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Abstract

Background: Air pollution is one of the world’s leading mortality risk factors contributing to seven million deaths
annually. COVID-19 pandemic has claimed about one million deaths in less than a year. However, it is unclear
whether exposure to acute and chronic air pollution influences the COVID-19 epidemiologic curve.

Methods: We searched for relevant studies listed in six electronic databases between December 2019 and
September 2020. We applied no language or publication status limits. Studies presented as original articles, studies
that assessed risk, incidence, prevalence, or lethality of COVID-19 in relation with exposure to either short-term or
long-term exposure to ambient air pollution were included. All patients regardless of age, sex and location
diagnosed as having COVID-19 of any severity were taken into consideration. We synthesised results using harvest
plots based on effect direction.

Results: Included studies were cross-sectional (n = 10), retrospective cohorts (n = 9), ecological (n = 6 of which two
were time-series) and hypothesis (n = 1). Of these studies, 52 and 48% assessed the effect of short-term and long-
term pollutant exposure, respectively and one evaluated both. Pollutants mostly studied were PM2.5 (64%), NO2

(50%), PM10 (43%) and O3 (29%) for acute effects and PM2.5 (85%), NO2 (39%) and O3 (23%) then PM10 (15%) for
chronic effects. Most assessed COVID-19 outcomes were incidence and mortality rate. Acutely, pollutants
independently associated with COVID-19 incidence and mortality were first PM2.5 then PM10, NO2 and O3 (only for
incident cases). Chronically, similar relationships were found for PM2.5 and NO2. High overall risk of bias judgments
(86 and 39% in short-term and long-term exposure studies, respectively) was predominantly due to a failure to
adjust aggregated data for important confounders, and to a lesser extent because of a lack of comparative analysis.
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Conclusion: The body of evidence indicates that both acute and chronic exposure to air pollution can affect
COVID-19 epidemiology. The evidence is unclear for acute exposure due to a higher level of bias in existing studies
as compared to moderate evidence with chronic exposure. Public health interventions that help minimize
anthropogenic pollutant source and socio-economic injustice/disparities may reduce the planetary threat posed by
both COVID-19 and air pollution pandemics.
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Introduction
During the 2003 SARS outbreak in China, SARS patients
from regions with high air pollution were twice as likely
to die from SARS compared to those from regions with
low air pollution, for both acute and chronic exposure to
pollutants [1]. The World Health Organization (WHO)
has announced a new SARS (SARS-CoV-2), responsible
for the coronavirus disease-19 (COVID-19) as a global
pandemic. According to WHO, 62.844.837 total cases
and 1.465.144 deaths had been confirmed by 01/12/2020
[2]. Ambient air pollution constitutes a serious risk fac-
tor not only for the occurrence of respiratory infections,
but also for the development of reduced pulmonary
function and/or aggravation of existing pulmonary dis-
ease and is responsible for about four million deaths
each year [3]. Exposure to pollutants can impair immune
responses and affect host immunity from respiratory
virus infections mainly in people already at risk of devel-
oping morbidity after viral respiratory infections [4, 5].
A recent meta-analysis [6] of 27,670 COVID-19 patients
showed that the underlying morbidities associated with
the highest likelihood of deaths consisted of cardiovascu-
lar diseases, immune and metabolic disorders, respiratory
diseases, cerebrovascular diseases and cancer, i.e. condi-
tions that are also known to be independently associated
with exposure to pollutants [3, 7, 8]. Recently, it has been
observed that in non-COVID-19 patients short-term ex-
posure to particulate and gaseous air pollution prior to
hospital admission is an important – modifiable – risk fac-
tor that prolongs the duration of ventilation [9]. However,
studies reporting on the influence of pre-admission expos-
ure to ambient air pollution on the duration of mechanical
ventilation in COVID-19 patients admitted to the inten-
sive care unit (ICU) are rare.
Inhalation of elevated concentrations of air pollution

results in inflammation of mucus membranes in the pul-
monary tract and is a factor that could influence the
process and severity of SARSCov2-infection. Mechanis-
tically, SARS-CoV-2 targets cells through the viral
structural spike (S) protein that binds to the
angiotensin-converting enzyme 2 (ACE2) receptor.
Bronchial epithelial cells, type I and type II alveolar
pneumocytes, and capillary endothelial cells become in-
fected, and an inflammatory response ensues [10].

Increased viral load reduces the expression of ACE2 and
contributes to an aggressive reaction by multiple cyto-
kines and chemokines, and to a lowering of innate im-
munity by adaptive and regulatory immune cells [11].
CD4+ T cells have been shown to allow antibody devel-
opment and a healthy immune response. During SARS-
CoV-2 infection, lymphopenia develops early and is
prognostic, possibly correlated with a decrease of CD4+
and certain CD8+ T cells. T cells are selectively killed by
the immune system, while there is a risk of direct viral
invasion of T cells [12]. Bioinformatics review of the
DNA sequence encoding SARS-CoV-2 cell identified
nine consensual patterns for the aryl hydrocarbon re-
ceptor and thus supported the hypothesis that
pollution-induced over-expression of ACE-2 in human
airways can favor SARS-CoV-2 infection [13]. Ultim-
ately, a “double-hit hypothesis” was recently sug-
gested: prolonged exposure to PM2.5 induces
overexpression of the alveolar ACE-2 receptor. This
can raise viral loads in patients exposed to pollutants
and in exchange, deplete the ACE-2 receptors and
damage the host defense. High atmospheric NO2 may
provide a second hit causing a severe form of SARS-
CoV-2 in ACE-2 depleted lungs resulting in a worse
outcomes [14]. Moreover, air pollution may not only
promote a longer presence of viral particles (conflict-
ing evidence) in the air and contribute to the spread
of SARS-CoV-2, but may in the case of pre-exposure
to pollutants, sustain an inflammatory storm triggered
by SARS-CoV-2 [15]. Interleukins (IL), interferons
(IFN), tumor necrosis factor (TNF), colony stimulat-
ing factors (CSF), the chemokine family, growth fac-
tors (GF) are the major cytokines concerned [16].
Cytokine storm is a primary cause of acute respira-
tory distress syndrome [16] that is known to be asso-
ciated with air pollutants in critically ill patients [17,
18]. The variations in reaction are presumably related
to the degree of viral load and host-related factors
[16, 19]. Persistent immune activation in predisposed
individuals, such as elderly adults and those at cardio-
vascular risk, will contribute to hemophagocytosis-like
syndrome, with excessive amplification of cytokine de-
velopment contributing to multi-organ failure and
death [12].
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We performed a rapid systematic review to summarize
the existing – and still somewhat controversial [20] – in-
formation on the subject. Compared to already pub-
lished reviews, we took great care to expanding the
search terms, assessing the quality of studies, document-
ing both acute and chronic exposure, summarizing find-
ings by epidemiological and clinical COVID-19
outcomes and by ascertaining the degree of certainty for
each included study.

Methods
This review is reported according to Preferred Reporting
Items for Systematic reviews and Meta-Analysis protocol
(PRISMA-P) guidelines [21, 22].

Search strategy and data extraction
The search strategy has been applied using online data-
bases (PubMed/MEDLINE, Google Scholar, Embase,
Web of Science, WHO COVID-19 database, Cochrane
Library) from December 2019 to September 2020. Pre-
print papers indexed in Medline (MedRxiv) were in-
cluded and were considered as grey literature until peer
reviewed versions were available. No language restriction
was applied. The literature search technique was devel-
oped using the headings of the medical subject headings
(MeSH), Boolean (AND/OR) operator. The search terms
used included: (1): “air pollution”, “outdoor air pollu-
tion”, “ultra fine particles”, “fine particles”, “coarse parti-
cles”, “traffic related pollutants”, “traffi c”, “diesel”,
“elemental carbon”, “black carbon”, “particulate matters”,
“nitrogen dioxide”, “carbon monoxide”, “nitrogen diox-
ide”, “nitrogen oxides”, “ozone”, “sulfur dioxide”, “sulfur
oxides”, “O3”, “SO2”, “SOx”, “NO2”, “NOx”, “PM”, “par-
ticulate matter”, “air pollution”, “ultrafine particles”,
“PM10”, “PM2·5”, “PM1”, “bioaerosols in PM”, “bacteria in
PM”, “endotoxin in PM”, “fungi and pollens in PM”,
“trace elements in PM”, “secondary inorganic species in
PM”, “polycyclic aromatic hydrocarbon in PM”, “inor-
ganic mineral dust in PM”, “elemental carbon in PM”,
“organic carbon in PM”, and “black carbon in PM”, vola-
tile organic chemical or volatile organic compound”,
“VOCS”; (2): “Wuhan coronavirus” OR “COVID-19″ OR
“novel coronavirus” OR “2019-nCoV” OR “coronavirus
disease” OR “SARS-CoV-2″ OR “SARS-2″ OR “severe
acute respiratory syndrome coronavirus 2” and (3) “ad-
mission” OR “outcome” OR “case fatality rate” OR
“CFR” OR “mortality” OR “lethality” OR “prevalence”
OR “incidence” OR “prevalence of asymptomatic, mild,
moderate and severe cases” OR “number admitted to
specialized units or intensive care units” OR “number of
infected patients”. The final search included (1) AND (2)
AND (3). Searching results was independently evaluated
by two different reviewers (PDMK and BB).

Selection and data collection process
Full texts for the eligible titles and/or abstracts, includ-
ing those where there was uncertainty, were obtained for
further assessment on whether to include in the study or
not [23]. Disagreements between authors were resolved
through discussion and, when needed, there was arbitra-
tion by a third reviewer (AB). Reasons for excluding arti-
cles were recorded. For studies appearing in more than
one published article, we considered the most recent
one, and with the largest sample size. For surveys
appearing in one article with multiple surveys conducted
at different time points, we treated each survey as a sep-
arate study. For multi-national studies, estimates at the
country level were preferred. Data was extracted using a
standardized data extraction form. From the studies in-
cluded, two reviewers (PDMK and BB) independently
extracted data using the predefined standardized extrac-
tion form. Data extracted comprised information about
the study ID, study description, source, type and length
of exposure, COVID-19 outcomes investigated, main
findings and conclusion.

Handling of preprint publications
Preprint papers indexed in Medline (MedRxiv) were in-
cluded and were considered as part of grey literature at
inclusion and data were interpreted cautiously. However,
after the peer-reviewed process of our article, we consid-
ered and replaced the preprint versions by the peer-
reviewed articles, if available. When necessary, we cited
the two versions for methodological purposes.

Inclusion and exclusion criteria
Studies presented as original articles, studies that
assessed risk, incidence, prevalence, or lethality from
COVID-19 in relation with both exposure to short-term
and long-term exposure to ambient air pollution were
included.

Types of studies
Observational studies (including ecological, cross-
sectional, case–control, and cohort designs) were in-
cluded. We also included a summary of already pub-
lished reviews.

Participants
All patients regardless of age, sex and location diagnosed
as having COVID-19 of any severity.

Intervention(s)/exposure(s)
Length and level of exposure to air pollutants.
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Outcome
Epidemiological data (prevalence, incidence, absolute
number of cases) and clinical data (case fatality rate,
mortality rate, absolute death number) of COVID-19.

Settings
Worldwide, either hospital-based or register-based.

Exclusion criteria
Studies not performed in humans or qualitative studies,
and studies that lack relevant data needed to compute
the outcome for COVID-19 or to describe the type of air
pollution (level or length of exposure) were excluded.
Experimental studies, letters, comments, editorials, case
reports, and case series were not included.

Quality assessment and risk of bias in individual studies
As recently reported by a panel of experts [24, 25]; cur-
rents risk of bias (RoB) tools tend to dilute the quality of
study assessing adverse effects of environmental expo-
sures. This occurs by incorrectly excluding studies con-
tributing to misleading the quality of the body of
evidence. To determine the overall RoB of the studies in-
cluded in this review, we built on the approach de-
scribed by Lee et al. 2020 [26] and considered each
study individually in the summary of evidence. Briefly,
we assessed three key domains of interest in observa-
tional studies: (1) objective assessment of outcomes, (2)
adjustment for confounding using baseline covariates as
well as exposure level and (3) whether a control/dose-re-
sponse comparator was used for comparative analysis.
For the objective assessment of outcomes, we judged
studies using an objective measure of outcome assess-
ment (such as physician diagnosis, clinical information,
or ICD codes) as low risk for detection bias. Studies
using subjective measures, such as participant recall,
were judged as high risk for this domain. If it was not
clear how outcomes were assessed, we judged such stud-
ies at unclear risk of detection bias.
Adjustment for confounding was assessed based on

the covariates used to adjust results. Studies which ad-
justed for age, in addition to two other relevant covari-
ates, or which reported on individual levels of exposure
were judged at low risk for this domain; studies which
did not adjust results for at least age and reported aggre-
gated levels of exposure were judged as high risk. Those
studies that adjusted for age, but no other covariates,
and either reported aggregated exposure, or did not
clearly state whether exposure was reported at individual
or aggregated level, were judged as unclear risk. To ar-
rive at an overall risk of bias judgment, the three key do-
mains were considered together. If a study was at low
risk for all key domains, it was judged as having a low
overall risk of bias. If any of the domains were unclear

and the others low, overall risk of bias would be judged
unclear. If any of the domains were high; and the others
judged low, unclear, or high; overall risk of bias would
be high for the study.

Data management
Based on the inclusion and exclusion criteria, a tool was
developed a priori to guide the screening and selection
process. The tool was piloted and revised before begin-
ning data extraction. The search results were uploaded
to Zotero software to remove duplicates.

Evidence synthesis by harvest plots
As a result of the diverse measures of associations and
analytical approaches used in the included studies, the
variation in the measurement and reporting of the same
outcomes (e.g. diagnosis of COVID-19 or reporting of
case fatality rate (CFR) in different countries), incom-
plete reporting of necessary data (e.g. variances) and the
urgent need for evidence, we did not pool results in a
traditional meta-analysis. Instead, we synthesized effects
of different pollutant exposures on different outcomes
using harvest plots as described by Ogilvie and col-
leagues [27] and used by a Cochrane systematic review
by Durão et al., 2020 [28].
The method does not account for the relative weight

of studies, as it does not take variance into account, but
it does provide insight into the direction of the overall
results based on a vote-counting approach, and it can
provide a robust approximation of certainty. Point esti-
mates of association were used to determine the direc-
tion of effect for each study, and 95% confidence
intervals (CIs) were used to determine the certainty of
the direction; when the 95% CIs included the line of no
association, the effect was considered as uncertain.
Where 95% CI were not available, p-values were used to
make a judgment about certainty. Though we acknow-
ledge the limitations of this measure for discerning ‘pre-
cise’ and ‘imprecise’ associations, this approach enabled
us to make robust decisions about whether reported as-
sociations were convincing or not. In these cases, p-
values above 0.05 were considered to indicate an uncer-
tain association.
The determination of overall direction of association

and certainty was based on where most studies were lo-
cated in the harvest plot, whether studies provided
contradictory evidence and on the quality of the individ-
ual studies. If most studies were clustered in a particular
direction, certainty was determined by the number of
studies falling in the ‘uncertain’ categories. If studies re-
ported effects in different directions, their numbers in
either direction, overall risk of bias, as well as the cer-
tainty of the evidence presented were used to determine
an overall direction. If studies were equally distributed
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in either direction and of equal certainty and quality, the
overall effect was deemed to be very uncertain. As quan-
titative syntheses were not conducted, the GRADE ap-
proach [29] for assessing the certainty of the evidence
was not followed formally, but the domains used in this
approach were considered when making certainty
statements.

Other evidence considered
As recently suggested by Steenland and colleagues [25],
we did not only consider human primary studies to as-
sess the evidence but we also considered triangulation
and integration of animal and mechanistic data and
summary of reviews to have a broad approach by con-
structing an epidemiological pathway of the association
between exposure to pollutants, effect of lockdown and
SARS-CoV-2 infection (Fig. 1).

Results
Search findings and characteristics of included studies
Overall, we have included 26 primary studies and sum-
marized nine reviews (Fig. 2). eTable 1 displays the

summary of reviews and eTable 2 shows the characteris-
tic of primary studies. Primary studies were cross-
sectionals (n = 10), retrospective cohorts (n = 9), eco-
logical (n = 6 of which two were time-series) and hy-
pothesis (n = 1). Eleven originated from Europe (Italy: 9),
eight from Asia (China: 6), five from the USA and two
from Latin America. About 52 and 48% of studies
assessed the effect of short-term and long-term exposure
to pollutants, respectively while one study evaluated
both concomitantly. Pollutants mostly studied for acute
effects included PM2.5 (64%), NO2 (50%), PM10 (43%)
and O3 (29%). Equally, for chronic effect it was mostly
PM2.5 (85%), NO2 (39%) and O3 (23%) then PM10 (15%).

Quality of included studies
Of the 26 studies included in the review, 16 had a high
overall risk of bias when assessing the three key domains
(Fig. 3, eTables 3 and 4). One study [52] reported on
short-term and long-term exposures and was assessed
for both. Twelve of the 14 (86%) studies reporting on
short-term exposure to pollutants, and five of the 13
reporting on long-term exposure (39%), were at a high

Fig. 1 Interplay of Air pollution, Lockdown and SARS-CoV-2: An Epidemiological View. Model built following synthesis of current litterature [3, 13,
15, 30–51] . The airborne nature of SARS-CoV-2 transmission might be facilitated by air pollutants. Indirectly pollutant can increase host
susceptibility to SARS-CoV-2 by directly induce respiratory epithelium/ endothelium lesions. Further, pollutants trigger oxidative stress, increase
ACE-Receptors, and are independently associated with the risk, severity, and mortality for cardiorespiratory and metabolic diseases (COPD,
tuberculosis, ARI, HTP, high BMI, diabetes, etc.). Patently, SARS-CoV-2 manifestation is linked to cytokine storm liberation, it binds to ACE-2
Receptors to penetrate host cell membrane and is more severe among people with the above evoked cardiorespiratory and metabolic
conditions. In addition, pollutant can sustain cytokine storm triggered by SARS-CoV-2. Consequently, exposure to high level of pollutants
potentiates SARS-CoV-2 effect resulting in increased risk, incidence, severity, and lethality with uncertain level of evidence related multiorgan
sequelae. On the other hand, COVID-19 pandemic has resulted into a lockdown which has clearly improved the level of anthropogenic
pollutants. Not such benefice is expected for household burning solid biomass fuel for domestic energy or containing a smoker as strict
lockdown has resulted on the increased exposure-time. Abbreviations: SARS-CoV-2: severe acute respiratory syndrome coronavirus; PM2.5 (or 10):
particulate matter of less than 2.5 (or 10) micrometers in diameter, NO2: nitrogen dioxide; O3: ozone; SO2: sulfur dioxide; TRAP: traffic related air
pollution; HAP: household air pollution; ACE-2: angiotensin-converting enzyme 2 ARI: acute respiratory infection; COPD: chronic obstructive
pulmonary diseases; HPT: hypertension; BMI: body mass index; CFR: case fatality rate; MR: mortality rate
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overall risk of bias. High overall risk of bias judgments
were predominantly due to a failure to adjust aggregated
data for age and other important covariates as con-
founders, and to a lesser extent as a result of a lack of
comparative analysis in two short-term studies [30, 53]
and in one long-term study [54]. Of the remaining stud-
ies reporting on short-term exposure to pollutants, one
was at low overall risk of bias [55] and the other [14] at
unclear overall risk of bias; due to having adjusted aggre-
gated data for age only. Seven of the remaining studies
reporting on long-term exposure were at low overall risk
of bias. One study [56] was at unclear overall risk of bias
as it was not clear where authors had obtained COVID-
19 outcome data, or how these outcomes were
determined.

Overview of published reviews
Of the nine included reviews, seven were written as
comment or expert opinion, one was a traditional re-
view, and one was a systematic review including 15 stud-
ies. None of the reviews quantitatively assessed the
quality of included studies, nor did they consider an
adapted approach for GRADEing the summary of find-
ings to support making recommendations and to deter-
mine the strength of their recommendations (eTable 1).

Evidence synthesis by harvest plots
Effects of short-term air pollution on COVID-19-related
deaths
Table 1 displays the associations between short-term ex-
posure to various pollutants and COVID-19 outcomes;

Fig. 2 PRISMA Flow Diagram. Note: One study has assessed both short-term and long-term air pollution
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Fig. 3 Risk of bias. Summary of authors’ judgments on each domain for each included study (Panel a) and as percentages across included studies
(Panel b). About one quarter of the studies had a low risk of bias
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Table 1 Association between short-term exposure to air pollution and risk, severity, incidence, and lethality for COVID-19 Pandemic

Study ID Study Description Outcomes Main findings Conclusion

Yao Y et al.
[52], June
2020

*Associations
between PM and
COVID-19 CFR
*49 Chinese cities,
spatial analysis

CFR Pollutants (10 μg/m3 increase in and concentrations)- COVID-19 CFR in-
creased by:
*Epidemic period:
• PM2.5: 0.24% (0.01–0.48%) and
• PM10: 0.26% (0.00–0.51%), respectively.

PM distribution and
its association with
COVID-19 CFR sug-
gests that exposure to
such may affect
COVID-19 prognosis.

Frontera A
et al. [14],
August 2020

*Relationship
between air PM2.5

and NO2 and COVID-
19, Italian regions.

Transmission,
number of
patients,
severity of
presentation
and number
of deaths.

*Correlations between mean PM2.5:
• Total number cases: r = 0.64; p = 0.0074,
• ICU admissions per day: r = 0.65; p = 0.0051,
• Deaths: r = 0.62; p = 0.032
• Hospitalized cases: r = 0.62; p = 0.0089

*Highest cases, more
severe cases and two-
fold mortality of
COVID-19 in the most
polluted regions

Li H [57]
et al.,
August 2020

Retrospective study,
correlation between
COVID-19 incidence
and AQI, Wuhan and
XiaoGan between
January 26th to Feb-
ruary 29th in 2020

Incidence * Pollutants-COVID-19 Incidence (Wuhan vs XiaoGan: R2):
• PM2.5: 0.174 vs 0.23
• PM10: 0.105 vs 0.158
• NO2: 0.329 vs 0.158
• CO: 0.203 vs 0.022
*AQI-COVID-19 Incidence (Wuhan vs XiaoGan: R2):
0.13, p < 0.05 vs 0.223, p < 0.01).

AQI, PM2.5, NO2, and
temperature are four
variables that could
promote the
sustained transmission
of COVID-19.

Zoran M
et al. [58],
October
2020

Time series of daily
average inhalable
gaseous O3 and NO2,
in Milan, Lombardy in
Italy, January–April
2020

Transmission
and lethality

O3 vs NO2 (January–April 2020)-COVID-19:
• Total number: r = 0.64 **vs − 0.55**
• Daily New positive: r = 0.50** vs − 0.35**
• Total Deaths cases: r = 0.69 vs − 0.58**

* O3 can acts as a
COVID-19 virus
incubator.
*Estimates can be
attributed to airborne
bioaerosols
distribution.

Zhu Y et al.
[59], Jully
2020

Daily confirmed cases,
air pollution
concentration and
meteorological
variables in 120 cities
were obtained from
January 23, 2020 to
February 29, 2020 in
China.

Incidence *10-μg/m3 increase (lag0–14) associated with increase in the daily
counts of confirmed cases:
• PM2.5: 2.24% (95% CI: 1.02 to 3.46),
• PM10: 1.76% (95% CI: 0.89 to 2.63),
• NO2:6.94% (95% CI: 2.38 to 11.51),
• O3: 4.76% (95% CI: 1.99 to 7.52)
*10-μg/m3 increase (lag0–14) associated with a decrease in COVID-19
confirmed cases.
SO2: 7.79%: (95% CI: − 14.57 to − 1.01)

Significant
relationship between
air pollution and
COVID-19 infection,
which could partially
explain the effect of
national lockdown
and provide implica-
tions for the control
and prevention of this
novel disease.

Adhikari A
et al. [60],
Jun 2020

Associations between
O3, PM2.5, daily
meteorological
variables and COVID-
19 in Queens county,
New York during
March–April 2020

Incidence
and mortality

*Pollutants (lag 0–21)-New COVID-19 Cases
• PM2.5: IRR: 0.6684 (0.6478–0.6896), P < 0.0001
• O3: IRR: 1.1051 (1.0747–1.1363), P < 0.0001
*Pollutants (lag 0–21)-New COVID-19 Deaths
• PM2.5: IRR: 0.8912 (0.7966–0.9971), P < 0.0444
• O3: IRR: 0.8958 (0.8072–0.9941), P < 0.0382

Short-term exposures
to O3-8h + other
meteorological factors
can influence COVID-
19 transmission and
initiation, but aggrava-
tion and mortality de-
pend on other factors.

Chakraborty
P et al. [61],
July 2020

*Effects of COVID-19,
on a large population
persistently exposed
to various pollutants
in different parts of
India.
*Data, from online
resources,

Fatality *NO2 from vehicular emission and absolute number of COVID-19:
• Deaths: r = 0.79, p < 0.05
• Case fatality rate: r = 0.74, p < 0.05.
*Rise in NO2/ PM2.5 ratio increased the COVID-19 CFR by: 7.2%

Homeless, poverty-
stricken, hawkers,
roadside vendors, and
others regularly ex-
posed to vehicular ex-
haust, may be at a
higher risk in the
COVID-19 pandemic.

Bontempi E
[30], July
2020

PM10 situation in
Lombardy (from 10th
February to March 27,
2020), several days
before the sanitary
emergency explosion;
comparison: the
situation of Piedmont,
located near to the
Lombardy

Incidence Piedmont cities, presenting lower detected infections cases in
comparison to Brescia and Bergamo in the investigated period, had
most sever PM10 pollution events in comparison to Lombardy cities.

Not possible to
conclude that COVID-
19 diffusion mechan-
ism also occurs
through the air, by
using PM10 as a
carrier.
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Table 1 Association between short-term exposure to air pollution and risk, severity, incidence, and lethality for COVID-19 Pandemic
(Continued)

Study ID Study Description Outcomes Main findings Conclusion

Bashir MF
et al. [62],
May 2020

Secondary published
data from the Centers
for Disease Control
and the EPA (March–
April 2020) to assess
the relation between
environmental
pollution
determinants and the
COVID-19 outbreak in
California.

Incidence,
Mortality

*Pollutants-COVID-19 Cases
• PM10: r = − 0.375**
• PM2.5: r = − 0.453***
• SO2: r = − 0.426***
• CO: r = 0.083
• VOC: r = 0.054
• Pb: r = 0.178**
• NO2: r = − 0.736***
*Pollutants-COVID-19 Deaths
• PM10: r = − 0.350**
• PM2.5: r = − 0.429***
• SO2: r = − 0.397**
• CO: r = 0.123
• VOC: r = 0.038
• Pb: r = 0.174**
• NO2: r = − 0.731***

Useful supplement to
encourage regulatory
bodies to promote
changes in
environmental
policies as pollution
source control can
reduce the harmful
effects of
environmental
pollutants

Bolaño-Ortiz
TR et al.
[63], July
2020

Correlation between
air pollution
indicators (PM10,
PM2.5, and NO2: day
0–14 prior COVID-19
test) with the COVID-
19 daily new cases
and deaths in Latin
America and the
Caribbean region

Transmission
and mortality

Spearman rank correlation tests:
Mexico City (Mexico), PM2.5, PM10, NO2

• New Cases: − 0.214*, − 0.327**, − 0.206
• Total Cases: − 0.124, − 0.444***, − 0.446***
• Mortality: − 0.256**, − 0.395***, − 0.462***
San Juan (Puerto Rico), NO2:
• New Cases: 0.367***
• Total Cases: 0.636***
• Mortality: − 0.194
Bogotá (Colombia), PM2.5, PM10, NO2

• New Cases: − 0.414***, − 0.150, 0.009
• Total Cases: PM10, NO2: − 0.438***, − 0.190
• Mortality: 0.050, 0.097, 0.182
Santiago (Chile), PM2.5, PM10, NO2

• New Cases: 0.466 ***, 0.351***, 0.547***
• Total Cases: 0.481***, 0.353***, 0.547***
• Mortality: 0.478***, 0.404 ***, 0.569 ***
São Paulo (Brazil) PM2.5, PM10, NO2

• New Cases: 0.350***, 0.354***, 0.506***
• Total Cases: 0.261, 0.277, 0.337***
• Mortality: 0.203, 0.228*, 0.354***
Buenos Aires (Argentina). PM10, NO2

• New Cases: 0.414, 0.274
• Total Cases: 0.434***, 0.195
• Mortality: 0.157, 0.056

*COVID-19 infection
rate correlation, in
particular for the Gini
index of each country
(r = 0.51,p < 0.13), the
urban poverty rate
(r = − 077,p = 0.01)
and the urban
extreme poverty rate
(r = 0.79, p = 0.01).
*Income inequality
and poverty levels in
the cities analysed
related to the spread
of COVID-19 positive
and negative,
respectively.

Borro M
et al. [13],
August 2020

* PM2.5 and COVID-19
outcomes from 20
February-31 March
2020 in 110 Italian
provinces
*Bioinformatic analysis
of the DNA sequence
encoding the SARS-
CoV-2 cell receptor
ACE-2

Incidence,
CFR, Mortality

*PM2.5 levels and COVID-19
• Incidence: r = 0.67, p < 0.0001)
• Mortality rate: r = 0.65, p < 0.0001
• CFR: r = 0.7, p < 0.0001)
*Bioinformatic analysis of the ACE-2 gene identified nine putative con-
sensus motifs for the aryl hydrocarbon receptor.

*Confirm the
supposed link
between air pollution
and the rate and
outcome of SARS-
CoV-2 infection
*Support the
hypothesis that
pollution-induced
over-expression of
ACE-2 on human air-
ways may favor SARS-
CoV 2 infectivity

Raciti L et al.
[53], Jun
2020

To assess the
relationship between
volcanic ash pollution
and COVID-19 in Si-
cily, Italy

Incidence Volcanic gases and heavy metals-related air pollution, combined to
specific climatic conditions and regional topography, in favouring se-
vere COVID-19 diffusion in Sicily

Clinical and
epidemiological
studies are needed to
support the
hypothesis

Jiang Y et al.
[64], 2020
August

Retrospective study of
ambient air pollutant
concentrations (daily
average), and
meteorological
variables data of

Death
Number

*Pollutants-COVID-19 Deaths (RR, 95%CI, p-value):
• PM2.5: 1.079, 1.071–1.086, < 0.01
• PM10: 0.952, 0.945–0.959, < 0.01
• SO2: 0.951, 0.919–0.984, < 0.01
• CO: 0.177, 0.131–0.24, < 0.01
• NO2: 1.002, 0.996–1.007, 0.55

PM2.5 and diurnal
temperature range
are tightly associated
with increased COVID-
19 deaths.
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Fig. 4 displays the related quality of evidence. Overall,
short-term exposure to PM2.5 has been significantly as-
sociated with all COVID-19-death related outcomes. For
instance, a 10 μg/m3 increase in PM2.5 was associated
with a 0.24% (0.01–0.48%) increase in case fatality rate
(CFR) in 49 Chinese cities [52], and an incidence rate ra-
tio (IRR) of 1.079 (95%CI: 1.071–1.086) for total deaths
in Wuhan (China) [64]. However, a study in New York
(USA) [60] failed to demonstrate a significant association
between short-term exposure to PM2.5 and increased
risk of death (PM2.5_lag0–21: IRR: 0.8912, 95%CI:
(0.7966–0.9971) and suggested to adjust for other risk
factors. Two studies reporting associations of short-term
exposure to PM2.5 and CFR were at high overall risk of
bias and reported positive associations of differing preci-
sion, leading to an uncertain positive association. The
evidence for the association of short-term PM2.5 expos-
ure with mortality was contradictory, with three studies
at high overall risk of bias showing associations in a
negative direction, while five studies at high overall risk
of bias and one study at unclear overall risk of bias indi-
cated positive associations of varying precision. In sum,
there is a potential positive association between short-
term PM2.5 exposure and mortality, but the evidence is
uncertain.
Acute exposure to PM10 has been associated with

COVID-19 CFR in 120 cities in China [59] [CFR: 0.26%
(0.00–0.51%) for 10 μg/m3 increase in PM10] and signifi-
cantly correlated with mortality in Sicily (Italy) [62],
Mexico City (Mexico), Santiago (Chili), with borderline
correlation in Sao Paulo (Brazil) and no association in
Bogota (Colombia) and Buenos Aires (Argentina) [63].
The association of short-term PM10 exposure and CFR

is uncertain, with a single study at high overall risk of
bias providing an unclear positive association. The over-
all association of short-term PM10 with mortality is very
uncertain. All studies were at high overall risk of bias
and provided conflicting evidence for the direction of as-
sociation, with two studies indicating precise negative
associations in contrast to one study providing a precise
positive association and four studies showing imprecise,
potentially positive associations.
Significant positive correlations between acute expos-

ure to NO2 and COVID-19 related-deaths were reported
in India [61], Santiago and Sao Paulo [63] while signifi-
cant negative correlations were observed in an Italian re-
gion (Lombardy and Milan) [58], California [62] and
Mexico [63]. However, a lack of significant correlations
was observed in San Juan, Bogota, Buenos Aires [63] and
in Wuhan [64]: RR (95%CI): 1.002, 0.996–1.007. The
overall effect of short-term NO2 on CFR is very uncer-
tain. Both studies were at high overall risk of bias and
provided conflicting evidence for the direction of associ-
ation. The evidence for the association of short-term
NO2 exposure with mortality was contradictory, with
three studies showing imprecise associations in a nega-
tive direction, while five studies indicated imprecise as-
sociations in a positive direction; a sixth study provided
a precise positive association. All studies were at high
overall risk of bias, and, hence, the evidence is very un-
certain. A moderate but nonsignificant correlation was
observed between short-term exposure to O3 and
COVID-19 related deaths in Italy [58]. However, while a
protective effect was reported in New York (O3: IRR:
1.1051 (1.0747–1.1363) [60], a null association was seen
in Wuhan for very short term exposure (IRR (95%CI):

Table 1 Association between short-term exposure to air pollution and risk, severity, incidence, and lethality for COVID-19 Pandemic
(Continued)

Study ID Study Description Outcomes Main findings Conclusion

Wuhan, Jan 25 and
April 7, 2020 in
relation to COVID-19

• O3_8h: 1.001, 0.998–1.003, 0.56

Filippini T
et al. [55],
October
2020

Collection of NO2

tropospheric levels
using satellite data
available at the
European Space
Agency before the
lockdown in
association with
COVID-19 at different
time (March 8, 22 and
April 5), in the 28
provinces of Lom-
bardy, Veneto and
Emilia-Romagna
(Italy).

Prevalence
rate

*Little association of NO2 levels with COVID-19 prevalence up to about
130 μmol/m2
*Positive association, evident at higher levels at each time point.

Notwithstanding the
limitations of the use
of aggregated data,
these findings lend
some support to the
hypothesis that high
levels of air pollution
may favour the
spread of the SARS-
CoV-2 infection.

Abbreviations: PM2.5 and 10 Particulate matter of diameter ≤ 2.5 and ≤ 10 μm respectively, O3 Ozone, CO Carbon monoxide, SO2 Sulfur dioxide, NO2 Nitrogen
dioxide, Pb Lead, CH4 Methane. ICU Intensive care unit, CFR Case fatality rate, AQI Air quality index, VOC Volatile organic compounds, IQR Interquartile range, ACE-2
Angiotensin-Converting Enzyme 2, IRR Incidence rate ration. US EPA United States Environmental Protection Agency
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1.001, 0.998–1.003) [64]. The association of short-term
O3 exposure with CFR is uncertain and based on a single
study, also at high overall risk of bias, providing unclear
results of a potentially positive association. The associ-
ation of short-term O3 exposure with mortality was very
uncertain, for the same reasons.

Effects of short-term air pollution on COVID-19
susceptibility
In most cases, short-term exposure to PM2.5 has been
associated with COVID-19 incidence. Zhu [59] reported
that a 10-μg/m3 increase (lag0–14) was associated with a
2.24% (95% CI: 1.02 to 3.46) increase in the daily counts
of confirmed cases in 120 Chinese cities. Similar patterns
were observed in Italian regions [13, 14], California
(USA) [62] and in Latin American cities (Mexico,
Santiago, Bogota, and Sao-Paulo) [63]. However, no such
direction was observed in the city of New-York [lag 0–
21-New COVID-19 Cases: IRR: 0.6684 (0.6478–0.6896)]
[60]. In Italy, a significant relationship was demonstrated
between exposure to short-term increases in PM2.5 and
COVID-19 severity (hospitalization: r = 0.62; intensive
care unit admission: r = 0.65) [14]. Most of the evidence,
from studies at high overall risk of bias, indicates that
short-term PM2.5 exposure is potentially positively asso-
ciated with the total number of cases. One study at un-
clear overall risk of bias provides evidence of a precise
positive association between PM2.5 and the outcome, but
one study from Mexico City [63] provides conflicting
evidence of an imprecise negative association. The over-
all effect, therefore, is an uncertain positive association.
The evidence of the association of short-term PM2.5 ex-
posure with COVID-19 incidence was contradictory,
with four studies showing associations in a negative dir-
ection and six studies indicating associations in a posi-
tive direction. All studies were at high overall risk of
bias, and the evidence is very uncertain. The association
of short-term PM2.5 exposure with hospital admissions
is positive and of moderate certainty, based on a single
study at unclear overall risk of bias [14]. A single study
at unclear overall risk of bias [14] reported on the asso-
ciation of short-term PM2.5 exposure and ICU admis-
sions, providing a positive association of moderate
certainty.
There was a huge disparity in correlation between

acute exposure to PM10 and COVID-19 incidence. For
example, a significant correlation was observed in the
USA [62] but not in Italy [30]; in Mexico, Santiago and
Sao-Paulo but not in Bogota [63] and not across Chinese
cities [59]. All the evidence indicates that short-term
PM10 exposure is potentially positively associated with
the total number of cases, but all included studies pro-
vided unclear effects. The association of short-term
PM10 with total cases is positive but uncertain. The

Fig. 4 Harvest plots displaying level of evidence between short-term
exposure to air pollution and risk, severity, incidence, and lethality
for COVID-19 Pandemic
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evidence regarding short-term PM10 exposure and
COVID-19 incidence was also contradictory, but most
studies indicated an association in the positive direction.
All studies were at high overall risk of bias, and most
studies reported unclear associations; the resultant over-
all association is considered to be positive, but
uncertain.
For every 10-μg/m3 increase (lag0–14) in NO2 concen-

tration, the daily counts of confirmed COVID-19 cases
also increased by 6.94% (95% CI: 2.38 to 11.51) across
120 Chinese cities [59]. Moreover, similar observations
were described in studies focused on Wuhan and Xiao-
Gan (China) [57], in San Juan and in Sao Paulo [63].
However, negative correlations were observed in Italy
(Lombardy and Milan) [58], California [62] and in
Mexico (for total cases) while no such correlations were
reported in Mexico (New cases), Bogota and Buenos
Aires [63]. Furthermore, little association of NO2 levels
with COVID-19 prevalence was described across 28
provinces in Italy [55]. The overall association of short-
term NO2 with total cases is very uncertain. All studies
were at high overall risk of bias and provided conflicting
evidence for the direction of association. Short-term
NO2 exposure and the incidence of COVID-19 were
considered to be positively associated, but uncertainly
so. Most of the included studies showed associations in
a positive direction, but all studies were at high overall
risk of bias and most of them reported imprecise associ-
ations. A single study at low overall risk of bias [55] re-
ported an imprecise positive association of short-term
NO2 exposure with prevalence, providing a positive as-
sociation of moderate certainty.
Unlike for mortality, a 10-μg/m3 increase (lag0–14) of

O3 was associated with a 4.76% (95% CI: 1.99 to 7.52) in-
crease in the daily counts of confirmed COVID-19 cases
across 120 Chinese cities [59] and it correlated moder-
ately with both daily new and total numbers of positive
COVID-19 in Italy (Milan and Lombardy) [58]. A single
study at high overall risk of bias indicated that short-
term O3 exposure is positively associated with total
cases, indicating moderate certainty of a positive associ-
ation. Similarly, the association of short-term O3 expos-
ure and incidence was reported by three studies, all at
high overall risk of bias and all indicating positive associ-
ations. Two of these provided precise data, the
remaining study indicated a potentially positive associ-
ation. Given the study quality and varying precision of
individual associations, this is also considered to be an
uncertain positive association.

Effects of long-term air pollution on COVID-19 related-
deaths
Table 2 displays the associations between long-term ex-
posure to various pollutants and COVID-19 outcomes

and Fig. 5 shows the related quality of evidence. Overall,
an independent association has been described between
long-term exposure to PM2.5 and COVID-19 related
deaths. In Asia, estimates were reported from 49 Chin-
ese cities where every 10 μg/m3 increase in PM2.5 con-
centrations was associated with 0.61% (0.09–1.12%)
increase in CFR [52] and from nine Asian cities where
long-term exposure to PM2.5 was reportedly associated
with almost half of COVID-19 related-deaths [72]. In
Europe, a nationwide study from England indicated
every 1 μg/m3 increase in PM2.5 to be associated with
COVID-19 mortality rate by 4.4% (3.7–5.1%), reduced to
and 1.4% (− 2.1–5.1%) when adjusting for spatial auto-
correlation and confounders [67]. Data from Northern
Italy indicated every 1 μg/m3 increase in PM2.5 to be in-
dependently associated with 9% (95% CI: 6–12%) in-
crease in excess mortality for COVID-19 [70]. In
America, estimates from a cross-sectional nationwide in
the USA using county-level data showed that every 1 μg/
m3 increase in PM2.5 level was associated with an 11%
(95% CI: 6, 17%) increase in COVID-19 death rate [69].
Similarly, a second cross-sectional nationwide in the
USA using zero-inflated negative binomial models (ad-
justed for co-pollutants) showed that every 2.6 μg/m3 in-
crease in PM2.5 concentration was marginally associated
with 14.9% (95%CI: 0.0 to 31.9%) increase in mortality
rate [68]. Besides, comparing predictors of COVID-19
cases and deaths between disproportionally Latino coun-
ties (> 17.8% Latino population) and all other counties in
the USA, exposure to PM2.5 (third vs first quartile) was
significantly associated with COVID-19 related-deaths
(RR: 1.230; 95%CI 1.028, 1.471) [74]. Lastly, in Latin
America, data from 24 districts in Lima (Peru) showed
an independent association between PM2.5 and COVID-
19 deaths per population density but not for CFR [56].
The association of long-term exposure to PM2.5 with
CFR is very uncertain: two studies of better methodo-
logical quality [56, 68] indicated an unclear negative as-
sociation; while two studies at high overall risk of bias
[52, 72] indicated positive associations of varying preci-
sion. The association of long-term PM2.5 exposure with
mortality shows high certainty of being positive. Overall,
all studies contributing data were at low or unclear over-
all risk of bias, with two indicating imprecise positive as-
sociations and six showing precise positive associations.
For every 10 μg/m3 increase in PM10 concentrations,

COVID-19 CFR increased by 0.33% (0.03–0.64%) [52]
across 49 Chinese cities. Similarly, 24% of mortality
among reported COVID-19 cases across nine cities in
Asia were associated with exposure to PM10 but this was
not statistically significant [72]. Two studies reporting
associations of long-term exposure to PM10 and CFR
were at high overall risk of bias and reported potentially
positive associations, leading to an uncertain positive
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Table 2 Association between long-term exposure to air pollution and risk, severity, incidence, and lethality for COVID-19 Pandemic
Study ID Study Description Outcomes Main findings Conclusion

Yao Y et al. [52],
June 2020

*Associations between PM and CFR of COVID-19
*49 Chinese cities, spatial analysis

CFR Pollutants (10 μg/m3 increase
in and concentrations)- COVID-
19 CFR increased by:
*Long-term (2015–2019):
• PM2.5: 0.61% (0.09–1.12%) and
• PM10: 0.33% (0.03–0.64%)
respectively.

PM pollution distribution and its association
with COVID-19 CFR suggests that exposure to
such may affect COVID-19 prognosis.

Hendryx M et al.
[65], October
2020

Pollution data (PM2.5, DPM, O3) from the US
Environmental Protection Agency Environmental
Justice Screen, May 31, 2020 with 2014–2019

Cumulative
prevalence
and fatality
rates

Estimate (SE), p-value.
(Note: PM2.5 is one pollutant
model.
others, all indictors considered
simultaneously)
*Pollutants/ sources and
COVID-19 Prevalence
• PM2.5: 23.5, p = .02
• O3: 2.36 (3.29) p = .47
• Diesel PM: 237 (55.8) p = .001
• PM2.5minus DPM: 8.96 (10.8)
p = .40

• Traffic: − 0.20 (.06) p = .02
• NPL sites: − 5.59 (113) p = .96
• TSDFs: − 1.75 (4.95) p = .72
• RMP sites: 56.7 (22.6) p = .01
*Pollutants/ sources and
COVID-19 Death
• PM2.5: 1.08 (.54) p = .05
• Ozone: 0.10 (.17) p = .54
• Diesel PM: 18.7 (2.80) p = .001
• PM2.5 minus DPM: 0.20 (.56)
p = .72

• Traffic − 0.01 (.003) p = .001
• NPL sites: 3.76 (5.65) p = .51
• TSDFs: 0.52 (.25) p = .04
• RMP sites: − 0.83 (1.14) p = .47

Areas with worse prior air quality, especially
higherconcentrations of diesel exhaust, may be
at greater COVID-19 risk, although further studies
are needed to confirm these relationships.

Fattorini D et al.
[66], September
2020

Data on COVID-19 outbreak in Italian provinces and
corresponding long-term air quality evaluations
(four years), obtained from Italian and European
agencies. Updated April 27, 2020

frequency
and severity
of cases
(spread)

*Pollutants (average)-Incidence
of COVID-19
• NO2: r = 0.4969, p < 0.01,
(2016–2017)

• PM2.5: r = 0.5827, p < 0.01,
(2016–2017)

• O3: r = 0.5142, p < 0.01 (2017–
2016)

• PM10: r = 0.4127,
p < 0.05.(2017–2017)

• PM10: r = 05168, p < 0.01
(2016–2017)

*Long-term air-quality data sig-
nificantly correlated with cases
of COVID-19 in up to 71 Italian
provinces

Atmospheric and environmental pollution
should be considered as part of an integrated
approach for sustainable development, human
health protection and prevention of epidemic
spreads but in a long-term

Konstantinoudis
G et al. [67],
December 2020

Long-term exposure to NO2 and PM2.5 (2014–2018
from the Pollution Climate Mapping) on COVID-19
deaths up to June 30, 2020 in England using high
geographical resolution.

Death Pollutants (1 μg/m3 increase)-
COVID-19 Mortality rate:
*Unadjusted
• NO2: 2·6% (95%CrI: 2·4%-2·7%)
• PM2.5: 4·4% (3·7%-5·1%)
*Adjust for spatial
autocorrelation and
confounders
• NO2: 0.5% (95% credible
interval: − 0.2-1.2%)

• PM2.5: 1.4% (− 2.1–5.1%).

some evidence of an effect of long-term NO2

exposure on COVID-19 mortality, while the effect
of PM2.5 remains more uncertain

Liang D et al.
[68], October
2020

Cross-sectional nationwide study using zero-
inflated negative binomial models to estimate the
association between long-term (2010–2016)
county-level exposures to NO2, PM2.5 and O3 and
county-level COVID-19 in the US.

CFR,
Mortality

*Single Pollutant Model
(estimate, 95%CI, p-value)
COVID-19 CFR vs Mortality
• NO2: 1.12, (1.05–1.18), 0.0003
vs 1.17, (1.10 to 1.25),
< 0.0001

• PM2.5: 1.09, (0.96 to 1.23), 0.19
vs 1.19, (1.04 to 1.37), 0.012

• O3: 0.99, (0.93 to 1.06), 0.74 vs
1.00, (0.93 to 1.08), 0.95

*3- Pollutant Model (estimate,
95%CI, p-value)
COVID-19 CFR vs Mortality

*Long-term exposure to NO2, which largely
arises from urban combustion sources such as
traffic, may enhance susceptibility to severe
COVID-19 outcomes, independent of long-term
PM2.5 and O3 exposure.
*The results support targeted public health
actions to protect residents from COVID-19 in
heavily polluted regions with historically high
NO2 levels.
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Table 2 Association between long-term exposure to air pollution and risk, severity, incidence, and lethality for COVID-19 Pandemic
(Continued)
Study ID Study Description Outcomes Main findings Conclusion

• NO2: 1.11, (1.05 to 1.18),
0.0005 vs 1.16, (1.09 to 1.24),
< 0.0001

• PM2.5: 1.06, (0.93 to 1.20), 0.39
vs 1.15, (1.00 to 1.32), 0.051

• O3: 0.98, (0.91 to 1.04), 0.48 vs
0.98, (0.91 to 1.05), 0.55

*Per IQR increase-COVID-19
CFR vs Mortality
• NO2 (4.6 ppb): increase of
11.3% (95% CI 4.9 to 18.2%)
vs 16.2% (95% CI

8.7 to 24.0%)
• PM2.5 (2.6 μg/m

3) marginally
associated with 14.9% (95%
CI 0.0 to 31.9%)increase
mortality rate.

Wu X et al. [69],
November 2020

A nationwide, cross-sectional study using county-
level data for long-term average exposure to PM2.5

and risk of COVID-19 death in the US (≥ 3000 coun-
ties, representing 98% of the population) up to
April 22, 2020 from Johns Hopkins University

Mortality PM2.5-COVID-19 Mortality:
• MRR: 1.11 (1.06, 1.17)
• 1 μg/m3 associated with an
11% (95% CI: 6, 17%) increase
in death rate

*A small increase in long-term exposure to
PM2.5leads to a large increase in the COVID-19
death rate. *Despite the ecological study design,
importance of continuing to enforce existing air
pollution regulations to protect human health
both during and after the COVID-19 crisis.

Vasquez-
Apestegui et al.
[56], July 2020

Levels of PM2.5 exposure in the previous years
(2010–2016) in 24 districts of Lima with the cases,
deaths, and case-fatality rates of COVID-19.

Incidence,
CFR and
mortality

* PM2.5 (estimate, 95%CI) and
COVID-19:
• Case/population density:
0.070**, (0.034–0.107)

• Death/ population density:
0.0014*, (0.0006–0.0023)

• CFR: − 0.022, (− 0.067–0.023)
Note: p < 0.05; **p < 0.01.

The higher rates of COVID-19 in Metropolitan
Lima is attributable, among others, to the in-
creased PM2.5 exposure in the previous years

Coker ES et al.
[70], August
2020

Ecologic association between long-term concentra-
tions of area-level of PM2.5 (2015–2019) and excess
deaths in the first quarter of 2020 in municipalities
of Northern Italy.

Excess
mortality

* PM2.5 (estimate, SE)-COVID-19
Excess Deaths
• No geographical effects:
0.128*** (0.008)

• Regional fixed effects:
0.085*** (0.009)

• LLS random effects: 0.089***
(0.014)

• Regional fixed effects and
LLS: 0.089*** (0.014)

• 1 μg/m3 increase= > 9% (95%
CI: 6–12%)*** increase in
mortality.

Note: ***p < 0.01, **p < 0.05,
*p < 0.1

Positive association of ambient PM2.5

concentration on excess mortality in Northern
Italy related to the COVID-19 epidemic.

Cole et al. [71],
August 2020

Ecological association between long-term concen-
trations of of PM2.5 NO2, SO2 (2015–2019) and
COVID-19 in 355 municipalities in Netherlands (Na-
tional Institute for Public Health and the
Environment)

Death,
incidence
and hospital
admission

*Average 5 years (estimate,
SE)=>
COVID-19 cases:
• PM2.5: 0.11*(0.051)
• NO2: 0.027*(0.012)
• SO2: 0.11 (0.079)
COVID-19 admissions
• PM2.5: 0.15*(0.065)
• NO2: 0.015 (0.013)
• SO2: 0.055 (0.065)
COVID-19 deaths
• PM2.5: 0.23**(0.073)
• NO2: 0.035*(0.016)
• SO2: 0.18 (0.10)
Note: ***p < 0.001, **p < 0.01,
*p < 0.05
Pollutants (1 μg/m3 increase)-
COVID-19 Cases:
• PM2.5: 9.4 (95%CI: 1.1,17.7)
• NO2: 2.2 (95%CI: 0.2,4.3)
Admissions
• PM2.5: 3.0 (95%CI: 0.43, 5.6)
Deaths
• PM2.5: 2.3 (95%CI: 0.87,3.6)
• NO2: 0.35 (95%CI: 0.042,0.66)

Relationship between COVID-19 and PM2.5 per-
sists even when a wide
range of control variables are included and a
number of different estimation methods used.
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association. In the USA, a nationwide analysis showed
that per every 8.95 μg/m3 increase in NO2 level,
COVID-19 CFR and mortality increased by 11.3% (95%
CI 4.9 to 18.2%) and 16.2% (95% CI 8.7 to 24.0%), re-
spectively [68]. Similarly, an analysis considering spatio-
temporal variation in NO2 concentrations in 12 highly
populated cities in Ecuador also indicated a strong posi-
tive and significant correlation between NO2 and deaths
(r = 0.91) [73]. In contrast, in England, every 1 μg/m3 in-
crease in NO2 was associated with a nonsignificant
change of only 0.5% (95% credible interval: − 0.2-1.2%)
in COVID-19 mortality rate after adjusting for spatial
autocorrelation and other confounders [67]. Long-term
exposure to NO2 was positively associated with CFR in
one study at low overall risk of bias [68], resulting in
high certainty of a positive association of this exposure
on CFR. Long-term exposure to NO2 was also positively
associated with mortality, with a high degree of cer-
tainty. Three studies all indicate precise positive associa-
tions. Two of these studies were at low, and one study at
high, overall risk of bias. Overall, studies failed to link
chronic exposure to O3 with COVID-19 prevalence [65]
or COVID-19 deaths in both studies conducted in the
USA [65, 68] . However, a study across 71 Italian

provinces did find a moderate positive and significant
correlation between long-term exposure to O3 and
COVID-19 incidence (r = 0.5142) [66]. The same study
reported a potentially negative association of long-term
O3 exposure on CFR, leading to moderate certainty of a
potential negative association for this exposure and out-
come. The overall association of long-term O3 exposure
on mortality is very uncertain. Both studies contributing
data were at low overall risk of bias and provided con-
flicting evidence for the direction of association.

Effects of long-term air pollution on COVID-19 susceptibility
A significant correlation between PM2.5 and COVID-19
incidence was observed in Italy [66], in Lima [56] and in
the Netherlands [71] but not in the US when comparing
Latino vs non-Latino counties (cases: RR 1.028; 95%CI
0.918, 1.151)) [74]. However, a significant correlations
between PM2.5, diesel PM, traffic and COVID-19 preva-
lence were observed in the USA [65]. Long-term expos-
ure to PM2.5 was shown by four studies to have positive
associations, of varying precision, with incidence of in-
fection. One study at low overall risk of bias [74] showed
an unclear potentially positive effect, while three studies
at high, unclear and low overall risk of bias [56, 66, 71]

Table 2 Association between long-term exposure to air pollution and risk, severity, incidence, and lethality for COVID-19 Pandemic
(Continued)
Study ID Study Description Outcomes Main findings Conclusion

Gupta A et al.
[72], July 2020

Data related to 9 Asian cities analysed to assess the
link between mortality rate in the infected cases
and the air pollution (WHO databases 2007–2016)

Mortality Percentage of mortality per
reported COVID-19 cases
• Log10 (PM2.5): coef, SE, p:
5.747, 2.169, 0.033

• Log10 (PM10): coef, SE, p:
3.226, 1.811, 0.118

Percentage mortality per
reported COVID-19 cases
• PM2.5 (R

2 = 50.1% and R2

Adj = 42.9%)
• PM10 (R

2 = 31.2% and R2

Adj = 24.1%).

Positive correlation indicating air pollution to be
an elemental andconcealed factor in
aggravating the global burden of deaths related
to COVID-19

Pacheco H et al.
[73], July 2020

Spatio-temporal variations in NO2 concentrations in
12 highly populated cities in Ecuador by
comparing NO2 tropospheric concentrations before
(March 2019) and after (March 2020) the COVID-19
lockdown.

Incidence,
Mortality

NO2-COVID-19:
• Cases: r = 0.88; p < 0.001
• Deaths: r = 0.91; p < 0.001
• Death per Capita: r = 0.84;
p < 0.01

*Reduction in NO2 of up to 22–23% in the most
highly populated cities in Ecuador (Quito and
Guayaquil) after the lockdown caused by the
outbreak of COVID-19.
*Crucial role played by air quality as regards
human health.

Saha J et al. [54],
July 2020

Data from the 4th round of the National Family
Health Survey 2015–16, and from the Ministry of
Health and Family Welfare on 18th May 2020 to
assess link between pre-existing morbidity condi-
tions and IAP and COVID-19 among under-five chil-
dren in India

Risk factor
current
fatality and
recovery rate

Mean (SD) composite risk score
of different indicators of indoor
domestic smoky environment
with COVID-19:
• CFR: 2.5 (2.5)
• Non-Recovery Rate: 47.5 (18.6)

From a research viewpoint, there is a
prerequisite need for epidemiological studies to
investigate the connection between indoor air
pollution and pre-existing morbidity which are
associated with COVID-19.

Rodriguez-Diaz
CE et al. [74],
July 2020

Comparison of predictors of COVID-19 cases and
deaths between disproportionally Latino counties
(> 17.8% Latino population) and all other counties
through May 11, 2020.

Incidence,
Death.

* PM2.5-COVID-19 Rate ratios
(third vs. first quartile):
• Cases: RR(95%CI): 1.028 (0.918,
1.151)

• Deaths: RR(95%CI): 1.230
(1.028, 1.471)

Structural factors place Latino populations and
particularly monolingual Spanish speakers at
elevated risk for COVID-19 acquisition.

Abbreviations: PM2.5 and 10 Particulate matter of diameter ≤ 2.5 and ≤ 10 μm respectively, O3 Ozone, CO Carbon monoxide, SO2 Sulfur dioxide, NO2 Nitrogen
dioxide, Pb lead, CH4 Methane. ICU Intensive care unit, CFR Case fatality rate, AQI Air quality index, VOC Volatile organic compounds, IQR Interquartile range, ACE-2
Angiotensin-Converting Enzyme 2, IRR Incidence rate ration. US EPA United States Environmental Protection Agency. CI Confidence Interval, IAP Indoor air
pollution, VS Versus, Log10 Logarithm to base 10, RR Rate ratio, ppb Part per billion (ppb), r coefficient of correlation, Adj Adjusted, MRR Mortality rate ratio. DPM
Diesel particulate matter, NPL National Priority List, TSDFS Treatment, Storage or Disposal Facilities, RMP Risk Management Plan. SD Standard deviation, SE
Standard error, US United States, μg/m3 Microgram per cubic meter
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showed precise positive effects. This information pro-
vides moderately certain evidence of a positive associ-
ation of PM2.5 exposure with incidence of COVID-19
over the long term. Exposure to PM2.5 showed a strong
positive association with COVID-19 hospitalization from
a single study at low overall risk of bias conducted in the
Netherlands [71].
Across 71 Italian provinces, chronic exposure to PM10

significantly and moderately correlated with COVID-19
incidence [66]. A single study at high overall risk of bias
indicated that long-term PM10 exposure is positively as-
sociated with incidence, indicating moderate certainty of
a positive association. In addition, in Italy, Ecuador and
the Netherlands, positive and moderate significant corre-
lations were described between exposure to NO2 and in-
cidence for COVID-19 [66, 71, 73]. Long-term exposure
to NO2 was associated with an increase in the incidence
of COVID-19, a finding of moderate certainty from two
studies at high overall risk of bias and one study at low
overall risk of bias. An uncertain positive association be-
tween NO2 exposure and hospitalization due to COVID-
19 was observed from a single study at low overall risk
of bias [71] . A single study at high overall risk of bias
also indicated that long-term O3 exposure was positively
associated with incidence, indicating moderate certainty
of a positive association. The association of long-term
O3 exposure and prevalence was positive and of moder-
ate certainty, based on a single study at low overall risk
of bias [65] suggesting an imprecise positive relationship.
Finally, a single study at low overall risk of bias [71] indi-
cated moderate certainty of positive associations be-
tween SO2 exposure and incidence, hospitalization and
mortality.

Discussion
This systematic review of the effects of short-and long-
term exposure to air pollution in relation to the epi-
demiology and outcomes of COVID-19 included 25 pri-
mary studies. Overall, findings show that exposures to
air pollutants, such as PM2.5, NO2 and to some extent
PM10, O3, SO2, and CO, may have aggravated the health
consequences of the COVID-19 pandemic. These find-
ings provide a valuable additional reason in the plea for
implementing or improving environmental policies, such
as limiting emissions, to reduce the adverse effects of
pollutants [62].
Firstly, in relation to short-term exposures, the as-

sociation existing between particulate matter and
COVID-19 CFR indicates that short-term increases,
which are largely dependent on temporal changes in
emissions and meteorology, can have an adverse effect
on the prognosis of COVID-19 [52]. .The largest
number of cases of COVID-19 was recorded in the
most polluted regions, with patients presenting with

more serious manifestations of disease needing ICU
admissions. Mortality in these regions was twice as
high as in the other regions. However, it was also
found that although towns in Piedmont (Italy) had
had the most severe PM10 emissions compared to
Brescia and Bergamo in Lombardy (Italy), they had
suffered fewer cases of infections [30]. Only a small
correlation of NO2 levels was found in relation with
SARS-CoV-2 prevalence, although at each time point
a beneficial relation was apparent at higher amounts.
Acute exposures to O3 may affect the transmission
and initiation of COVID-19, but aggravation and
mortality depend on other factors [60].
Secondly, considering long-term exposures, variations

of which are essentially determined by spatial factors,
findings showed a positive correlation of atmospheric
PM2.5 concentration with COVID-19 excess mortality in
Northern Italy [70]. Similarly, the incidence and severity
of COVID-19 within Metropolitan Lima were associated,
among other factors, to the degree of exposure of PM2.5

in previous years [56]. In the USA, one nationwide
cross-sectional study concluded that a slight rise in
chronic exposure to PM2.5 contributed to a significant
increase in the mortality rate of COVID-19 [69] while
another one reported only a marginal effect of PM2.5 in
relation to COVID-19 susceptibility but not to mortality.
The latter study, however, attributed much importance
to the possible effects of long-term exposure to NO2

(primarily due to urban combustion sources such as traf-
fic) on both mortality and susceptibility to severe
COVID-19 regardless of long-term exposure to PM2.5

and O3 [68]. Similarly, a nationwide study in England,
highlighted some evidence linking long-term exposure
to NO2 to COVID-19 mortality while the effect of PM2.5

remained unclear [67]. Equally, a study from Lima re-
ported a strong relationship between level of NO2 and
confirmed cases/deaths caused by COVID-19 [73].
Thirdly, in China, PM2.5 and diurnal temperature

closely correlated with COVID-19 deaths [64]. During
photochemical pollution episodes, air pollutants (O3,
PM10, and NO2) result from a combination of meteoro-
logical effects and chemical reactions. Air temperature
influences the movement of air and thus the movement
of air emissions. Considering that the atmosphere is the
medium in which air pollutants are transported away
from the source and that meteorological variables such
as temperature and air pollutants vary daily, it is neces-
sary to consider their relationship in the planetary
boundary layer as one might directly influence another,
and both are known to be associated with adverse health
effects [75–78].
Correspondingly, across Latin American cities [63],

humidity, wind speed and rainfall were also associated
with COVID-19 outcomes. Further, in these cities, wage

Katoto et al. Environmental Health           (2021) 20:41 Page 16 of 21



Fig. 5 Harvest plots displaying level of evidence between long-term exposure to air pollution and risk, severity, incidence, and lethality for
COVID-19 Pandemic
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disparities (Gini index) and poverty levels were also
linked to the spatial distribution of COVID-19. In the
USA, ethnicity, areas with bad previous air quality,
particularly higher levels of diesel exhaust, could be
at higher risk for COVID-19 [65]. Based on a statis-
tical analysis of the annual burning of fossil fuels in
transport and the annual average concentrations of
atmospheric, PM2.5, PM10, NO2 in the various states
of India showed that homeless persons, vulnerable
people, hawkers, roadside sellers, and others who are
frequently subjected to vehicle emissions were at in-
creased risk in the COVID-19 pandemic [61]. Caution
should be exercised regarding O3 exposure in relation
to COVID-19 pandemic, because most observations
were done during the cold season (winter-early
spring), when O3 levels are typically much lower than
in summer [58].
Finally, the effect of lockdown regulation has shown a

substantial reduction on air pollution [31]. This positive
and indirect association between COVID-19 pandemic
and air quality has echoed the need for cleaning air to
protect human health both during and after the COVID-
19 crisis [69, 79, 80].
These findings, however, need to be considered within

the context of the methodological limitations of the
studies that contributed data to this rapid review of the
evidence. These methodological considerations are de-
scribed comprehensively in the paper by Villeneuve &
Goldberg [20], but certain key issues from our evidence
base should be highlighted: 1/aggregated data from the
majority of studies may not have included all groups to
which findings could be generalized (such as institution-
alized persons); 2/ addressing misclassification of out-
comes, especially at the onset of the pandemic, likely
biased associations with no clear direction (away from or
towards the null); 3/accounting for the timing of mea-
surements and where these occurred in relation to the
pandemic curve or local lockdowns and other public
health measures; 4/ although some studies considered
lag effects as well as relative humidity and other pollut-
ants, measuring differences in pollution levels across
space and time should be an asset; 5/ considering the
clustered nature of outcomes due to the infectious na-
ture of the disease; 6/ adjusting for history of comorbid-
ity and for COVID-19 genome mutations; and 7/
conducting Poisson or negative binomial models, which
are more appropriate for count data rather than using
models with normally distributed errors. We also ac-
knowledge that ecological studies do not produce highly
rigorous evidence and are prone to methodological fal-
lacy and spurious associations [69]. We do, however, be-
lieve that systematically synthesizing the evidence, using
our rapid adapted risk of bias tool and a conservative ap-
proach to assessing overall association and certainty,

mitigates these concerns to a large extent, since better-
conducted studies carried more weight in judging the
overall association.
The evidence base was also limited in terms of its glo-

bal generalizability, especially with regard to low-income
countries. Thus our analysis did not include any study
conducted in Africa, although evidence on adverse
health effects for ambient air pollution is mounting in
Africa [32]. The paucity of studies from low-income
countries may also be important to assess the impact of
household air pollution because biomass combustion
contributes a lot to the population’s exposure to air pol-
lution in poor countries [81]. Thus, only one study from
India examined COVID-19 outcomes in relation to
household air pollution and suggested the need of exam-
ining the association between COVID-19 and indoor air
pollution with its associated pre-existing morbidity [54].
More studies are needed to address this question since
the lockdowns, which led to improvements in outdoor
air quality by reducing traffic and and industrial pollu-
tion [31, 33], may have had opposite effects for indoor
air quality by leading to more burning of biomass fuel
for domestic energy and more people smoking in the
home [82].
In addition, we have included papers from the medR-

xiv [83–85] preprint, considered as non-peer-reviewed
“grey literature” that were published in Medline but,
where possible, we updated the information in January
2021 after the first round of peer-review [67–69].
Altogether, the limitations of our rapid systematic re-

view might affect the current evidence in either direc-
tion. While our work outlines the need for updating data
associating these two pandemics regularly to inform pol-
icy on their interplay in the global burden of diseases, it
also highlights the quality of current available evidence.
The high risk of bias observed in current studies calls
for improving future studies [20, 86] and the construct-
ive self-critique by Wu et al. [69] on the ecological de-
sign must be applauded as a useful contribution to the
field. Consequently, the next generation of studies of the
association between air pollution and COVID-19 epi-
demiology (particularly mortality related-outcomes)
should prioritize obtaining individual-level data (or
microdata) for both exposure (or using methods with a
very high temporal and spatial resolution) and COVID-
19 outcomes (or considering a control group of
negative-tested patients).

Conclusion
Although the evidence cannot be considered to be quite
solid, our systematic review supports the view that air
pollution has adversely influenced the COVID-19 related
burden. Short-term and long-term exposures to PM2.5,
and long-term exposures NO2 appear to be most
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consistently associated with COVID-19 epidemiological
and clinical data worldwide, but studies assessing the ef-
fects of acute exposures presented substantial risks of
bias. We call for future studies to focus on obtaining
individual-level data for both exposure and COVID-19
outcomes. In the meantime, our findings encourage tar-
geted global health actions integrating atmospheric and
environmental pollution mitigation plans to sustain
COVID-19 preparedness and responses.
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