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Abstract

Background: An unusual feature of SARS-Cov-2 infection and the COVID-19 pandemic is that children are less
severely affected than adults. This is especially paradoxical given the epidemiological links between poor air quality
and increased COVID-19 severity in adults and that children are generally more vulnerable than adults to the
adverse consequences of air pollution.

Objectives: To identify gaps in knowledge about the factors that protect children from severe SARS-Cov-2 infection
even in the face of air pollution, and to develop a transdisciplinary research strategy to address these gaps.

Methods: An international group of researchers interested in children’s environmental health was invited to
identify knowledge gaps and to develop research questions to close these gaps.

Discussion: Key research questions identified include: what are the effects of SAR-Cov-2 infection during pregnancy
on the developing fetus and child; what is the impact of age at infection and genetic susceptibility on disease
severity; why do some children with COVID-19 infection develop toxic shock and Kawasaki-like symptoms; what are
the impacts of toxic environmental exposures including poor air quality, chemical and metal exposures on innate
immunity, especially in the respiratory epithelium; what is the possible role of a “dirty” environment in conveying
protection – an example of the “hygiene hypothesis”; and what are the long term health effects of SARS-Cov-2
infection in early life.

Conclusion: A concerted research effort by a multidisciplinary team of scientists is needed to understand the links
between environmental exposures, especially air pollution and COVID-19. We call for specific research funding to
encourage basic and clinical research to understand if/why exposure to environmental factors is associated with
more severe disease, why children appear to be protected, and how innate immune responses may be involved.
Lessons learned about SARS-Cov-2 infection in our children will help us to understand and reduce disease severity
in adults, the opposite of the usual scenario.
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Background
The virus SARS-CoV-2 emerged in Wuhan, China and
was reported to the World Health Organization (WHO)
on December 21, 2019 [1]. WHO subsequently declared
a Public Health Emergency of International concern on
January 30, 2020 [1] and a pandemic on March 11, 2020
[2]. To date, the number of confirmed cases exceeds
110 million, with hundreds of thousands of deaths
worldwide.
SARS-CoV-2 infects by binding to the angiotensin

converting enzyme 2 (ACE2) receptor, which is
expressed in several organs including lung, heart, kidney,
and intestine [3]. Common symptoms of the disease,
called COVID-19, appear 2–14 days after viral exposure,
and may include: cough, dyspnoea, fever, chills, muscle
pain, headache, sore throat, diarrhea, and loss of taste or
smell [4].

COVID-19 and health related societal benefits
Human health in general and children’s health in
particular is a key element of the Inclusive Wealth of a
nation; which is the sustainability of economy and
wellbeing of their people and is measured by assessing
natural capital, human capital, and produced capital [5].
Health is a critical piece of the human capital component
of countries and is fundamental to countries’ well- being.
Improvements in human health can increase the human
capital component of Inclusive Wealth and benefit society
in three main ways: by directly enhancing well-being,
raising productivity and extending life years. Increased
longevity is widely used as a proxy for increases in
health-related human capital, because there are only
limited options for accurately quantifying increased
well-being (happiness) and productivity [6].
Capturing accurate information on children’s health,

including environmental exposures that may be detri-
mental to their health, enables countries to track their
national well-being. Health metrics, especially measures
of children’s health, provide an inclusive measure of
national progress and wellbeing that extends beyond
GDP. There has been increasing demand for such informa-
tion in the policy and research arenas in recent years [7–9].
Estimating the nexus between environmental exposures
and COVID-19 and computing their cumulative impact on
children’s health would provide critically important
information on the impacts of the COVID-19 pandemic on
progress toward the Sustainable Development Goals
(SDGs), especially SDGs 1, 2 and 3, and on the societal
benefits of healthy children.

Covid-19 and children
Among children < 18 years with Covid-19 [10], the
median age was 11 years (range 0–17 years). Nearly one
third of reported pediatric cases (813; 32%) occurred in

children aged 15–17 years, followed by those in children
aged 10–14 years (682, 27%). Among younger children,
398 (15%) occurred in children aged < 1 year, 291 (11%)
in children aged 1–4 years, and 388 (15%) in children
aged 5–9 years.
Based on available evidence, children do not appear to

be at high risk for severe COVID-19, with most infected
children having asymptomatic or mild illness [11]. Emer-
ging evidence shows, however, that a subset of children
develop toxic shock and Kawasaki-like symptoms due to
a systemic vasculitis [12]. How this syndrome may relate
to the severe inflammatory condition with cytokine
storm seen in some adults with COVID-19 is unclear.
These observations raise three important questions:
Why are children less seriously affected by SARS-CoV-2?
Why do some children develop very severe COVID-19?
What are the routes of children’s exposure to SARS-CoV-
2 that may differ from adult exposures and alter their
susceptibility?
Another important question is the role children play

in community transmission of SARS-CoV-2 [13]. One
intriguing, but small study, suggests that children may
have higher viral loads despite having fewer symptoms
that adults with severe disease [14]. If this observation is
substantiated in larger studies, the reasons why need
thorough investigation.
A recent analysis of the WHO Global Research Road-

map on COVID-19 [15], while comprehensive overall, did
not address children, or seek to understand why children
are apparently less severely affected by COVID-19. To ad-
dress this oversight, we have chosen to specifically focus
on children and to identify knowledge gaps and research
opportunities in this area.

Air pollution and COVID-19
Epidemiological evidence suggests environmental expo-
sures influence the occurrence and severity of COVID-
19. Other comorbid factors may contribute additionally
to inter-individual variation in response to respiratory
infections such as SARS-CoV-2, including gender, age,
socioeconomic status, nutrition, pre-existing conditions
or diseases, and genetic predisposition. A genetic contri-
bution to human disease susceptibility has been demon-
strated for many viruses, and thus likely will be important
in responses to SARS-CoV-2 infection [16, 17]. There are
clear gaps in our knowledge related to why children have
less severe COVID-19 disease. These gaps provide oppor-
tunities for specific research.
Air pollution is an example of an environmental

exposure influencing the occurrence and severity of
COVID-19; areas in the USA with higher levels of air
pollution have higher incidence and mortality rates from
COVID-19; with every 1 μg/m3 increase of PM2.5 associ-
ated with an 8% increase in risk of death [18]. While
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more research is needed, there are a number of plausible
explanations for the air pollution phenomenon worth
exploring, including: pollution induced oxidative stress
impairing respiratory epithelial barrier function [19],
reducing innate immune anti-viral responses [20] or
impairing macrophage function [21, 22]; inducing an
immune suppression microenvironment in the lungs
[23–26]; pollution-induced inflammation resulting in
more severe COVID disease [27]; and the intriguing
possibility that PM2.5 may carry SARS-CoV-2 deeper
into the lungs [28]. On theoretical grounds oxidants in
air pollution could induce DNA damage in the virus, al-
tering its genome and increasing infectivity or enhancing
pathogenesis. Exposure to other environmental toxicants
could also impair host responses, with a growing list of
toxicants associated with impaired vaccine responses in
children [29]. Air pollution is known to modify innate
immune responses initiated via toll-like receptors [30].
However, the association with pollution and severe
Covid-19 is not seen to the same extent in impoverished
environments and, as will be discussed later, raises
important research questions.
Children are more susceptible than adults to the

adverse health effects of pollution [31, 32], yet are less
susceptible to severe COVID-19. Does this mean that
the increasing evidence linking air pollution to severe
COVID-19 is specific for adults or is something protecting
children? It would seem there may be different mecha-
nisms underlying the interaction between COVID-19 in-
fection and air pollution in children and in adults. It may
be hypothesized that developmental mechanisms, such as
higher levels of ACE2 expression, especially in the lungs,
prior non-SARS-CoV-2 corona virus infections, innate
immune “training”, intrinsic elevation of lymphocytes,
including T, B, and NK cells, [33], or a suppressive/Th2
skewed immune microenvironment (preventing a strong
immune and inflammatory response in the lungs) may
protect children from severe disease [34].

Research needs
A recent workshop organised by the National Academies
of Sciences (NAS) on the impact of environmental
exposures on infectious diseases highlighted the need for
integrated, trans-disciplinary research in this area.
Speakers in the workshop discussed how global trends
and interconnections demonstrate a need for environ-
mental health and infectious disease communities to
converge but also a need for diverse fields to be a part of
the conversation as well [35]. Quoting from their report
“Emerging findings suggest that exposure to environ-
mental pollutants such as airborne particulate matter,
industrial chemicals, and heavy metals may alter the
immune system, increasing human susceptibility to
infection” [35]. New research findings show that the

microbiome of humans and ecosystems also play
important roles in infection.
Despite this powerful call for trans-disciplinary re-

search, the fields of environmental health and infectious
disease are largely distinct from one another even
though research on the interplay between these fields
could inform new health practices, public health research,
and public health policy [35]. In this commentary we take
the NAS call for trans-disciplinary research one step
further by highlighting the combined impacts of infections
and environmental exposures impacts on children’s
health. A new research agenda is required to address these
questions. We have identified gaps in knowledge that need
urgent research attention.

SARS-CoV-2 infection during fetal development
Pregnant women and the developing foetus are known
to highly vulnerable to certain viral infections such as
rubella and Zika virus, but is this the case for SARS-
CoV-2? While limited data are available, information
suggests evidence of vertical transmission among
approximately 3% of mothers with COVID [36] and no
adverse effects on the newborn [37]. Research is needed
to understand why. Suggestions have been made that the
normal Th-1 bias of the developing fetal immune system
may be protective [38]. Alternatively, the potential for
SARS-CoV-2 to induce an imbalanced T-reg/TH-17
response could pose a threat to the developing fetus
[39]. Maternal exposure to air pollution containing
strong oxidants, such as environmentally persistent free
radicals (EPFRs) results in delayed maturation of Th-1
immune response postnatally [40]. A better understanding
that incorporates an interdisciplinary approach utilizing
both epidemiological and mechanistic research programs
will be required to understand the true impact of SARS-
CoV-2 on pregnant women and their developing fetuses.

Age and genetic susceptibility to severe Covid-19
Severe COVID-19 in adults is characterised by an acute
cytokine storm associated with a severe acute respiratory
distress syndrome (ARDS) leading to multiple organ
dysfunction and death from respiratory failure [41].
However, under this large umbrella of COVID-19 there
are many endotypes that suggest multiple disease mech-
anisms. There is little understanding of why some pa-
tients develop severe disease and die, some develop mild
disease and others appear to remain as asymptomatic
carriers. Recent studies postulate that telomere length in
leukocytes might serve to identify patients more likely to
die from SARS-Cov-2 infection, regardless of age.
Telomere shortening in leukocytes has been associated
with increased synthesis of pro-inflammatory cytokines
[42, 43] that lead to severe disease. However, further in-
vestigation on the use of telomere length as a biomarker
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for cytokine response to SARS-Cov-2 infection is needed.
Telomeres shorten with cell division but whether a
systematic difference of telomere length, as described
between children and adults [44] could contribute to the
differences in inflammatory response and disease severity
with COVID-19 is unknown.
Individual genetic susceptibility is likely to have a role

in severity of disease after infection with SARS-CoV-2
[16, 17] and may also influence viral infectivity and
vaccine efficacy, as has been demonstrated for other viral
infections [45]. Why a severe cytokine storm does not
appear frequently in children remains a mystery, espe-
cially when this can occur in other childhood conditions.
The “macrophage activation syndrome” is a potentially
life-threatening condition seen in some children with
systemic juvenile idiopathic arthritis [46]. Why does this
not occur with SARS-CoV-2?

Previous infection with corona viruses
Children are frequently infected with endemic seasonal
coronaviruses. In a community-based observational
study in which parents took nasal swabs from healthy in-
fants weekly for the first 2 years of life [47], swabs were
analysed for multiple viruses and bacteria, including four
endemic corona viruses. Infection with corona virus was
common, with 11.5% of children experiencing their first
infection by 6 months of age, 33.4% by 12 months, 52.9%
by 18months and 72.2% by 2 years of age [48]. Most first
infections were associated with respiratory symptoms,
but 20% were asymptomatic [48]. Does the common
occurrence of mild or asymptomatic infections with
relatively innocuous corona viruses protect children
from infection or from severe disease with SARS-CoV-2?

Why does air pollution increase disease severity and
mortality in adults but not in children?
As outlined above, there is an epidemiological associ-
ation between increased levels of air pollution, especially
levels of PM2.5, and severe COVID-19 with increased
mortality. While various theories abound, PM is known
to act as a carrier for viruses and bacteria [28]. This
effect has been seen in adults but not in children. There
is a clear gap in knowledge and research priority in this
area to explain this observation as children are generally
much more vulnerable to the toxic effects of poor air
quality [31, 32]. Why this is not the case with SARS-
Cov-2 infection is a mystery that needs to be solved.

Impact of environmental chemical exposures and Covid-19
on the respiratory system
Children are more vulnerable than adults to the adverse
effects of pesticides and many other toxic chemicals via
multiple mechanisms including: route of exposure;
physiological differences that make children more

susceptible; and the immaturity of organ systems during
fetal development and childhood [49]. Children are at
increased risk of acute poisonings, chronic toxicity, and
long-term effects [49]. The respiratory system, as a tar-
get of SARS-Cov-2, can be affected by environmental
chemicals, either through inhalation exposure or via sys-
temic toxicity. Environmental exposure to several toxi-
cants has been associated with a higher risk of
respiratory disease, as well as with alterations of the im-
mune system that could predispose to a greater risk of
acquiring the SARS-Cov-2 infection as well as a worse
prognosis of other infectious diseases. A large number of
chemical disinfectants, including alcohols, chlorine
compounds, formaldehyde, and quaternary ammonium
compounds, are commonly used in household settings.
The inappropriate and / or indiscriminate use of disin-
fectants in domestic settings may also increase the risk
of respiratory symptoms and clinical manifestations
secondary to their irritant effects [50].
Acute or chronic low-level inhalation of pesticides

may exacerbate asthma or increase the risk of developing
asthma, through the interaction with functional irritant
receptors in the airway and promoting neurogenic in-
flammation. Organophosphate insecticides cause airway
hyper-reactivity via a common mechanism of disrupting
negative feedback control of cholinergic regulation in
the lungs. Synergism with allergen sensitization has also
been reported, particularly with fungicides exposure [51].
Exposures to organic chemicals could also indirectly

influence the severity of viral infections by increasing the
risk for chronic conditions that worsen COVID-19 prog-
noses [52]. Among the most common comorbidities are
obesity, hypertension, and diabetes, conditions that have
each been attributed to organic chemical exposures [53].
Several industrial chemicals recognized for their
endocrine disrupting potential have been labeled as
“obesogens” for their impacts on lipid metabolism and
adipogenesis, and in turn, weight gain [54, 55]. While
obesity may not be solely explained by organic chemical
exposures, a deeper understanding of their indirect role
in the COVID-19 pandemic is needed.

Do environmental chemical exposures alter innate immune
anti-viral responses to contribute to move severe disease?
Exposure to environmental toxicants (e.g., pesticides,
heavy metals, endocrine-disrupting chemicals, among
others) have been linked with alterations in the immune
system [56, 57]. Possible consequences of immunotoxi-
cants related to infectious disease may include increased
susceptibility to infection, prolonged recovery periods, and
reduced responses to vaccinations [58]. Prenatal exposure
to dioxin like compounds may cause postnatal immune
dysfunction and increased susceptibility to infectious and
allergic diseases in childhood [59].
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Exposure to organochlorines compounds, organophos-
phates, carbamates and several herbicides have been
associated with immunotoxicity. Such pesticides can
induce release of pro-inflammatory mediators (TNF-α,
IL-1β, IL-6) from macrophages, increase aromatase ex-
pression, induce oxidative stress, have estrogenic activity
resulting in endocrine disruption, and may induce DNA
damage acting as direct carcinogens [60]. Heavy metals
exposure (particularly lead) has been associated with
toxic effects on the immune system and a higher risk of
inflammatory disorders; increasing the incidence of
infectious disease, autoimmunity and cancer [56]. The
immunotoxic effects of lead are complex, with some data
suggesting preferential promotion of Th-2 development
by suppressing Th-1 cell proliferation [61]. What effect
this has on immune development in early life is
unknown. A wide variety of environmental toxicants can
impair a protective immune response, especially in or-
gans expressing high ACE2 expressions, such as intestine
and kidney, via interactions with the aryl hydrocarbon
receptor (AhR) [60]. Whether children are more or less
vulnerable to environmental activation of the AhR is not
known.
Toxic metals are ubiquitous in the environment as a

result of both geogenic and anthropogenic sources.
Epidemiologic studies of arsenic exposure in relation to
established viral infections highlight its potential to in-
crease infection susceptibility. Cross-sectional analyses
of both children and adults enrolled in the National
Health and Nutrition Examination Survey (NHANES)
have observed that higher urinary total arsenic measure-
ments (i.e., the sum of organic and inorganic forms) are
associated with a higher prevalence of hepatitis viruses
A and B and higher rates of varicella zoster virus reacti-
vation [29, 62, 63]. Other research suggests pregnancy
may be a particularly vulnerable window for the
immunotoxicity of inorganic arsenic (iAs). For example,
in a prospective study, women with higher urinary iAs
concentrations throughout pregnancy were more likely
to seroconvert to hepatitis E virus [64]. The risk of iAs-
induced immunotoxicity during pregnancy appears to
affect both the mother and the offspring. Data collected
by the New Hampshire Birth Cohort Study show in
utero exposures to iAs and its metabolites are associated
with a higher risk of various infections throughout in-
fancy [65–67]. The precise biological mechanisms by
which iAs increases the risk for infectious disease are in-
completely understood but may be related to impaired
function of macrophages, the leukocyte responsible for
patrolling for and destroying pathogens [68]. In a case-
control study of a population with arsenical skin lesions,
investigators found the macrophages of iAs-exposed in-
dividuals had reduced phagocytic capacity and reduced
bacterial killing [69]. Taken together, these data suggest

that iAs has immunosuppressive activity with the poten-
tial for chronic exposures to increase susceptibility to
viral infections. The impact of As exposure on preva-
lence and severity of COVID-19, especially on children,
is unknown. However, given the widespread exposure to
arsenic globally and the impact on other viral infections,
this certainly warrants investigation.
Environmental exposure to other toxic metals includ-

ing cadmium (Cd), lead (Pb), and mercury (Hg) decrease
immune responses and increased the risk of infectious
diseases [70–72]. For example, prenatal exposure to Hg
(28–30 weeks gestation) was associated with increased
risk of lower respiratory tract infections when the infants
were between 9 to 12months of age [71]. In a cross-
sectional study of non-smokers, who tend to have rela-
tively low toxic metal exposures, blood Cd and Pb levels
were associated with prevalent hepatitis B infections
[72]. A currently understudied area in relation to
COVID-19 risk is the impact of metals mixtures. There
is a strong possibility that metals interact with one an-
other to a have a synergistic or antagonistic effect on the
immune system, including susceptibility to infections.
Given the ubiquitous exposure to toxic metals in the en-
vironment, research into how mixture-based exposures
could increase susceptibility to COVID-19, especially in
children, is warranted.
Organic compounds including; polychlorinated biphe-

nyls (PCBs), dioxins, pesticides, and per and polyfluor-
oalkyl substances (PFAS), are known to impair immune
responses [73–77]. Epidemiologic research has linked
prenatal PFAS exposures to an increased risk of lower
respiratory tract infections, common cold episodes, and
other infections later in childhood [78–80]. Likewise,
prenatal exposures to PCBs and dioxins have been impli-
cated with upper respiratory tract infections during
infancy [81]. The immunotoxic mechanisms through
which organic chemicals increase susceptibility to infec-
tions are unknown but may be due to reducing immune
responses to infectious agents. Exposures that reduce
anti-viral innate immune responses could, in theory, in-
crease the risk of COVID-19, especially in children
where anti-viral responses are already low.

Will exposure to environmental toxicants reduce the
effectiveness of vaccines against SARS-Cov-2?
Exposures to organic chemicals including dioxins, PCBs,
and PFAS may also diminish vaccine effectiveness. In a
study of mother-child dyads enrolled in the Norwegian
Mother and Child Cohort (MoBa), maternal exposure to
PCBs and dioxins during pregnancy was associated with
reduced antibody responses to the measles vaccine in
offspring at age 3 [81]. Other studies from the Faroe
Islands suggest that associations of PCB exposures with
vaccine responses depend on the timing of exposures
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[82, 83]. For instance, when researchers compared the
effects of prenatal PCBs to levels at the age of 18
months, they found that the latter were more strongly
associated with reductions in diphtheria toxoid antibody
concentrations [83]. The researchers posited that the
combination of intrauterine and breast milk exposures
increased PCB body burdens at a time when the immune
system is vulnerable [83]. Exposure timing also appears
to be important for vaccine responses among individuals
exposed to PFAS. In a study of healthy adults from New
York immunized with FluMist, a live attenuated vaccine
administered by intranasal spray for the prevention of
influenza virus, no differences were observed in antibody
responses by serum PFOA concentrations [84]. How-
ever, PFOA-exposed infants have been found to have
reduced antibodies to tetanus and diphtheria at the age
of 5 [85]. Overall, these findings show the potential for
organic chemicals to suppress antibody production in re-
sponse to vaccinations. Scientists should be aware that
an eventual SARS-Cov-2 vaccine may not be as effective
as intended in individuals exposed to organic chemicals.

What are the long-term consequences of COVID-19?
There are increasing reports of persistent symptoms
after recovery from COVID-19 including fatigue, dys-
pnea, “brain fog”, joint pain, and chest pain [86] which
raises the questions, what are the long-term health con-
sequences of surviving Covid-19? Will long term health
consequences only be seen in those with the most severe
initial disease? Doctors are reporting a growing number
of COVID-19 patients exhibiting signs of heart and
neurological damage and it is unknown as to whether
the damage will persist throughout life [87]. Research in
this area is of critical importance for prevention and
intervention activities as lasting health effects of children
surviving COVID-19 could lead to significant health and
economic costs throughout their lifespan, similar to the
costs of managing chronic diseases. It is estimated that
heart disease and stroke cost US healthcare systems
$199 billion per year and causes $131 billion in lost
productivity [88], a number that is sure to increase
should COVID-19 induce chronic health effects in both
children and adults. It is imperative that researchers
consider environmental exposures in these studies as
exposure to environmental chemicals has been linked to
the development or exacerbation of chronic diseases and
could increase the risk of developing long-term adverse
health effects after SARS-Cov-2 infection and recovery.
For example, research has shown that arsenic exposure
induces epigenetic changes that can disrupt the endo-
crine system [89] as well as other research pointing to
an association between arsenic exposure and lung dis-
ease [90] and hypertension [91]. Caballero et al. [92] also
found that disease severity in infants after respiratory

syncytial virus (RSV) infection was dependent on the
interaction between exposure to environmental endo-
toxin and genetic background (i.e. gene x environment
interaction). The interplay between the environment and
the SARS-Cov-2 virus will be important to disentangle
to develop the proper public health intervention and
prevention activities.

Covid-19 in resource-limited settings: does a “dirty”
environment protect children against COVID-19 – the
hygiene hypothesis in action?
Similar to the pattern seen in high income countries,
children develop predominantly mild or asymptomatic
SARS-Cov2 infection in low and middle income coun-
tries (LMIC) settings [93]. Whereas lower respiratory
tract infection (including from RSV, influenza or other
viruses) remains a major killer in children under 5 years
in LMICs with malnourished or immunosuppressed
children particularly at risk, this pattern has not
occurred with SARS-CoV-2 infection. Reasons for this
are poorly understood, but a key hypothesis is that prior
infection with other pathogens or universal BCG vaccin-
ation, may possibly protect children against severe dis-
ease through development of “trained” innate immunity
[94]. Prior infection with seasonal coronaviruses which
are endemic in LMICs and ubiquitous in children, may
provide cross protection to SARS-CoV-2 from high
levels of antibodies or from cellular immunity; pre-
existing cross-reactive cellular immune responses to
SARS-CoV-2, due to prior infection with seasonal cor-
onavirus, have been shown that may protect against
COVID-19 [95].

Conclusion
A concerted research effort is needed to better under-
stand the links between environmental exposures and
COVID-19, especially air pollution and COVID-19. We
call for specific research funding to encourage basic and
clinical research to understand if/why exposure to envir-
onmental factors is associated with more severe disease,
why children appear to be protected, and how innate
immune responses may be involved. These research
activities will be critical to develop prevention and inter-
vention strategies for combined exposures as we are
experiencing with COVID-19, to reduce the burden of
disease. It will also provide much needed rationale for
investment in public health and pollution management
sectors. We need to learn the lessons offered by our
children to understand how to reduce disease severity in
adults, which is quite a change from usual scenarios.
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