-
trations among firefighters compared to office workers
(Table 1 and Additional file 4). Though it had an overall
detection frequency of only 29%, DpCP was modeled as
a categorical exposure variable because it had a detec-
tion frequency of 42% among firefighters. BDCPP was
the only flame retardant metabolite with sufficient detec-
tion frequency (≥ 70%) to include in models as a con-
tinuous variable for both firefighters and office workers.
BCEP and DBuP had ≥70% detection frequency among
firefighters so were included in firefighter models as
continuous variables.
Table 4 and Additional file 3 show results from stratified

linear models controlling for age and logCreatinine.
BDCPP concentrations were negatively associated with TL
in firefighters and positively associated with TL in office
workers. The effect in office workers was statistically sig-
nificant, with a doubling in BDCPP concentration associ-
ated with a 148 (95% CI 22, 274) bp increase in TL. An

interaction term for BDCPP and occupation was signifi-
cant, suggesting that the BDCPP-TL relationship differs
significantly by occupation (p-value≤0.01). In models for
BCEP, increasing concentration was significantly associ-
ated with decreasing TL, with a doubling in BCEP associ-
ated with a 99 (95% CI − 194, − 5) bp decrease in TL.
We also ran models with BCEP, DBuP, TBBPA, and

DpCP as categorical variables among both firefighters
and office workers (Table 5 and Additional file 3). All
models were stratified due to disparate detection fre-
quencies between groups, which precluded running sin-
gle models for the full cohort, save for BDCPP. In
categorical models, BCEP and TBBPA showed similar
patterns of association with TL, with negative effect esti-
mates in firefighters and positive effect estimates in of-
fice workers, however, these effect estimates were not
statistically significant.

Discussion
This community-based participatory research study ex-
amined cross-sectional relationships between PFAS and

Fig. 1 Loess curvesa for telomere length and log-transformed PFAS by occupation. a Locally-weighted regression with span = 0.75. OW=office
worker; FF=firefighter
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flame retardant exposures and TL in female firefighters
and office workers in San Francisco, CA. To our know-
ledge, this is the first study to assess the association be-
tween chemical exposures and telomere length in female
firefighters, and the first study to assess the association
between OPFRs and telomere length.

PFAS concentrations among the entire cohort were
comparable to US women in the 2013–14 National
Health and Nutrition Examination Survey except for
PFHxS, which was higher in this study cohort, and
PFOA, which was lower in this study cohort. Firefighters
had higher concentrations of several PFAS compared to
NHANES data [67]. Firefighters also had higher concen-
trations of BDCPP, BCEP, and DBuP, while office
workers had comparable concentrations of BDCPP and
lower concentrations of BCEP and DbuP than women in
the 2013–14 NHANES [68]. Previously published work
on WFBC data further explore predictors of exposure
and comparisons to other studies [67, 68].
Our analyses of PFAS data revealed statistically signifi-

cant positive associations between PFOA and PFOS and
telomere length among the full cohort, with larger effect

Table 3 Estimateda base pair change in telomere length
relative to the reference group

Firefighters Δbpb (CIc) Office Workers Δbp (CI)

PFHxS

Referenced – –

Q2 −62 (− 728, 604) 209 (− 515, 933)

Q3 − 180 (− 850, 491) 238 (− 522, 998)

Q4 366 (− 301, 1033) 163 (− 563, 889)

PFOA

Reference – –

Q2 209 (− 464, 882) 10 (− 704, 724)

Q3 290 (− 387, 967) 500 (−197, 1198)

Q4 368 (− 327, 1063) 143 (− 584, 869)

PFOS

Reference – –

Q2 211 (− 453, 876) 301 (− 417, 1019)

Q3 599 (−82, 1280) −18 (− 716, 681)

Q4 397 (− 288, 1082) 426 (− 357, 1210)

PFNA

Reference – –

Q2 1250 (631, 1869)* − 344 (− 1064, 376)

Q3 809 (197, 1421)* − 46 (− 769, 676)

Q4 668 (29, 1307)* 164 (−576, 904)

PFDA

Reference – –

Q2 187 (− 472, 845) −4 (− 729, 721)

Q3 614 (−48, 1275) −6 (− 722, 710)

Q4 396 (−265, 1058) 245 (− 489, 978)

PFUnDA

Reference – –

T2 22 (− 549, 592) − 154 (− 774, 466)

T3 488 (−88, 1065) 215 (− 430, 861)

PFBuS

Reference – –

T2 −184 (− 782, 414) 144 (− 503, 791)

T3 −19 (− 606, 569) 15 (− 598, 628)
a Model adjusted for age (years) and dairy and egg consumption (times
per week)
b change in base pairs
c CI = 95% confidence interval
d Reference category is first quartile or tertile of exposure
* Statistically significant (p ≤ 0.05)

Table 4 Estimateda base pair change in telomere length for a
doubling in OPFR metabolite concentration

Firefighter Δbpb (CIc) Office Worker Δbp (CI)

BDCPP −70 (− 184,44) 148 (22,274)*

BCEP −99 (− 194,-5)* –

DBuP 10 (−113,132) –
a Models adjusted for age (years) and log-transformed creatinine
b change in base pairs
c CI = 95% confidence interval
* statistically significant (p ≤ 0.05)

Table 5 Estimateda base pair change in telomere length
relative to the reference group (<LOD)

Firefighters Δbpb (CIc) Office Workers Δbp (CI)

BCEP

< LOD/Refd – –

LOD-50% − 557 (− 1240, 126) –

> 50th% −578 (− 1189, 32) –

> LOD – 259 (− 257, 774)

DBuP

< LOD/Ref – –

LOD-50% 12 (− 699, 724) –

> 50% 20 (−646, 687) –

> LOD – 134 (− 427, 694)

TBBPA

< LOD/Ref – –

> LOD −227 (−705, 251) 349 (− 160, 858)

DpCP

< LOD/Ref – –

> LOD − 383 (− 868, 101) −57 (−749, 635)
a Models adjusted for age (years) and log-transformed creatinine
b change in base pairs
c CI = 95% confidence interval
d Categories based on detection frequency. Reference category is <LOD for
both firefighters and office workers
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estimates among firefighters. Among firefighters, PFOA,
PFOS, PFNA, and PFDA were positively associated with
TL. Effect estimates among office workers were mostly
positive or null across PFAS. These results suggest that
exposure to some PFAS, particularly PFOA, PFOS,
PFNA, and PFDA, may be associated with telomere
lengthening in female firefighters. Prior studies on PFAS
exposure and TL are limited and report mixed results.
Huang et al., 2019 examined PFAS and TL in National
Health and Nutrition Examination Survey (NHANES)
data and reported a strong positive association between
PFOS and leukocyte TL in adults and null associations
for other PFAS and TL [17]. Vriens et al., 2019 found a
negative association between PFOA and leukocyte TL in
adults aged 50 to 65 years using multipollutant models
[18]. Zota et al., 2018 similarly used multipollutant
models and found no significant associations between
prenatal PFAS exposure and repeated measures of
leukocyte TL in overweight and obese low-income
mothers with an average age of 27.9 years [100]. While
the literature on the PFAS and TL relationship seems
equivocal, such studies may not be comparable due to
underlying differences in study populations, methodo-
logical approaches, and other confounding and modify-
ing factors.
Our results show that PFAS exposure is associated with

telomere lengthening. Previous work has shown that ex-
posure to environmental chemicals is associated with lon-
ger TL [16, 19, 101, 102]. Mitro et al., 2016 proposed that
certain POPs, particularly some polychlorinated biphenyls
(PCBs), activate the aryl hydrocarbon receptor (AhR),
which up-regulates telomerase and may therefore pro-
mote cancer [19]. Telomerase activation is necessary
for cell immortality, which is in turn necessary for
tumorigenesis [103]. There is some limited evidence
of AhR activation by PFAS [104], and so telomerase
activation may play an important role in the PFAS-
TL relationship. Where peripheral blood leukocytes
are used, telomerase activity may differ by cell type
[105]. Experimental research that includes the meas-
urement of these chemicals and telomerase is needed
to explore potential pathways.
Results from flame retardant analyses revealed differ-

ent effects on TL by occupational status, with flame re-
tardant exposure among firefighters associated with a
decrease in TL, and exposure among office workers as-
sociated with an increase in TL. However, results were
statistically significant only for BDCPP and TL in office
workers, and BCEP and TL in firefighters. These differ-
ences in effects may not be comparable across occupa-
tional groups due to the significantly higher exposure
concentrations and detection frequencies of flame re-
tardant metabolites in firefighters relative to office
workers.

Pending further work to characterize the exposure-
response relationship, these findings align with other re-
search that has documented variable impacts on TL by
dose of environmental chemicals. For instance, Zhang
et al., 2003 showed that low doses of arsenite in vitro
promoted telomerase activity, sustained or lengthened
telomeres, and increased cell proliferation, while higher
doses of arsenite decreased telomerase and telomere
length and promoted apoptosis [106]. Similar findings
were reported by Ferrario et al., 2009 [107]. Shin et al.,
2010 reported an analogous trend with POPs and TL in
NHANES data, finding longer TL at lower concentra-
tions of POPs and decreased lengthening as POP
concentration increased [101].
In both the PFAS-TL and flame retardant-TL analyses,

effect estimates differed by occupation. In the PFAS-TL
relationship, the differences were in magnitude and esti-
mates of statistical interaction were not significant. In
the flame retardant-TL relationship, the differences were
in direction and the estimate of statistical interaction be-
tween occupation and BDCPP in the BDCPP-TL rela-
tionship was significant. While the effect modification by
occupation seen in the flame retardant-TL relationship
may be attributable to variable effects by dose, it is also
possible that there are unmeasured co-exposures affect-
ing TL.
Firefighters are occupationally exposed to many differ-

ent chemicals including benzene, PAHs, formaldehyde,
dioxins, and PBDEs [60–65]. Effect estimate differences
may be due to unmeasured confounding, including un-
measured chemical co-exposures in firefighters that also
have an impact on TL. Non-targeted and/or exposomic
approaches are required to improve the characterization
of exposures to chemical mixtures and their effects on
biological response markers, including TL [108–110].
This was a cross-sectional study, which precludes

causal inference (Allen, 2017). Exposure misclassification
from cross-sectional sampling may be less relevant when
analyzing serum concentrations of the PFAS assessed
here due to their relatively long half-lives in the body
[111–113]. Flame retardant metabolites were measured
in single spot urine samples so temporal variability in
concentrations could result in exposure misclassification;
however, prior studies indicate that there is temporal
stability in OPFR metabolite measurements in urine
[114, 115]. Furthermore, we accounted for urine dilution
by including creatinine measurements in our models. Al-
though specific gravity may be considered a preferable
measure of urine dilution [116], a study assessing vari-
ability in organophosphate metabolite measurements in
urine found that temporal variability of creatinine-
adjusted metabolite concentrations was lower than that
of specific gravity-adjusted and unadjusted metabolite
concentrations [114]. We do not have complete blood
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count data from participants, elements of which may
correlate with telomere length [117]. Not all potentially
relevant flame retardants, including diphenyl phosphate
(DPhP), were measured in this analysis.

Conclusion
We found positive associations between PFOA and
PFOS and telomere length in women workers, with lar-
ger effects seen among firefighters compared to office
workers for PFOA, PFOS, PFDA, and PFNA. The OPFR
metabolites BDCPP and BCEP may also be associated
with altered telomere length in women workers. While
further exposomic and mechanistic research is needed
to more holistically characterize exposures and confirm
their relationships with telomere length, the associations
reported here suggest mechanisms by which these che-
micals may affect carcinogenesis and other adverse
health outcomes.
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