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Abstract

Background: Exposure to polycyclic aromatic hydrocarbons (PAHs) is related to decreased lung function. However,
whether oxidative damage is involved in this relationship remains unclear. This study was aimed to explore the potential
mediating role of oxidative DNA or lipid damage in the association between PAH exposure and lung function.

Methods: The urinary levels of monohydroxy polycyclic aromatic hydrocarbon metabolites (OH-PAHs) and lung function
parameters were measured among 3367 participants from the baseline of the Wuhan-Zhuhai cohort. Urinary 8-hydroxy-
2′-deoxyguanosine (8-OHdG) and 8-isoprostane (8-iso-PGF2α) were determined to evaluate the individuals’ oxidative DNA
and lipid damage degrees, respectively. Linear mixed models were used to investigate the associations of urinary OH-
PAHs, 8-OHdG and 8-iso-PGF2α with lung function parameters. Mediation analysis was further conducted to assess the
potential role of oxidative damage in the association between urinary OH-PAHs and lung function.

Results: Each one-percentage increase in the sum of urinary OH-PAHs, high-molecular-weight or low-molecular-weight
OH-PAHs (ƩOH-PAHs, ƩHMW OH-PAH or ƩLMW OH-PAHs, respectively) was associated with a 0.2152-, 0.2076- or 0.1985-
ml decrease in FEV1, and a 0.1891-, 0.2195- or 0.1634- ml decrease in FVC, respectively. Additionally, significantly positive
dose-response relationships of ƩOH-PAHs, ƩHMW OH-PAH and ƩLMW OH-PAHs with urinary 8-OHdG or 8-iso-PGF2α, as
well as an inverse dose-response relationship between urinary 8-OHdG and FVC, were observed (all P for trend < 0.05).
Mediation analysis indicated that urinary 8-OHdG mediated 14.22% of the association between ƩHMW OH-PAH and FVC.

Conclusion: Higher levels of oxidative DNA damage might be involved in the decreased levels of FVC caused by high-
molecular-weight PAH exposure.
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Background
Polycyclic aromatic hydrocarbons (PAHs) are a group of
widespread environmental pollutants, primarily derived
from incomplete combustion of fossil fuels and biomass
[1]. Compared with natural exposure sources, industrial
production processes, motor vehicle exhaust, cigarette
smoking and residential fuel combustion are the main
emission sources of PAHs in the human living environ-
ment [2]. In recent years, exposure to PAHs has been
demonstrated to be associated with adverse health ef-
fects on various organs [3–7], especially the respiratory
system [8, 9]. As an early indicator of respiratory dam-
age, lung function can be used to predict the long-term
morbidity and mortality of several diseases including
nonrespiratory diseases [10, 11]. Additionally, a recent
study of our research group has already discovered a sig-
nificant association between urinary monohydroxy poly-
cyclic aromatic hydrocarbons (OH-PAHs) and decreased
lung function [8]. However, the underlying mechanisms
remain incompletely understood.
Oxidative stress is an imbalance between oxidant and

antioxidant capacity due to the overproduction of oxida-
tive products [12] and is commonly considered to be in-
volved in the pathogenesis of adverse health effects
induced by PAH exposure [13, 14]. Accumulated oxida-
tive products could initiate oxidative damage by attack-
ing biological macromolecules in tissues, such as
proteins, lipids and DNA [15]. Urinary 8-hydroxy-2′-
deoxyguanosine (8-OHdG), one of the predominant
forms of oxidative DNA lesions, is widely used as a bio-
marker for oxidative DNA damage in large-sample
population studies [16, 17]. Similarly, urinary 8-
isoprostane (8-iso-PGF2α), the terminal product of cell
membrane lipidperoxidation with strong chemical stabil-
ity, could reflect oxidative damage of lipids [18, 19]. Both
epidemiology and toxicology studies have observed
elevated levels of oxidative damage along with PAH
exposure [12, 18, 20].
Although elevated levels of oxidative damage were re-

ported in various airway diseases, such as asthma [21, 22],
bronchiectasis [23], chronic obstructive pulmonary disease
(COPD) [24–26] and idiopathic pulmonary fibrosis [27,
28], the relationship between oxidative damage and lung
function alteration in healthy adults has been scarcely re-
ported. Moreover, whether oxidative damage plays a po-
tential role in lung function decline induced by PAH
exposure remains largely unknown.
Thus, it is reasonable to assume that increased oxida-

tive damage level may mediate the relationship between
PAH exposure and lung function. In the present study,
we determined urinary OH-PAHs as biomarkers for
PAH exposure, measured urinary 8-OHdG and 8-iso-
PGF2α levels as oxidative damage biomarkers and con-
ducted lung function tests in 3367 participants from the

baseline of the Wuhan-Zhuhai cohort. The associations
of PAH exposure with lung function parameters and
oxidative damage levels were assessed by using linear
mixed models and restricted cubic spline regression
models. Furthermore, mediation analysis was conducted
to explore the role of oxidative damage biomarkers in
the associations of lung function with PAH exposure.

Methods
Study population
This study was based on the Wuhan-Zhuhai (WHZH)
cohort, which was described previously [29]. Briefly,
4812 adults dwelling in Wuhan or Zhuhai for more than
5 years were recruited. Before the physical examination,
all the participants were informed to keep fasting for
more than 12 h. During the investigation, they were re-
quired to complete the physical examinations and struc-
tured questionnaires and provide early-morning urine
samples. The urine samples were collected in polypro-
pylene containers and frozen until analysis. Detailed in-
formation on the demographic characteristics and
lifestyle was obtained from questionnaires by face-to-
face interviews. It included age, gender, education level,
annual family income, ever occupational hazard expos-
ure, smoking status, smoking amounts, passive smoking
status, drinking status, cooking status, regular physical
activity, sleep duration at night, diet information (includ-
ing self-reported frequencies of food intake) and self-
reported history of diseases.
In the current study, education levels were classified

into three groups: low (middle school and below), mid-
dle (high school) and high (university or above). Annual
family income was divided into three levels: < 30,000, 30,
000–70,000 and ≥ 70,000 Yuan. Individuals who drank
once a week for at least 6 months were defined as
current drinkers and those who smoked at least one
cigarette per day for more than 6 months were defined
as current smokers. Smoking amounts (pack-years) for
smokers were further calculated as packs of cigarettes
per day multiplied by years of smoking. Passive smoking
was defined as passive exposure to tobacco smoke for
more than 1 day per week anywhere. Regular exercise
within the last 6 months was considered as active phys-
ical activity. Self-reported respiratory diseases were de-
fined as having at least one disease, including COPD,
asthma, emphysema, chronic bronchitis, pneumoconiosis
and pleurisy. Additionally, physical examinations were
conducted by trained physicians. Body mass index (BMI)
was calculated as weight (kg) divided by height (m)
squared.
Excluding participants with self-reported respiratory

diseases (N = 253) and potential occupational PAH
exposure (N = 33), or with missing data on lung function
index (N = 55), urinary OH-PAHs (N = 652), 8-OHdG
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(N = 344) and 8-iso-PGF2α (N = 56) as well as with miss-
ing data on life habits, such as sleep duration and diet
information (N = 52), 3367 participants were included in
the final analysis. The research protocol was approved
by the Ethics and Human Subjects Committee of Tongji
Medical College, Huazhong University of Science and
Technology. Likewise, everyone signed written informed
consent.

Determination of urinary OH-PAHs
Twelve urinary OH-PAHs, including 1-hydroxypyrene
(1-OHP), 6-hydroxychrysene (6-OHChr), 3-hydroxyben-
zo[a]pyrene (3-OHBaP), 1-hydroxynaphthalene (1-OHNa),
2-hydroxynaphthalene (2-OHNa), 2-hydroxyfluorene (2-
OHFlu), 9-hydroxyfluorene (9-OHFlu), 1-hydroxyphenan-
threne (1-OHPh), 2-hydroxyphenanthrene (2-OHPh), 3-
hydroxyphenanthrene (3-OHPh), 4-hydroxyphenanthrene
(4-OHPh) and 9-hydroxyphenanthrene (9-OHPh) were
determined by gas chromatography-mass spectrometry
(GC/MS; Agilent 6890N + 59758B, Agilent Technologies
Inc., Santa Clara, CA, USA) as previously reported by Li
et al. [30]. Ten percent of urine samples were measured in
duplicate for repeatability tests, and the coefficient of vari-
ation in the duplicate analysis was below 10%. Because the
concentrations of 6-OHChr and 3-OHBaP were mostly
below the limits of detection (LOD), the other 10 PAH me-
tabolites remained in the final analysis. The LOD for urin-
ary PAH metabolites ranged from 0.1 to 0.9 μg/l, and
concentrations below the LOD were replaced by half the
value of the LOD. Valid concentrations of OH-PAHs were
calibrated by the levels of urinary creatinine (creat.) and
expressed as μmol/mol creat, due to the urine dilution. For
analysis, the sum of all OH-PAHs (ƩOH-PAHs) and sum of
high- (≥4 rings, including 1-OHP) or low- (< 4 rings, in-
cluding 1-OHNa, 2-OHNa, 2-OHFlu, 9-OHFlu, 1-OHPh,
2-OHPh, 3-OHPh, 4-OHPh and 9-OHPh) molecular-
weight OH-PAHs (ƩHMW OH-PAH or ƩLMW OH-
PAHs) were used in this study.

Determination of urinary 8-OHdG
The urinary levels of 8-OHdG were measured using
high-performance liquid chromatography (HPLC) coupled
with an electrochemical detector (Waters 2645; Waters
Inc., USA). The cleanup and analysis processes were per-
formed as described previously [31]. The coefficient of
variation was less than 5% in duplicate analysis, and the
recoveries of spiked samples ranged from 75 to 120%.
Similarly, the concentrations below the LOD were re-
placed by half of the LOD. Valid concentrations of 8-
OHdG were calculated as μmol/mol creat.

Determination of urinary 8-iso-PGF2α
The urinary concentrations of 8-iso-PGF2α were deter-
mined using a commercially available ELISA kit

(Cayman, USA) following the manufacturer’s instruc-
tions (Catalog No. 516351). The LOD was approximately
2.7 pg/ml, and the levels of 8-iso-PGF2α were calibrated
by urinary creat. and expressed as nmol/mol creat.

Lung function test
Lung function parameters, including forced expiratory
volume in 1 s (FEV1), forced vital capacity (FVC) and the
ratio of FEV1 to FVC (FEV1%), were conducted by spe-
cialists using electronic spirometers (Chest graph HI-
101; CHEST Ltd., Tokyo, Japan), according to the
American Thoracic Society Recommendations, as de-
scribed elsewhere [8]. All participants were informed to
maintain normal breathing for at least 5 min in a sitting
position with a nose clip in place before the test. Mean-
while, participants were advised not to smoke for at least
1 h and keep fasting for more than 2 h before the test.
The greatest values for FEV1, FVC and FEV1% were ob-
tained from multiple repeat measurements.

Statistical analysis
The distributions of the basic characteristics were ana-
lyzed according to quartiles of urinary ƩOH-PAHs. Due
to the right-skewed distributions and nonnormality of
the residuals, the concentrations of urinary OH-PAHs,
8-OHdG and 8-iso-PGF2α were natural log-transformed
before statistical analysis. Both continuous and categor-
ical variable models were conducted to quantify the as-
sociations of urinary OH-PAHs with oxidative damage
biomarkers (8-OHdG and 8-iso-PGF2α) and lung func-
tion parameters by linear mixed models and restricted
cubic spline regression models. All models were adjusted
for age (continuous variable), gender (male/female),
height (continuous variable), weight (continuous vari-
able), smoking amounts (continuous variable), passive
smoking status (yes/no), drinking status (yes/no), educa-
tion level (categorical variable), annual family income
(categorical variable), regular physical activity (yes/no),
cooking meals at home (yes/no), sleep duration at night
(continuous variable), eating smoked food (< 1/≥1 time/
week), eating vegetables or fruits (< 1/≥1 time/day), eat-
ing aquatic products (< 1/≥1 time/day) and city (Wuhan/
Zhuhai). Stratified analyses were also conducted both in
nonsmokers and smokers to ascertain the above
associations.
Additionally, mediation analysis was performed to as-

sess the mediating role of oxidative damage biomarkers
in the associations between urinary OH-PAHs and lung
function. We used linear mixed models to explore the
associations of exposure-outcome (OH-PAHs and lung
function), exposure-mediator (OH-PAHs and oxidative
damage biomarkers) and exposure-mediator-outcome
(OH-PAHs, oxidative damage biomarkers and lung func-
tion) (Eqs (1) to (3)), respectively.
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Y ¼ α0 þ φ0 þ α1X1 þ α2X2 þ⋯
þ αOH−PAHsXOH−PAHs þ ω ð1Þ

M ¼ β0 þ ε0 þ β1X1 þ β2X2 þ⋯
þ βOH−PAHsXOH−PAHs þ μ ð2Þ

Y
0 ¼ γ0 þ δ0 þ γ1X1 þ γ2X2 þ⋯

þ γOH−PAHsXOH−PAHs þ γMM þ ρ ð3Þ

In each equation, X = independent variable (including
OH-PAHs and covariates), M =mediator (oxidative dam-
age biomarkers), and Y (or Y′) = dependent variable (lung
function parameters). αOH − PAHs presents the total effect,
γOH − PAHs presents the direct effect, and the mediated ef-
fect is calculated as the product of βOH − PAHs and γM.
We also performed a mediation test to calculate confi-

dence limits for the mediated effects of oxidative damage
using the PROCESS SPSS macro [32]. Additionally, the
proportion mediated is calculated as the ratio of the me-
diation effect to the total effect. All analyses were per-
formed using SAS version 9.4 (SAS institute, Cary, NC,
USA) and SPSS version 17.0 (SPSS Inc., Chicago, IL,
USA).

Results
The basic characteristics of the participants by quartiles of
urinary ƩOH-PAHs are shown in Table 1. In the present
study, the mean age of all 3367 participants was 52.0 years,
and one-third were males (31.0%). The participants with
higher levels of urinary ƩOH-PAHs were more likely to be
females, older and to engage in regular physical activity,
cook meals or eat smoked food and were less likely to be
smokers, drinkers and to have a higher BMI; however, the
smoking amounts of smokers were significantly elevated
with higher quartiles of urinary ƩOH-PAHs. Moreover, as
the concentrations of urinary ƩOH-PAHs increased, the
average values of FEV1 and FVC were monotonically de-
creased; whereas the levels of 8-OHdG and 8-iso-PGF2α
were significantly increased.
As displayed in Table 2, each one-percentage increase in

urinary ƩOH-PAHs, ƩHMW OH-PAH or ƩLMW OH-
PAHs generated a 0.2152-, 0.2076- or 0.1985- ml decrease
in FEV1, respectively (all P < 0.01). Only each one-
percentage increase in ƩHMW OH-PAH was found to be
significantly associated with a − 0.2159ml change in FVC.
We also found a marginal association of FVC with ƩOH-
PAHs or ƩLMW OH-PAHs. In the categorical variable
models, FEV1 was monotonically decreased with elevated
quartiles of urinary ƩOH-PAHs, ƩHMW OH-PAH or
ƩLMW OH-PAHs (all P for trend < 0.05). A similar trend
was observed for FVC with ƩHMW OH-PAH. Addition-
ally, no significant relationship was observed between
urinary OH-PAHs (including ƩOH-PAHs, ƩHMW OH-
PAH and ƩLMW OH-PAHs) and FEV1% (all P > 0.05).

Figure 1 presents the associations of urinary OH-
PAHs with 8-OHdG and 8-iso-PGF2α. We observed that
significant monotonically elevated levels of 8-OHdG or
8-iso-PGF2α, as the levels of urinary ƩOH-PAHs,
ƩHMW OH-PAH and ƩLMW OH-PAHs increased.
Additionally, a nonlinear relationship was revealed be-
tween urinary 8-iso-PGF2α and urinary ƩOH-PAHs or
ƩLMW OH-PAHs (P < 0.0001). Considering that
cigarette smoke could induce oxidative damage in
humans, stratified analyses by smoking status were fur-
ther conducted to avoid its interference. The associa-
tions between urinary OH-PAHs and 8-OHdG or 8-iso-
PGF2α in both nonsmokers and smokers were similar to
those of the whole population (data not shown).
The associations between oxidative damage biomarkers

and lung function are revealed in Table 3. In continuous
variable analysis, each one-percentage increase in urinary
8-OHdG was significantly associated with a 0.1748ml de-
crease in FVC. The categorical variable model only
showed a significantly negative dose-response relationship
of urinary 8-OHdG with FVC (P for trend =0.0430). No
significant association was found between urinary 8-iso-
PGF2α and any of these lung function parameters.
Table 4 shows the associations between urinary OH-

PAHs regarding lung function parameters and the medi-
ation assessment of urinary 8-OHdG among the relation-
ships. It showed that significant mediated effect of 8-
OHdG in the models associating ƩHMW OH-PAH with
FVC. The direct effect of urinary ƩHMW OH-PAH on
FVC was − 18.30ml (− 39.07ml, 2.47ml). Additionally, the
mediated proportion by 8-OHdG in the relationship be-
tween ƩHMW OH-PAH and FVC was 14.22%. However,
no significant mediation effect of 8-OHdG was observed
regarding the relationships between PAH exposures and
FEV1, as well as between ƩLMW OH-PAHs and FVC.

Discussion
In this study, we found that urinary OH-PAHs were sig-
nificantly negatively associated with lung function, and
positively related to oxidative damage in DNA or lipids.
Additionally, inverse dose-response relationships were
further observed between urinary 8-OHdG and FVC, in-
dicating that higher 8-OHdG levels might be a risk fac-
tor for decreased lung function. Moreover, our results
suggest that urinary 8-OHdG may partially mediate the
association between urinary ΣHMW OH-PAH and FVC.
Along with our previous study [8], the associations be-

tween PAH exposure and altered lung function have
been widely conducted in occupational [33], pediatric
[34, 35] and general populations [36]. It is generally be-
lieved that oxidative stress plays a pivotal role in the
pathogenic process following PAH exposure. Consistent
with our findings, epidemiological studies have observed
significant dose-response relationships between urinary
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OH-PAHs and oxidative damage in occupational [18, 37]
and general populations [12]. To avoid possible interfer-
ence from smoking, which is a strong oxidant [38, 39], we
further evaluated such relationships in both smokers and
nonsmokers and obtained similar results. Our findings
suggest that PAH exposure is significantly associated with
oxidative damage, regardless of cigarette smoking.
Meanwhile, the effects of PAH exposure on oxidative

stress were also reported in studies performed in vivo and

in vitro [13, 14]. After being absorbed in the body, PAHs
from various sources can be metabolized into active semi-
quinones via cytochrome P450 enzymes; the free radical
intermediates could further generate reactive oxygen spe-
cies (ROS). Exaggerated activation of ROS could cause
oxidative modification of DNA and lipids in lung tissue
[15, 40], further contributing to lung function reduction.
Furthermore, higher levels of oxidative damage were

reported in various respiratory diseases, but few studies

Table 1 Characteristics of participants by quartiles of urinary OH-PAH levels (N = 3367)

Characteristics All participants Quartiles of ƩOH-PAHs, μmol/mol creat.

Quartile 1
(< 24.63)

Quartile 2
(24.63–36.12)

Quartile 3
(36.12–54.86)

Quartile 4
(≥54.86)

No. participants 3367 842 842 842 841

Age (years, means±SD) 52.0 ± 12.9 49.9 ± 13.2 51.1 ± 12.8 53.0 ± 12.4 53.9 ± 12.8

Gender (male, N, %) 1042 (31.0) 336 (39.9) 285 (33.9) 241 (28.6) 180 (21.4)

Height (cm, means±SD) 159.0 ± 7.7 160.6 ± 8.0 159.3 ± 7.3 158.7 ± 7.5 157.6 ± 7.7

Weight (kg, means±SD) 60.8 ± 10.5 62.5 ± 11.0 61.0 ± 10.8 60.7 ± 9.9 58.8 ± 9.8

BMI (kg/m2, means±SD) 24.0 ± 3.4 24.2 ± 3.5 24.0 ± 3.5 24.1 ± 3.3 23.7 ± 3.5

Education level (N, %)

Low 828 (24.6) 190 (22.6) 204 (24.2) 236 (28.0) 198 (23.5)

Middle 2122 (63.0) 540 (64.1) 539 (64.0) 514 (61.1) 529 (62.9)

High 417 (12.4) 112 (13.3) 99 (11.8) 92 (10.9) 114 (13.6)

Annual family income (Yuan, N, %)

< 30,000 1924 (57.1) 458 (54.4) 492 (58.4) 497 (59.0) 477 (56.7)

30,000-70,000 1091 (32.4) 270 (32.1) 277 (32.9) 272 (32.3) 272 (32.3)

≥70,000 352 (10.5) 114 (13.5) 73 (8.7) 73 (8.7) 92 (10.9)

Smokersa (N, %) 740 (21.6) 196 (23.3) 193 (22.9) 189 (22.5) 147 (17.5)

Smoking amountsb, pack-year
(means±SD)

24.7 ± 21.3 20.1 ± 21.1 24.7 ± 19.5 27.9 ± 22.2 26.9 ± 21.8

Passive smokers (yes, N, %) 1451 (43.1) 346 (42.4) 357 (42.4) 399 (47.5) 349 (41.5)

Cook meals (yes, N, %) 2500 (74.3) 577 (68.5) 617 (73.3) 644 (76.5) 662 (78.7)

Drinking status (yes, N, %) 577 (17.1) 149 (17.7) 169 (20.1) 147 (17.5) 112 (13.3)

Regular physical activity (yes, N, %) 1579 (46.9) 393 (46.7) 373 (44.3) 386 (45.8) 427 (50.8)

Sleep duration at night (hours, means±SD) 8.0 ± 1.4 8.0 ± 1.7 8.0 ± 1.3 8.1 ± 1.4 7.9 ± 1.3

Eating smoked food (≥1 time/week, N, %) 1009 (30.0) 213 (25.3) 250 (29.7) 280 (33.3) 266 (31.6)

Eating vegetables or fruits (≥1 time/day,
N, %)

3163 (93.9) 802 (95.3) 791 (93.9) 785 (93.2) 785 (93.3)

Eating aquatic products (≥1 time/day,
N, %)

1128 (33.5) 294 (34.9) 294 (34.9) 277 (32.9) 263 (31.3)

FEV1 (ml, means±SD) 2189.4 ± 586.1 2327.7 ± 625.5 2215.6 ± 582.0 2160.3 ± 547.8 2053.9 ± 553.1

FVC (ml, means±SD) 2508.8 ± 682.5 2640.3 ± 730.7 2535.7 ± 675.2 2497.0 ± 645.0 2358.6 ± 646.8

FEV1% (means±SD) 87.7 ± 8.4 88.7 ± 8.0 87.8 ± 8.0 87.0 ± 8.6 87.5 ± 8.9

8-OHdG (μmol/mol creat., median, IQR) 62.2 (28.0–123.7) 48.0 (21.9–90.6) 60.6 (26.9–114.0) 66.0 (727.9–129.8) 84.4 (41.1–179.3)

8-iso-PGF2α (nmol/mol creat.,
median, IQR)

177.0 (108.9–311.7) 126.3 (81.3–195.0) 167.0 (104.1–276.4) 207.9 (129.9–348.1) 240.8 (139.4–504.6)

Abbreviations: ƩOH-PAHs Sum of urinary monohydroxy polycyclic aromatic hydrocarbons, 8-iso-PGF2α 8-isoprostane, 8-OHdG 8-hydroxy-2′-deoxyguanosine, BMI
Body mass index, FEV1 Forced expiratory volume in 1 s, FVC Forced vital capacity, FEV1% The ratio of FEV1 to FVC, IQR Interquartile range, SD Standard deviation
aSmokers included current and former smokers
bSmoking amounts were calculated as packs of cigarettes per day multiplied by years of smoking
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have investigated the associations between oxidative
damage and lung function. Several studies have reported
that oxidative stress is inversely correlated with lung
function parameters in COPD patients compared with
healthy controls in the USA [41], Japan [42] and China
[43]. However, a cross-sectional study from Australia
showed that urinary 8-OHdG of quartz-exposed workers
was positively correlated with FEV1 and FVC in the case
of silicosis [44]. The discrepancy may be partly explained
by the different types of lung diseases and the process of
DNA damage and repair status. Regarding general popu-
lations, only one adolescent study from Italy showed that
urinary 8-iso-PGF2α was negatively correlated with the
respiratory flux index, including FEF50, FEF25–75 and
FEV1% [45]. Partly consistent with previous studies, we
found that an increased level of 8-OHdG was associated
with decreased lung function in a general population
after excluding those with diagnosed lung disease; how-
ever, we found no significant relationships between urin-
ary 8-iso-PGF2α and lung function parameters.
As an important lung function parameter, FVC can

help determine both the presence and severity of re-
strictive airway diseases. Airway epithelial cells directly
play as a natural barrier to prevent inhaled xenobiotics
or particulate matter [46]. Sustained exposure to ROS
could induce DNA damage in epithelial cells, triggering
apoptotic pathways through the upregulation of p53 and
transforming growth factor β (TGF-β), and secretion of
multiple factors from fibroblasts [47]. Increased

apoptosis of pulmonary epithelial cells may cause the
loss of balance in cell turnover, and the factors induced
by fibroblasts contribute to the abnormal reepithelializa-
tion. Both processes are involved in the generation of fi-
brosis, leading to lung compliance decline and restrictive
lung function impairment [48]. Moreover, enhanced oxi-
dative stress has been found in lung epithelial cells of
patients with idiopathic interstitial pneumonia, a condi-
tion that induce DNA damage and apoptosis [49].
Although both ƩHMW OH-PAH and ƩLMW OH-

PAHs were found to be associated with oxidative dam-
age and lung function parameters, our results indicated
that the pathological effects of different molecular
weight PAH exposures on lung injury might be different.
It is well-known that low-molecular-weight PAHs are
low in toxicity and noncarcinogenic; while high-
molecular-weight PAHs, such as pyrene, the parent PAH
of 1-OHP, demonstrate high toxic, carcinogenic and
mutagenic activities [2]. In the present study, we
found that urinary 8-OHdG significantly mediated the
associations between high-molecular-weight PAH me-
tabolites and FVC. Such a mediating role of 8-OHdG
was not found in the association between low-
molecular-weight PAH metabolites and lung function
parameters. Relatively high oxidative DNA damage in-
duced by high-molecular-weight PAH may contribute
to this effect.
Our study has several strengths. First, the present

study was conducted using a relatively large study

Table 2 Associations between urinary OH-PAHs and lung function parameters (N = 3367)
Urinary OH-
PAHs

Lung
function
parameters

Estimated
changes (95% CI)
by continuous
OH-PAHs

Estimated changes in ml (95% CI) by quartile of OH-PAHs P value
for trenda

Quartile 1 Quartile 2 Quartile 3 Quartile 4

ƩOH-PAHs < 24.63 24.63–36.12 36.12–54.86 ≥54.86

FEV1 −21.52 (−40.46, −2.58) 0 (referent) −39.63 (−76.83, −2.43) −11.74 (− 49.41, 25.94) −65.59 (− 103.42, − 27.77) 0.0057

FVC − 18.91 (− 41.95, 4.14) 0 (referent) − 34.69 (−79.99, 10.61) 2.51 (−43.39, 48.42) −57.89 (− 103.95, − 11.83) 0.0651

FEV1% −0.17 (−0.57, 0.23) 0 (referent) −0.49 (− 1.28, 0.29) − 0.53 (− 1.32, 0.27) − 0.57 (− 1.37, 0.23) 0.1791

ƩHMW OH-PAH < 1.99 1.99–3.21 3.21–5.41 ≥5.41

FEV1 −20.76 (− 37.69, − 3.83) 0 (referent) −25.06 (−61.93, 11.81) − 31.01 (− 68.12 6.11) −54.55 (−91.82, − 17.28) 0.0049

FVC − 21.59 (−42.18, − 1.00) 0 (referent) − 9.94 (− 54.77, 34.89) −31.06 (− 76.20, 14.08) −54.59 (− 99.91, − 9.27) 0.0116

FEV1% − 0.07 (− 0.43, 0.29) 0 (referent) − 0.58 (− 1.36, 0.19) −0.36 (− 1.15, 0.42) −0.30 (− 1.08, 0.49) 0.5963

ƩLMW OH-
PAHs

< 21.68 21.68–32.24 32.24–49.23 ≥49.23

FEV1 −19.85 (− 38.44, − 1.26) 0 (referent) −39.60 (− 76.90, − 12.31) −15.47 (−53.18, 22.24) − 61.75 (−99.81, − 23.70) 0.0090

FVC −16.34 (− 38.60, 6.27) 0 (referent) −37.59 (− 83.01, 7.82) −3.39 (− 49.34, 42.56) −50.65 (− 97.01, −4.30) 0.1166

FEV1% − 0.19 (− 0.59, 0.20) 0 (referent) − 0.36 (− 1.15, 0.43) −0.42 (− 1.22, 0.38) −0.65 (− 1.46, 0.15) 0.1205

Model adjusted for age (continuous variable), gender (male/female), height (continuous variable), weight (continuous variable), smoking amounts (continuous
variable), passive smoking status (yes/no), drinking status (yes/no), education level (categorical variable), annual family income (categorical variable), regular
physical activity (yes/no), cooking meals at home (yes/no), sleep duration at night (continuous variable), eating smoked food (< 1/≥1 time/week), eating
vegetables or fruits (< 1/≥1 time/day), eating aquatic products (< 1/≥1 time/day) and city (Wuhan/Zhuhai)
Abbreviations: ƩHMW OH-PAH Sum of urinary high-molecular-weight monohydroxy polycyclic aromatic hydrocarbon, including 1-hydroxypyrene, ƩLMW OH-PAHs
Sum of urinary low-molecular-weight monohydroxy polycyclic aromatic hydrocarbon, including 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyfluorene,
9-hydroxyfluorene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, 4-hydroxyphenanthrene and 9-hydroxyphenanthrene, ƩOH-PAHs
Sum of urinary monohydroxy polycyclic aromatic hydrocarbons, CI Confidence interval, FEV1 Forced expiratory volume in 1 s, FVC Forced vital capacity, FEV1% The
ratio of FEV1 to FVC
aP trend values of the quartile coefficients were estimated by including the original log-transformed OH-PAHs as a continuous variable
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population of 3367 participants. Second, we measured
10 types of urinary OH-PAHs, which could reflect in-
ternal PAH exposure levels from all potential sources.
Additionally, choosing urinary 8-OHdG and 8-iso-
PGF2α to represent systemic oxidative damage levels is a

more comprehensive approach that, may provide a clue
to help interpret the potential mechanism. One limita-
tion in our study is that determining the levels of OH-
PAH in a single spot urine sample might not reflect the
long-term exposure levels of PAHs, although the life

Fig. 1 Restricted cubic splines representing the associations of urinary OH-PAHs with 8-OHdG (a) and 8-iso-PGF2α (b), with adjustment for age
(continuous variable), gender (male/female), height (continuous variable), weight (continuous variable), smoking amounts (continuous variable),
passive smoking status (yes/no), drinking status (yes/no), education level (categorical variable), annual family income (categorical variable), regular
physical activity (yes/no), cooking meals at home (yes/no), sleep duration at night (continuous variable), eating smoked food (< 1/≥1 time/week),
eating vegetables or fruits (< 1/≥1 time/day), eating aquatic products (< 1/≥1 time/day) and city (Wuhan/Zhuhai). Knots were placed at the 5th,
35th, 65th 95th percentiles of the independent variables distributions, and the reference value was set at the 5th percentile. Abbreviations:
ƩHMW OH-PAH, sum of urinary high-molecular-weight monohydroxy polycyclic aromatic hydrocarbon, including 1-hydroxypyrene; ƩLMW OH-
PAHs, sum of urinary low-molecular-weight monohydroxy polycyclic aromatic hydrocarbon, including 1-hydroxynaphthalene, 2-
hydroxynaphthalene, 2-hydroxyfluorene, 9-hydroxyfluorene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, 4-
hydroxyphenanthrene and 9-hydroxyphenanthrene; ƩOH-PAHs, sum of urinary monohydroxy polycyclic aromatic hydrocarbons; 8-iso-PGF2α, 8-
isoprostane; 8-OHdG, 8-hydroxy-2′-deoxyguanosine; OH-PAHs, urinary monohydroxy polycyclic aromatic hydrocarbons

Table 3 Associations between oxidative damage and lung function parameters (N = 3367)

Oxidative
damage

Lung
function
parameters

Estimated changes
(95% CI) by
continuous
OH-PAHs

Estimated changes in ml (95% CI) by quartile of oxidative damage P value
for trendaQuartile 1 Quartile 2 Quartile 3 Quartile 4

8-OHdG < 28.79 28.79–63.18 63.18–125.04 ≥125.04

FEV1 −6.08 (− 17.28, 5.11) 0 (referent) −8.51 (− 45.57, 28.55) − 10.00 (− 47.14, 27.15) −21.92 (− 59.30, 15.45) 0.2651

FVC − 17.48 (− 31.08, − 3.88) 0 (referent) − 16.98 (− 62.01, 28.06) −17.65 (− 62.79, 27.49) −46.03 (− 90.65, − 1.41) 0.0430

8-iso-PGF2α < 109.09 109.09–176.89 176.89–310.79 ≥310.79

FEV1 −11.31 (− 29.56, 6.93) 0 (referent) 3.25 (−32.62, 39.13) −8.71 (− 44.37, 26.96) −13.57 (− 50.12, 22.98) 0.4241

FVC −16.15 (− 38.38, 6.07) 0 (referent) 3.57 (−40.06, 47.20) − 19.90 (− 63.26, 23.45) −26.93 (− 71.51, 17.65) 0.1813

Model adjusted for age (continuous variable), gender (male/female), height (continuous variable), weight (continuous variable), smoking amounts (continuous
variable), passive smoking status (yes/no), drinking status (yes/no), education level (categorical variable), annual family income (categorical variable), regular
physical activity (yes/no), cooking meals at home (yes/no), sleep duration at night (continuous variable), eating smoked food (< 1/≥1 time/week), eating
vegetables or fruits (< 1/≥1 time/day), eating aquatic products (< 1/≥1 time/day) and city (Wuhan/Zhuhai)
Abbreviations: 8-iso-PGF2α 8-isoprostane, 8-OHdG 8-hydroxy-2′-deoxyguanosine, CI Confidence interval, FEV1 Forced expiratory volume in 1 s, FVC Forced
vital capacity
aP trend values of the quartile coefficients were estimated by including the original log-transformed oxidative damage as a continuous variable
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habits (including dietary pattern, travel mode, smoking
status and other potential exposure routes for PAHs) of
the study population were relatively stable. Further pro-
spective studies are warranted. Furthermore, except for
PAHs, exposure to other unmeasured toxic substances
in the environment may also cause lung damage. Thus,
the synergistic effects of multiple pollutants should be
considered in further research. In addition, because 8-
OHdG is a nonspecific biomarker for oxidative stress in
lung tissue, to clarify the etiological pathway, it is neces-
sary to identify more specific biomarkers.

Conclusion
Urinary OH-PAHs levels were negatively associated with
lung function, but positively related to the levels of oxi-
dative stress. Moreover, our findings suggest that urinary
8-OHdG may play an important role in the association
between high-molecular-weight PAH exposure and FVC,
further providing a clue to the potential underlying
mechanism of lung damage related to PAH exposure.
More studies are needed to identify specific biomarkers
to elucidate this damage process.

Abbreviations
ƩHMW OH-PAH: Sum of high-molecular-weight monohydroxy polycyclic aro-
matic hydrocarbon; ƩLMW OH-PAHs: Sum of low-molecular-weight monohy-
droxy polycyclic aromatic hydrocarbons; ƩOH-PAHs: Sum of urinary
monohydroxy polycyclic aromatic hydrocarbons; 1-OHNa: 1-
hydroxynaphthalene; 1-OHP: 1-hydroxypyrene; 1-OHPh: 1-
hydroxyphenanthrene; 2-OHFlu: 2-hydroxyfluorene; 2-OHNa: 2-
hydronaphthalene; 2-OHPh: 2-hydroxyphenanthrene; 3-OHPh: 3-

hydroxyphenanthrene; 4-OHPh: 4-hydroxyphenanthrene; 8-iso-PGF2α: 8-
isoprostane; 8-OHdG: 8-hydroxy-2′-deoxyguanosine; 9-OHFlu: 9-
hydroxyfluorene; 9-OHPh: 9-hydroxyphenanthrene; BMI: Body mass index;
CI: Confidence interval; creat.: Creatinine; FEV1: Forced expiratory volume in 1
s; FVC: Forced vital capacity; FEV1%: The ratio of FEV1 to FVC; GC-MS: Gas
chromatography-mass spectrometry; HPLC: High-performance liquid
chromatography; IQR: Interquartile range; LOD: The limits of detection; OH-
PAHs: Monohydroxy polycyclic aromatic hydrocarbons metabolites;
PAHs: Polycyclic aromatic hydrocarbons; SD: Standard deviation
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