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Abstract

Background: Studies of associations between industrial air emissions and rheumatic diseases, or diseases-related
serological biomarkers, are few. Moreover, previous evaluations typically studied individual (not mixed) emissions.
We investigated associations between individual and combined exposures to industrial sulfur dioxide (SO5),
nitrogen dioxide (NO,), and fine particles matter (PM, ) on anti-citrullinated protein antibodies (ACPA), a
characteristic biomarker for rheumatoid arthritis (RA).

Methods: Serum ACPA was determined for 7600 randomly selected CARTaGENE general population subjects in
Quebec, Canada. Industrial SO,, NO,, and PM, s concentrations, estimated by the California Puff (CALPUFF)
atmospheric dispersion model, were assigned based on residential postal codes at the time of sera collection.
Single-exposure logistic regressions were performed for ACPA positivity defined by 20 U/ml, 40 U/ml, and 60 U/ml
thresholds, adjusting for age, sex, French Canadian origin, smoking, and family income. Associations between
regional overall PM, s exposure and ACPA positivity were also investigated. The associations between the combined
three industrial exposures and the ACPA positivity were assessed by weighted quantile sum (WQS) regressions.

Results: Significant associations between individual industrial exposures and ACPA positivity defined by the 20 U/
ml threshold were seen with single-exposure logistic regression models, for industrial emissions of PM, s (odds ratio,
OR =1.19, 95% confidence intervals, Cl: 1.04-1.36) and SO, (OR = 1.03, 95% Cl: 1.00-1.06), without clear associations
for NO, (OR=1.01, 95% Cl: 0.86-1.17). Similar findings were seen for the 40 U/ml threshold, although at 60 U/ml,
the results were very imprecise. The WQS model demonstrated a positive relationship between combined industrial
exposures and ACPA positivity (OR =1.36, 95% Cl: 1.10-1.69 at 20 U/ml) and suggested that industrial PM,s may
have a closer association with ACPA positivity than the other exposures. Again, similar findings were seen with the
40 U/ml threshold, though 60 U/ml results were imprecise. No clear association between ACPA and regional overall
PM, 5 exposure was seen.
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Conclusions: We noted positive associations between ACPA and industrial emissions of PM,s and SO». Industrial
PM, 5 exposure may play a particularly important role in this regard.

Keywords: Anti-citrullinated protein antibodies (ACPA), Industrial air pollutants, Regional fine particles matter
(PM,5), Weighted quantile sum (WQS) regression, California puff (CALPUFF) model

Introduction

Air pollution is a major risk factor for cardiorespiratory
and chronic airway diseases [1-3]. By contrast, studies
of air pollution and rheumatic diseases and/or their
serologic biomarkers are relatively few, and conclusions
from these limited studies are inconsistent [4]. Labora-
tory studies have shown that ambient air pollutants in-
haled and deposited in the lungs can increase airway
inflammation [5, 6], triggering systemic autoimmune re-
sponses (and possibly facilitating the development of
autoimmune rheumatic disease) [7]. However, positive
associations between air pollution exposure and auto-
immune responses and/or rheumatic disease onset have
not always been observed in observational studies [8].

Rheumatoid arthritis (RA) is the most common world-
wide chronic inflammatory disease and causes great dis-
ability [9]. Anti-citrullinated protein antibodies (ACPA)
are a characteristic finding in RA, often predating clin-
ical manifestations of the disease by years [10]. We pre-
viously reported that exposure to industrial air
emissions, e.g. sulfur dioxide (SO,) and fine particles
matter (PM, ), was associated with increased probability
of ACPA positivity in a general population sample [11].
However, in that study a rough proxy of exposure (i.e.,
distance to major industrial emitters) was used and the
number of positive ACPA cases was relatively small.

As well, people are exposed to mixtures of multiple
pollutants, yet the joint effects of different air pollutants
have not been previously considered in studies of air
pollution and rheumatic autoimmune diseases and/or
serologic biomarkers. Concentrations of regional ambi-
ent air pollutants, and especially industrial air pollutants,
are usually correlated in space [12], since these pollut-
ants are often derived from the same sources (e.g. road
traffic and factories). Hence, special analytic approaches
that can effectively address collinearity should be used
for exploring the associations between inter-correlated
exposures and the outcome of interest [13].

Given the paucity of studies on individual air pollutant
exposures and rheumatic diseases, and the absence of
prior evaluations of rheumatic-related antibodies and
multi-pollutant mixtures, we expanded our previous
analyses within a population-based cohort in Quebec,
Canada [11], to investigate associations between expo-
sures to three industrial air pollutants (i.e. SO,, nitrogen

dioxide - NO,, and PM,5) and ACPA positivity. In this
new effort, we doubled the sample size, used more
accurate pollutant estimates derived from a three-
dimensional atmospheric model (California Puff, CAL-
PUFF), and evaluated multiple thresholds for defining
ACPA positivity. Moreover, a weighted quantile sum
(WQS) regression model [14] was used to detect the
joint effect of the multi-pollutant exposures on ACPA
positivity.

Methods

Study population and sera samples

Our analyses were based on the CARTaGENE cohort
(www.cartagene.qc.ca), which is composed of 43,000
general population subjects aged between 40 to 69 years
old, with residential history equal to or longer than 5
years in Quebec, Canada. CARTaGENE is part of the
Canadian Partnership for Tomorrow Project, a prospect-
ive cohort study created as a population-health research
platform for assessing the effect of genetics, behaviour,
family health history and environment (among other fac-
tors) on chronic diseases [15]. Participants in the CAR-
TaGENE cohort were randomly selected from the
provincial health insurance database and invited to par-
ticipate. At baseline, CARTaGENE data were generated
at enrolment and included a wide range of health-
related variables such as demographics, medical history,
lifestyle factors like smoking, and self-reported RA (past
diagnosed by physicians) [16], and baseline serum sam-
ples were biobanked. The original smoking variable in
the CARTaGENE baseline dataset had four categories
that were daily, past, occasional, and never smoking. We
incorporated the past smoking category into the occa-
sional smoking category because only 4.0% of subjects
were past smokers. Thus, in our analyses, individuals
reporting anything other than daily or never smoking
were categorized as occasional/past smokers.

For the current study, we selected a random sample of
7600 individuals from the first CARTaGENE recruit-
ment wave (enrolled over 2009-2010). This sample size
is twice as large as that of our previous study [11]. Bio-
banked serum samples were assessed for ACPA positiv-
ity by chemiluminescence immunoassay (CCP3.0; Inova
Diagnostics, San Diego, CA, USA) at the Mitogen Ad-
vanced Diagnostics Lab in Calgary, Alberta. ACPA
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positivity was defined initially on the basis of test results
>20U/ml [17]. In sensitivity analyses, two other
thresholds were also used, to classify all positive ACPA
outcomes as weak (20-39 U/ml), moderate (40-59 U/
ml), and strong (>60 U/ml) positive titres [18].

Air pollution exposures

CALPUFF is an advanced dispersion modeling system,
which can simulate the effects of spatiotemporally
varying meteorological conditions on transport, trans-
formation, and dissipation of air pollutants [19]. The
modeling system consists of three major components
namely CALMET (a three-dimensional meteorological
model), CALPUFF (an air quality dispersion model), and
CALPOST (a post-processing package). The CALPUFF
system is recommended by the United States Environ-
mental Protection Agency to assess long-range tracking
of air pollutants and has been extensively used to map
regional SO,, NO,, and particulate matter concentra-
tions in Canada, the United States, and other countries
[20-25]. In this study, using industrial emissions re-
ported to the National Pollutant Release Inventory [26],
industrial SO,, NO,, and PM, 5 annual average levels for
2005-2010 were modeled by the CALPUFF at the loca-
tions of Quebec’s six-digit postal codes and then were
assigned to each subject based on his/her postal code at
the time of CARTaGENE enrollment (when blood sam-
ples were taken). Please see the paper of Buteau et al.
(2020) [27] for details of using the CALPUFF modelling
system to estimate industrial SO,, NO,, and PM, 5 an-
nual average concentrations.

The annual average regional (overall but not only in-
dustrial) PM, 5 concentration estimates were retrieved
from the Atmospheric Composition Analysis Group at
Dalhousie University. The PM,s concentrations were
first estimated at the 10 km resolution using the GEOS
(Goddard Earth Observing System) chemical-transport-
model and the satellite-derived aerosol optical depth
data [28]. These coarse gridded PM, 5 products were fur-
ther resampled to the 1km spatial resolution by a geo-
graphical weighted regression model and additional
covariates, e.g. elevation, vegetation index, and distance
to urban areas [29]. Similar to the industrial SO,, NO,,
and PM, 5 exposures, the average regional (all-sector)
PM, 5 estimates for 2005—-2010 extracted from the above
raster dataset were assigned to all the participants based
on their six-digit postal codes at the time of the cohort
enrollment. Since all participants entered into the CAR-
TaGENE cohort during 2009 to 2010 and had residential
history in Quebec equal to or longer than 5 years, we
were assured that the participants have been in Quebec
from at least 2005. Thus, as in our previous study [30],
we selected the exposure time window of 2005-2010 to
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ensure that subjects’ assigned long-term air pollution ex-
posures represented their actual exposures.

Standard logistic regression models

We first used three separate single-exposure standard lo-
gistic regression models, adjusting for age, sex, ancestry,
smoking, and family income (see Table 1 for the detailed
categories of the covariates), to detect the associations
between individual industrial SO,, NO,, and PM, 5 expo-
sures and ACPA positivity (defined by the 20 U/ml
threshold). These covariates were chosen as they may be
potential effect modifiers (e.g. sex) or confounders (e.g.
age, French Canadian ancestry, family income, and
smoking) of relationships between variations in air pol-
lution and serologic positivity [11]. The single-exposure
logistic regression adjusting for the same covariates was
also conducted for regional overall PM, 5 exposure, to
examine whether the same air pollutant from different
(i.e. regional overall vs. industrial) emission sources
would produce different effects on ACPA positivity.
Next, we increased the threshold of defining ACPA posi-
tivity to 40U/ml and 60U/ml, and used the above
single-exposure logistic regression models in sensitivity
analyses. We did not use multi-exposure logistic regres-
sions to investigate the associations of combined
exposures to industrial SO,, NO,, and PM, 5, because
concentrations of the three industrial air pollutants are
closely correlated in space (see the Results section for
specific correlation coefficients). To see whether air
pollution exposures have different effects on ACPA and
RA, we also used the standard logistic regression models,
adjusting for age, sex, ancestry, smoking, and family in-
come, to detect the associations between RA and indi-
vidual industrial SO,, NO,, and PM,5 and regional
overall PM, 5 exposures.

The WQS regression models

The joint association of the three highly correlated in-
dustrial air pollutants with ACPA positivity was explored
by the WQS regression method and quantitatively
assessed by a WQS index [14]. The WQS approach
supposes that all the studied exposures have the same
direction (positive or negative) effects on the disease
outcome. Magnitudes of the individual effects of differ-
ent exposures are quantified by a set of weights. Each of
the weights is constrained to be between 0 and 1, and all
of the weights are summed to 1. The weights were
multiplied by the scored quartiles of the individual expo-
sures, and then were accumulated to obtain the WQS
index.

To calculate the weights, we first performed natural
logarithm transformations on the three exposure vari-
ables to ensure each had similar scales. Then, we divided
the sample into a training and a validation datasets using
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Table 1 Baseline characteristics of the subjects and distributions of pollutants according to antibody outcomes

ACPA outcome Positive

Negative

(< 20 units/ml)

Strong (260 units/ml)  Moderate Weak (20-39 units/ml)
(40-59 units/ml)
Number of subjects (%) 134 (1.8) 158 (2.1) 494 (6.5) 6788 (89.6)
Mean age® 55.1 (7.5) 53.8 (7.8) 546 (7.6) 540 (7.7)
(standard deviation)
Female, N (%) 76 (56.7) 88 (55.7) 247 (50.0) 3441 (50.7)
Ancestry, N (%) French Canadian 96 (71.6) 103 (65.2) 330 (66.8) 4571 (67.3)
Other 38 (28.4) 55 (34.8) 164 (33.2) 2217 (32.7)
Smokers®,N (%) Never 45 (33.6) 68 (43.0) 225 (45.5) 2710 (39.9)
Occasional 69 (51.5) 67 (42.4) 208 (42.1) 3141 (46.2)
Daily 20 (14.9) 23 (14.6) 59 (11.9) 913 (13.5)
Annual income < 25,000 13 (9.7) 19 (12.0) 44 (8.9) 631 (9.3)
level, N (%) 25,000 to 49,999 29 (216) 34 (215) 94 (19.0) 1363 (20.1)
(Canadian $) 000 0 43 : : : :
50,000 to 74,999 32 (23.9) 29 (184) 111 (22.5) 1447 (21.3)
75,000 to 149,999 38 (284) 49 (31.0) 151 (30.6) 2233 (32.9)
> 150,000 15 (11.1) 15 (9.5) 64 (13.0) 782 (11.5)

Range, mean, and
standard deviation
of exposure variables

Industrial SO, (ppb)
Industrial NO, (ppb)
Industrial PM, 5 (ug/m?)

0.16-3.01, 1.14, 0.56
0.06-2.87,0.27, 0.39
Overall PM, 5 (ug/m3)

0.64-19.57, 2.89, 2.34

5.27-14.85,11.24,306 558-14.85, 11.55,297 5.22-1485, 1144, 3.02

0.62-71.19, 291, 571
0.27-6.05, 1.25,0.73
0.05-14.09, 0.28, 1.14

061-17.14, 269, 1.94
0.26-4.06, 1.13,0.57
0.05-3.12,0.23,032

0.34-60.98, 2.56, 2.15
0.12-7.76, 1.16, 0.52
0.03-11.17,0.21, 0.36
5.13-14.85, 11.76, 290

@ Age is a continuous numeric variable in the standard logistic and Weighted Quantile Sum (WQS) regression models
® Missing data existed for the covariates smoking and income, and thus the summed number of daily, occasional, and never smokers is slightly smaller than the

total number of population subjects involved in the analysis

a split proportion of 4:6. This proportion was adopted by
the previous WQS studies [14, 31] because leaving more
subjects in the validation dataset tends to increase robust-
ness for calculating the significance of the WQS index
[14]. A total of B =100 bootstrap samples were generated
from the training dataset to estimate the unknown weight
w; (i denoting one of the industrial air pollutants) by maxi-
mizing the likelihood of the weighted index function:

g =Bo+ B (Do) wiar) + 72| (b=1,2,...100) (1)

where g(-) is a logit link function for the binary outcome
of a positive (or negative) ACPA, z denotes a vector of po-
tential confounders or effect modifiers (i.e. age, sex,
French Canadian ancestry, smoking, and family income),
B is the coefficient vector of the covariates, f3, is the inter-
cept, g represents a quartile of the logarithmically trans-
formed exposure. The term > wiq, represents the
weighted index and fB; is its regression coefficient. Let

wQs = Z?:1Wi% and thus the eq. 1 can be simplified as.

&) =By + B WQS JF/))TZ (2)

The odds ratio (OR) associated with a quartile increase
in all of the three logarithmically transformed exposures
(i.e. the WQS index) is equal to exponentiated f5;.

The specific WQS regression was implemented using
the “gWQS” package [32] in the R statistical computing
environment. Similar to the single-exposure logistic re-
gressions, the WQS regressions were conducted three
times for positive ACPA outcomes defined by the three
thresholds (i.e. 20 U/ml or higher, 40 U/ml or higher,
and 60 U/ml or higher).

RA affects less than 1% of the general population of
Quebec [33]. After splitting our sample into a training
and a validation datasets, we did not have enough RA
cases in either dataset for a reliable fitting or validation.
Thus, we did not use WQS regression to detect the rela-
tionship between combined industrial exposures and RA
in this study.

Results

In the total 7600 subjects the mean age at cohort entry
was 54.1years (standard deviation, SD =7.7 years) and
3859 (50.8%) were female. Approximately two-third
(67.3%) of the subjects were French Canadians. Over 40
% (N =3053, 40.2%) of the subjects were never smokers,
1020 (13.4%) were daily smokers, 3492 (45.9%) were oc-
casional/past smokers, and the remainder (N =26) had
missing smoking data. Only 9.3% of the population sub-
jects lived below the lowest household income level (i.e.
<25,000 Canadian dollars per vyear) while 11.5%
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belonged to the highest level for income (i.e. 2150,000
Canadian dollars per year). Detailed comparisons among
the strong, moderate, and weak ACPA positive and
negative subjects are presented in Table 1. A total of 201
subjects in our sample reported physician-diagnosed RA
when they entered the cohort, and 37 individuals had
both RA and positive ACPA. Furthermore, 24 of the 37
individuals had ACPA =60 U/ml.

The interquartile ranges of the logarithmically trans-
formed industrial SO,, NO,, and PM, 5 exposures were
1.34 ppb, 1.04ppb, and 1.58 ug/m? respectively. Pear-
son’s correlations coefficients (r) indicated that besides a
moderate correlation between industrial PM, 5 and re-
gional overall PM, 5 concentrations (r = - 0.13, p <0.001,
95% confidence intervals, CI -0.16 — - 0.11), industrial
PM, 5 levels were strongly correlated to those of indus-
trial SO, (r=0.96, p<0.001, 95% CI: 0.96-0.97) and
moderately to NO, (r=0.19, p<0.001, 95% CI: 0.17—
0.21); the concentration of SO, was also moderately cor-
related with NO, (r=0.35, p < 0.001, 95% CI: 0.33-0.37).

As presented in Table 2, clearly positive associations
between industrial SO, (OR: 1.03, 95% CI: 1.00—-1.06)
and PM, 5 (OR: 1.19, 95% CI: 1.04—1.36) exposures and
ACPA positivity were observed from the standard
single-exposure regression analyses, when the ACPA
positivity was defined by the 20 U/ml threshold. With
the threshold increased to 40 U/ml, the positive associa-
tions of industrial SO, (OR: 1.03, 95% CI: 1.00-1.07)
and PM, 5 (OR: 1.21, 95% CI: 1.02-1.42) exposures with
ACPA positivity were similar. However, when the ACPA
threshold was further increased to 60 U/ml, the point es-
timates were similar but the 95% Cls became wider due
to very low numbers of cases (industrial SO, OR: 1.03,
95% CI: 0.98—1.08 and industrial PM,s OR: 1.17, 95%
Cls: 0.92-1.48). Industrial NO, and regional overall
PM, 5 exposures were not clearly associated with ACPA
positivity, regardless of the thresholds used to define
positivity (Table 2). Positive ACPA was more common
in subjects of older age (as is expected, given that both
RA and ACPA are more common in older individuals)
[34]. Due to low power, we did not see a clear relation-
ship between RA and any air pollutant exposure (see
Table S1). A few previous studies (e.g. [35-38]) have
found that smoking increased the risk of developing
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ACPA-positive RA, but we did not find a clear relation-
ship of smoking with either ACPA positivity or RA
(Table S2).

The WQS index (i.e. the mixture of the three indus-
trial air emissions) was significantly correlated with
ACPA positivity defined by the 20 U/ml threshold. Spe-
cifically, an interquartile increase in the WQS index led
to an increase of 1.36 (95% CI: 1.10-1.69) in the odds of
ACPA positivity. With the positivity threshold increased
to 40 U/ml, the positive association between the com-
bined logarithmically transformed exposure of the three
industrial air pollutants and ACPA positivity was still ap-
parent (OR =1.43, 95% CI: 1.05-1.96). When the ACPA
positivity was defined by a higher threshold of 60 U/ml,
due to low numbers of cases, the association between
the WQS index and ACPA positivity became less clear
(OR =1.33, 95% CI: 0.85-2.10). Regardless of the thresh-
old for ACPA positivity, industrial PM, 5 was always the
most heavily weighted while the industrial NO, was the
most lightly weighted in the index (Table 3).

Discussion

Exposure to ambient air pollutants may induce pulmon-
ary oxidative stress and inflammation [39, 40] and con-
sequently trigger autoimmune responses which could
favor the development of RA and related diseases [7, 41,
42]. However, results of early epidemiologic studies have
not always supported this hypothesis. Although, Hart
et al. (2013) [43] found that exposure to NO, from road
traffic is likely to increase risk of RA incidence using a
Swedish general population cohort, positive associations
between RA incidence and exposure to NO, and PM, 5
were not observed by De Roos et al. (2014) [8] in British
Columbia, Canada. Gan et al. (2013) [9] also did not find
conclusive associations between ambient particulate
matter exposure and RA-related antibodies in first-
degree relatives of RA patients in the United States, but
a clear association between ambient NO, and RA was
found by Chang et al. (2016) [44] in Taiwan. Due in part
to low power, we did not see a clear relationship be-
tween RA and any air pollutant exposure. Linking base-
line CARTaGENE data with administrative data could
be a way to generate follow-up data, which may allow us
to obtain information on new cases of RA within

Table 2 Adjusted OR (95% Cls) from the single-pollutant logistic regression models for ACPA positivity

Exposure variable  Positivity: 260 units/ml (N positive = 134)

Positivity: 240 units/ml (N positive = 292)

Positivity: 220 units/ml (N positive = 786)

Industrial SO, 1.03 (0.98-1.08) 1.03 (1.00-1.07)* 1.03 (1.00-1.06)*
Industrial NO, 0.90 (0.63-1.28) 4 (091-141)* 1 (0.86-1.17)*
Industrial PM, 5 1.17 (0.92-148) 1(1.02-142) 9 (1.04-1.36)
Overall PM, 5 0.94 (0.89-1.01) 0.95 (0.91-1.01) 0.98 (0.95-1.01)

Adjusted ORs (95% Cl) for industrial SO, and NO, are per 1 ppb increase while they are reported per 1 ug/m? increase for regional and overall PM, 5 levels.
Variables adjusted for include age, sex, ancestry, smoking, and annual income level. *Statistically significant associations include industrial PM, 5 (where 95% Cls
exclude the null value) and industrial SO, (where 95% Cls just barely include the null value)
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Table 3 Adjusted OR (95% Cls) from the weighted quantile sum
(WQS) regressions for ACPA positivity

Threshold of ACPA positivity OR (95% Cl)

Weight

SO; NO; PMjys
136 (1.10-169) 012 000 088
143 (1.05-196) 028 0.18 054
1.33(085-2.100 022 014 064

Adjusted ORs are per increase of an interquartile range of the logarithmically
transformed industrial air pollutants. Variables adjusted for include age, sex,
ancestry, smoking, and annual income level

20 units/ml (N positive = 786)
40 units/ml (N positive = 292)
60 units/ml (N positive = 134)

CARTaGENE, to better study the relationships between
RA and air pollution exposures in the future [33].

Several previous studies using cohorts from Europe
reported that smoking could increase the risk of ACPA-
positive RA while a conclusive association between
smoking and ACPA-negative RA was not observed [36—
38]. In our study, only 4.7% of ACPA-positive subjects
reported a physician diagnosis of RA before they entered
the cohort. Thus, failure to find associations between
smoking and ACPA positivity dose not necessarily
contradict the findings from Europe [35-38] and is con-
sistent with our previous finding in Quebec [11].

In our mixed-pollutant analyses, regardless of the
threshold for ACPA positivity, industrial PM, 5 appeared
to be the most influential exposure, while exposure to
industrial NO, was the least influential. In an earlier
study using CARTaGENE data, we found that exposures
to industrial SO, and PM, 5 were associated with ACPA
positivity, but no clear associations were seen with in-
dustrial NO, and ambient PM,5 [11] In the current
study, we reinforced these findings with twice the sam-
ple size, and more accurate estimates of exposure to in-
dustrial air emission (since the prior study used simple
distance to major industrial emitters). Most importantly,
the use of the WQS model allowed us to assess the com-
bined association of all three industrial emissions and to
quantify different contributions of the individual emis-
sions on ACPA positivity, which is more representative
of how people are always exposed to multiple, correlated
air pollutants. We found similar associations between
ACPA and industrial PM, s and SO,, at both low and
medium titres, although limiting positivity to very higher
titres led to imprecise results.

Surface chemistry of industrial ambient particulate
matter is likely to be more toxic than that of regional
overall ambient particulate matter [45], which may ex-
plain why ACPA positivity was associated with industrial
PM, 5 exposure but not ambient PM, 5 exposure. Add-
itionally, we found that the industrial PM,5 concentra-
tion was negatively correlated with the regional overall
PM, 5 concentration. In other words, individuals exposed
to higher ambient PM,;5 levels are less likely to be
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exposed to high industrial PM,5 concentrations. This
might be explained by the fact that industrial emitters of
PM, 5 tend to be located away from high-traffic areas
(since motor vehicles account for the majority of ambi-
ent PM, 5 levels to which people are exposed) [46].

When studying the joint effects of multiple air pollu-
tant exposures it may be preferable to use the WQS ap-
proach rather than standard logistic regression models,
in order to avoid the problem of collinearity. However,
the WQS method has a critical restriction, in that if the
studied exposures have effects on the disease outcome
that differ in direction (i.e. positive versus negative), the
model will not converge. The Bayesian kernel machine
regression (BKMR) [47] is an alternative method to
study the combined effects of multiple correlated expo-
sures on binary disease outcomes, without this critical
restriction. However, the computing time of fitting a
BKMR model increases exponentially with an increase in
the number of subjects. By contrast, the WQS model is
much more efficient for a large sample, which prompted
us to choose the WQS and not the BKMR approach in
this study.

Participants in the CARTaGENE cohort were all aged
between 40 to 69 years old. That is a potential limitation
of this study, since younger individuals may be more
susceptible to the adverse health effects from air pollu-
tion [42]. However, people in the 40 to 69 age group are
less mobile than younger (e.g. college age) ones. This
may be beneficial in terms of reducing errors when pos-
tal codes at a single point in time are used to assign ex-
posure information like in this study (where highly
mobile populations may be subject to more misclassifi-
cation of exposure).

In this study, the average level of industrial NO, in
the population under study was very low, and vari-
ation in the industrial NO, concentration across
Quebec is small, which may be a reason why we
failed to observe a clear association between industrial
NO, exposure and ACPA positivity. Thus, additional
studies including younger populations and conducted
in higher industrial NO, regions may help reinforce
or refute the current findings. Besides air pollution
exposures, occupational dust exposures (e.g. asbestos,
silica, and carbon nanoparticles) are also likely to be
associated with ACPA positivity and RA [48, 49].
Thus, occupation may need to be added as a covari-
ate in the next studies regarding industrial air pollu-
tion exposures and ACPA. In addition, further study
of air pollution and RA onset may be informative,
particularly if more sophisticated approaches (such as
WQS regression or BKMR) are employed. Another
future direction may be to examine RA-related
manifestations, such as pulmonary disease, and air
pollution [50].
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Conclusions

Using a larger sample, more accurate exposure esti-
mates, and more detailed positivity definition than in the
past, this study reinforced our previous findings that ex-
posures to industrial sources of SO, and PM, 5 tend to
increase the probability of ACPA positivity. No clear as-
sociation between ACPA positivity and industrial NO,
or regional overall PM, 5 exposure was detected. The
use of the WQS approach allowed us to produce new
findings concerning positive associations between mix-
tures of the industrial air pollutants, and suggested that
the effects of industrial PM, 5 exposure on ACPA posi-
tivity may be more important than that of industrial SO,
exposure.
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