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Abstract

Background: We are exposed to several chemicals such as persistent organic pollutants (POPs) in our everyday
lives. Prior evidence has suggested that POPs may have adverse effects on reproductive function by disrupting
hormone synthesis and metabolism. While there is age-related decline of fertility, the use of hormonal combined
oral contraceptives (COCs) and its association to return of fertility remains controversial. The goal of this study is to
investigate the association between exposure to POPs, both individually and as a mixture, and fecundability
measured as time-to-pregnancy (TTP) according to pre-pregnancy use of COCs and age.

Methods: Using the SELMA (Swedish Environmental Longitudinal Mother and Child, Allergy and Asthma) study, we
have identified 818 pregnant women aged 18–43 years (mean 29 years) with data on how long they tried to get
pregnant and what was their most recently used contraceptive method. These data were collected at enrollment to
the study (median week 10 of pregnancy). Concentrations of 22 POPs and cotinine were analyzed in the blood
samples collected at the same time as the questions on TTP and pre-pregnancy use of contraceptive. Analyses were
done on the association between POPs exposure and TTP measured as continuous (months) and binary (infertile for
those with TTP > 12months). To study the chemicals individually, Cox regression and logistic regression were used to
estimate fecundability ratios (FRs) and odds ratios (ORs), respectively. Weighted quantile sum (WQS) regression was
used to investigate the chemicals as a mixture where chemicals of concern were identified above the 7.6% threshold
of equal weights. To perform the subgroup analysis, we stratified the sample according to use of COCs as the most
recent pre-pregnancy contraception method and age (< 29 years, and≥ 29 years). The models were adjusted for parity,
regularity of menses, maternal body mass index (BMI) and smoking status, and stratified as described above.
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Results: Prior to stratification, none of the POPs were associated with fecundability while increased exposure to HCB,
PCB 74 and 118 had higher odds of infertility. Upon stratification, POP exposure was significantly associated with
longer TTP in women aged ≥29 years who did not use COC. Specifically, PCBs 156, 180, 183, and 187 were associated
with reduced fecundability while PCBs 99, 153, 156, 180, 183, and 187 had higher odds of infertility. As a mixture, we
identified the chemicals of concern for a longer TTP include PCBs 118, 156, 183, and 187. Moreover, chemicals of
concern identified with increased odds of infertility were PCB 74, 156, 183, 187, and transnonachlor.

Conclusion: Serum concentrations of selected POPs, both as individual chemicals and as a mixture, were significantly
associated with lower fecundability and increased odds of infertility in women aged 29 years and above not using COC as
their most recent pre-pregnancy contraceptive. Our findings suggest that pre-pregnancy use of oral contraceptive and
age may modify the link between POPs and fecundability. The differences of specific chemicals in the individual analysis
and as a mixture support the need to study combination effects of chemicals when evaluating reproductive outcomes.

Keywords: Persistent organic pollutants, Combined oral contraceptives, Time-to-pregnancy, Fecundability,
Polychlorobiphenyls, Organochlorinated pesticides, Brominated diphenyl ethers

Background
Persistent organic pollutants (POPs) such as organochlorine
pesticides (OCPs), polychlorinated biphenyls (PCBs), and
polybrominated diphenyl ethers (PBDEs) are organic sub-
stances that have long half-lives, bioaccumulate in the fatty
tissues with increasing concentration towards the top of the
food chain, and travel long distances in the atmosphere due
to their semi-volatility [1]. They are widely used in agricul-
ture, consumer products, and industrial products as well as
unintentionally released as by-products from industrial
processes and incineration. Exposure to these chemicals
occurs through ingestion, inhalation, and absorption. We
are exposed not only to a single chemical but to several
chemicals simultaneously, resulting to mixtures that are
associated with adverse outcomes [2–4]. Although many of
these compounds have been strictly regulated in Europe
including Sweden through the Stockholm Convention in
2001 [5], they still exist in the environment due to their
high resistance to degradation. This has become a global
health concern as studies of humans, wildlife populations,
and epidemiological cohorts show associations between
POP exposure and adverse effects on reproductive and
endocrine functions [1, 6].
Since reproduction is regulated by hormones, infertil-

ity may occur when the endocrine system is disrupted.
Infertility is the inability to achieve clinical pregnancy
after 12 months of regular unprotected sexual inter-
course [7]. By contrast, fertility is the actual production
of a live offspring while fecundity is the ability to con-
ceive given unprotected intercourse. Fecundability is the
probability of becoming pregnant and is measured by
time-to-pregnancy (TTP), which is the number of men-
strual cycles or months without the use of contraceptives
until a clinically detectable pregnancy is achieved [8, 9].
TTP has been used as a marker for fecundability of both
parents to identify environmental exposures as potential
hazards to human reproduction, encompassing series of

biological events such as gametogenesis, fertilization,
and implantation. Increased TTP may then indicate a
problem in any or several of these stages [10].
There are several factors that affect female fertility.

While biological factors such as age and BMI are in-
versely associated with fertility [11, 12], use of combined
oral contraceptives (COCs), which is composed of both
estrogen and progesterone, have contradicting studies
about its association to return to fertility [13–15]. In
addition, environmental risk factors such as exposure to
POPs may also reduce fertility. Detection of environ-
mental chemicals in human follicular fluid, serum, and
seminal plasma led to the hypothesis of susceptibility of
the reproductive function to disruption of biosynthesis
and metabolism of hormones such as estrogen and pro-
gesterone [16, 17]. While POPs have been found to have
effects on conception rates, menstrual cycles, and birth
outcomes in animals such as rhesus monkeys and ro-
dents [18, 19], previous human epidemiological studies
have contradicting results. Some studies reported longer
TTP for women exposed to POPs [20–22]. However,
others did not find this association [23, 24]. These
inconsistencies warrant further studies to explore the
hazards of exposure to POPs and COC use.

Aim of the study
The goal of this study is to investigate the association
between exposure to POPs, both individually and as a
mixture, during early pregnancy and fecundability mea-
sured as time-to-pregnancy (TTP) in regard to pre-
pregnancy use of COCs and age.

Methods
Study population
This study utilized the Swedish Environmental Longitu-
dinal, Mother and child, Asthma and allergy (SELMA)
study, a pregnancy cohort with the primary aim to
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investigate the importance of early life exposure to en-
vironmental toxicants with focus on endocrine disrupt-
ing chemicals (EDCs) during the pregnancy and infancy
period for health and development in the children [25].
Pregnant women were recruited from September 2007
to March 2010 during their first visit (median = 10 weeks
age of gestation) at antenatal care centers in Värmland,
Sweden. Out of 8394 women, 7119 were invited and
2582 (39%) consented to participate. Maternal blood was
collected, and questionnaires were used to gather infor-
mation regarding their medical history, lifestyles, and
socioeconomic status. Questions on TTP were asked by
midwife at enrollment. From the original cohort, only
women with complete data on TTP, serum POP concen-
trations, age, parity, preventive method, regularity of
menses, BMI, and lifestyle factors were included in this
study (n = 818) (Supp Fig. 1).

Time-to-pregnancy (TTP)
Fecundability or the probability of pregnancy in each
cycle was measured through TTP, a sensitive and con-
venient marker used to study environmental exposures.
Women were asked “How long have you been trying to
get pregnant?” with answers in years and months. Add-
itional questions on pre-pregnancy contraceptive use
and reproductive history were also inquired. They were
asked “What was the preventive method you used before
you became pregnant?” and when they stopped using it.
They were also asked if they have regular or irregular
menses.

Chemical analyses of POPs in serum
Concentrations of 22 POPs (nine OCPs namely pentachlo-
robenzene (PeCB), hexachlorobenzene (HCB), three iso-
mers of hexachlorocyclohexane (α–HCH, β–HCH, γ–
HCH), oxychlordane, transnonachlor, dichlorodiphenyltri-
chloroethane (p,p´-DDT), dichlorodiphenyldichloroethy-
lene (p,p´-DDE), ten PCB congeners namely, PCB 74, 99,
118, 138, 153, 156, 170, 180, 183, and 187 as well as three
PBDEs namely PBDE 47, 99, and 153) were analyzed in the
blood samples collected during the first healthcare visit of
current pregnancy, median 10 weeks age of gestation, as de-
scribed previously [26]. Briefly, 200 ul of serum sample
were enriched with 400 pg 13C-labelled internal standards
of each compound. POPs were extracted with 2ml
dichloromethane-hexane (1:4). Extracts were cleaned with
multilayer silica columns and the eluate was concentrated
for gas chromatography – tandem mass spectrometry (GC-
MS/MS) analysis (Agilent 7010 GC-MS/MS system, Wil-
mington, DE, USA). Control serum sample (NIST SRM
1958) and an in-house low-concentration control sample (1
to 9 dilution of SRM 1958 with new born calf serum) were
included. Concentrations were reported as wet weight (pg/
ml) and the limits of quantification (LOQ) ranged from 5

to 40 pg/ml. LOQ was defined as the concentration corre-
sponding to ten times the standard deviation of the signal-
to-noise ratio. Of the 22 POPs analyzed, 13 were detected
in more than 70% of the included women.

Analysis of cotinine in serum samples
Cotinine was measured in serum samples and used as a
biomarker for tobacco smoke exposure. Isotopically la-
belled internal standards were added to 100 μl serum.
Samples were digested with glucuronidase and proteins
were precipitated using acetonitrile. Analyses were per-
formed using triple quadrupole mass spectrometry
(QTRAP 5500; AB Sciex, Foster City, USA) coupled to a
liquid chromatography system (UFLCXR, Shimadzu
Corporation, Kyoto, Japan) (LC-MS/MS). Subjects were
categorized as non-smokers for cotinine concentrations
below 0.2 ng/ml, passive smokers with cotinine concen-
trations 0.2–15 ng/ml and active smokers for cotinine
above 15 ng/ml [27].

Statistical analyses
POPs detected in less than 70% of the samples were not
included in the analyses. Among those chemicals de-
tected in more than 70% of the mothers, concentrations
below the LOQ were replaced with LOQ/2. Characteris-
tics of the cohort were presented as n (%), unless other-
wise specified. Chi-square test, Wilcoxon rank-sum test
and t-test test were used to analyze demographics and
chemicals among groups. Correlation among chemicals
were determined using Spearman’s rank correlation. To
compare exposure patterns between Sweden and the
United States, the geometric mean of serum concentra-
tions of the 13 POPs were used to determine cumulative
burden and its relative proportion in the SELMA cohort
as well as in women aged 20–39 years in the National
Health and Nutrition Examination Survey (NHANES) in
2007–2010 conducted by Centers for Disease Control
and Prevention in the United States [28, 29].
Analyses were done on the association of POPs on the

outcome variable TTP, both as continuous (measured in
months) and binary (infertile for those with TTP > 12
months). Chemicals were analyzed both as continuous
(log10 transformed) and quartiles. Discrete-time Cox
regression models were used to estimate hazard ratios of
fecundability (FR). The proportional hazards assumption
was met based on the statistical tests on the scale Schoen-
feld residuals. The FR represents the per-cycle probability
of conception in subgroups with higher concentration
POP exposure relative to a reference group with lower
concentration POP exposure [30]. We censored the data
when TTP exceeded 12months. Sensitivity analyses were
done with censored data at 10 and 14months. An FR > 1
denotes higher fecundability, which means shorter TTP
and FR < 1 denotes lower fecundability, which means
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longer TTP. Moreover, logistic regression was used to es-
timate odds ratio (OR) for infertility. An OR > 1 denotes
higher odds for infertility and OR < 1 denotes lower odds
for infertility. OR represents the odds that an outcome
happens given a particular exposure compared to the odds
of an outcome happening without that exposure [31]. To
test the linear trend of the FR and OR, P-trend was calcu-
lated using the quartiles in a continuous form.
Aside from analyzing the individual compounds, a mix-

ture approach was also performed. Due to the high correl-
ation among chemicals, survival analysis was not used to
explore mixture effects. Instead, weighted quantile sum
(WQS) regression, a strategy for estimating empirical
weights for a weighted sum of quantiled concentrations
most associated with the health outcome (TTP and binary
infertility), was performed [32]. Chemicals of concern
were identified with a threshold of 7.6% (100/number of
chemicals). Bootstrapping was set to 100. The dataset was
split into a 35% training set and a 65% holdout validation
set.
Because interaction tests between chemicals and co-

variates showed significant results for age and use of
COCs, we stratified the sample based on these two fac-
tors, namely age (with the cohort mean 29 years old as
cut off) and use of COC (yes, no) as the most recent
pre-pregnancy contraception method. Quartiles were
specific for each age group to ensure equal n in each
quartile. All models were adjusted for well-established
risk factors such as parity, education, regularity of men-
ses (regular, irregular), maternal body mass index (BMI),
and smoking status based on serum cotinine concentra-
tions as described above. We also tested other covariates
such as education (lower secondary, upper secondary/
vocational studies, university/college), physical activity
(< 1 h/week, 1 h/week, 1–2 h/week, ≥3 h/week), and alco-
hol intake (never, seldom, once every other week, at least
once a week). The only paternal covariate that was
tested was BMI. However, none of these other covariates
modified the FR and OR by 10% or more. Hence, they
were not added to the model.
These analyses were performed using IBM SPSS Statis-

tics, version 22.0 (IBM Corp., Armonk, NY, USA) and
the R programming language [33] through RStudio [34]
with the packages gWQS [35], ggplot2 [36], ggpubr [37],
and reshape2 [38].

Results
Of the 818 women included in this study, the median
TTP was 3months with the interquartile range (25th to
75th percentile) between 1 and 6months. Age was posi-
tively correlated with TTP (rho = 0.11, p = 0.002). Women
who did not use COC had shorter TTP compared to
women who used COC, both for those aged < 29 years
(β = − 1, 95% CI = − 6.4, − 1) and aged ≥29 years (β = − 1,

95% CI = − 2, − 1) (Table 1). Seventy-nine women re-
ported more than 12months until pregnancy was
achieved, resulting in a 9.7% censoring rate. Parity was
higher among non-COC user women compared to COC
user women. (Table 1).
Out of the 22 POPs studied, 13 chemicals, consisting

of three OCPs and ten congeners of PCBs, were detected
in more than 70% of the 818 women. Concentrations of
the 13 chemicals were significantly positively correlated
with each other (rho = 0.48–0.98, p < 0.001) (Fig. 1). The
cumulative burden of serum POPs in the SELMA cohort
varied from 500 to 650 pg/mL in the subgroups and was
half of that of the women in the United States (Fig. 2).
Similar exposure profiles were seen among all groups in
the SELMA cohort, mainly consisting of p,p’-DDE (31%)
followed by PCB 153 (18%), PCB 180 (13%), PCB 138
(12%), HCB (8%) and PCB 170 (7%). However, exposure
profile in women in NHANES was mainly p,p’-DDE
(80%) and HCB (4%) (Fig. 2) [28, 29]. Compared to ex-
posure in women aged 20–39 years in the United States
[28, 29], the SELMA cohort had lower concentrations of
transnonachlor (p < 0.001), p,p’-DDE (p < 0.001), PCB 74
(p < 0.001), and 99 (p < 0.05) but higher concentrations
of PCB 138 (p < 0.001), 153 (p < 0.001), 156 (p < 0.001),
170 (p < 0.001), 180 (p < 0.001), 183 (p < 0.001), and 187
(p < 0.001).
The serum concentrations of POPs between the

groups were compared (Table 2). Among women < 29
years old, serum concentrations of HCB, transnonachlor,
p,p’-DDE, PCBs 74, 99, 118, 138, 153, 156, 183, and
PBDE 153 were lower in non-COC users compared to
those of COC users. Among women ≥29 years old, there
was no difference in POPs concentrations between non-
COC and COC users (Table 2).
Without age and COC stratification, none of the che-

micals (as continuous or quartiles) had significant FR
after adjustment with age, pre-pregnancy use of COCs,
parity, maternal BMI and smoking status (Suppl Table
1). However, upon stratification, significant associations
were found. Among women aged < 29 years who used
COC, those exposed within the third quartiles of HCB
and PCB 138 had 37% reduced fecundability (i.e. longer
TTP) compared to those exposed to their respective first
quartiles (FR 0.63; 95% CI 0.4–0.99 and FR 0.63; 95% CI
0.4–0.98, respectively) (Fig. 3). Among women aged ≥29
years who did not use COC, those exposed in the third
quartile of PCB 156 (FR 0.67; 95% CI 0.46–0.95), and
fourth quartiles of PCB 180 (FR 0.69; 95% CI 0.48–0.98),
183 (FR 0.69; 95% CI 0.49–0.98) and 187 (FR 0.66; 95%
CI 0.46–0.95) had longer TTP compared their respective
first quartiles (Fig. 3). There was a 47% (FR 0.53; 95% CI
0.28–0.99) and 45% (FR 0.55; 95% CI 0.31–0.98) de-
crease in fecundability for every 10-fold increase of PCB
180 and 187, respectively (Fig. 3). On the other hand,

Björvang et al. Environmental Health           (2020) 19:67 Page 4 of 14



Ta
b
le

1
C
oh

or
t
ch
ar
ac
te
ris
tic
s.
Va
lu
es

ar
e
m
ea
n
(S
D
),
m
ed

ia
n
(m

in
-m

ax
)
or

n
(%
)

C
ha
ra
ct
er
is
tic

To
ta
lC

oh
or
t

(n
=
81
8)

<
29

ye
ar
s
ol
d

p-
va
lu
e*

≥
29

ye
ar
s
ol
d

p-
va
lu
e*

N
on

-C
O
C
us
er

(n
=
16
4)

C
O
C
us
er

(n
=
17
3)

N
on

-C
O
C
us
er

(n
=
28
0)

C
O
C
us
er

(n
=
20
1)

Ti
m
e
to

Pr
eg

na
nc
y,
m
on

th
s,
m
ed

ia
n

(m
in
-m

ax
)

3
(0
–8
4)

2
(0
–4
8)

3
(0
–3
6)

0.
00
8

2
(0
–8
4)

4
(0
–8
4)

<
0.
00
1

A
ge

,y
r,
m
ea
n
(S
D
)

29
(4
.5
)

25
(2
.4
)

25
.5
(2
.6
)

0.
03

32
.9
(3
.0
)

31
.7
(2
.4
)

<
0.
00
1

Pr
e-
pr
eg

na
nc
y
co
m
bi
ne

d
or
al
co
nt
ra
ce
pt
iv
e
us
e,
n
(%
)

37
4
(4
5.
7)

–
17
3

–
20
1

–

Pa
rit
y,
m
ed

ia
n
(m

in
-m

ax
)

0
(0
–5
)

0
(0
–3
)

0
(0
–2
)

<
0.
00
1

1
(0
–5
)

0
(0
–5
)

<
0.
00
1

M
at
er
na
lB

M
I,
kg
/m

2 ,
m
ed

ia
n
(m

in
-m

ax
)

23
.7
(1
6.
9–
45
.4
)

23
.8
(1
7.
3–
40
.1
)

23
.3
(1
7.
2–
39
.3
)

0.
25

24
.1
(1
6.
9–
45
.4
)

23
.7
(1
8.
3–
39
.8
)

0.
83

Pa
te
rn
al
BM

I,
kg
/m

2 ,
m
ed

ia
n
(m

in
-m

ax
)

25
.6
(1
8.
7–
44
.0
)

25
.4
(1
9.
4–
44
.0
)

25
.5
(1
8.
7–
40
.4
)

0.
98

25
.7
(1
9.
4–
39
.9
)

25
.8
(1
9.
6–
35
.9
)

0.
96

Re
gu

la
rit
y
of

m
en

se
s,
n
(%
)

Re
gu

la
r

69
5
(8
5.
0)

13
1
(7
9.
9)

15
2
(8
7.
9)

0.
06

25
0
(8
9.
3)

16
2
(8
0.
6)

0.
01

Irr
eg

ul
ar

12
3
(1
5.
0)

33
(2
0.
1)

21
(1
2.
1)

30
(1
0.
7)

39
(1
9.
4)

Sm
ok
in
g,

n
(%
)

N
on

sm
ok
er

(C
ot
in
in
e
0–
0.
2
ng

/m
L)

73
9
(9
0.
3)

14
3
(8
7.
2)

15
9
(9
1.
9)

0.
33

25
0
(8
9.
3)

18
7
(9
3)

0.
37

Pa
ss
iv
e
sm

ok
er

(C
ot
in
in
e
0.
2–
15

ng
/m

L)
38

(4
.6
)

9
(5
.5
)

7
(4
)

15
(5
.4
)

7
(3
.5
)

A
ct
iv
e
sm

ok
er

(C
ot
in
in
e
>
15

ng
/m

L)
41

(5
.0
)

12
(7
.3
)

7
(4
)

15
(5
.4
)

7
(3
.5
)

A
lc
oh

ol
,n

(%
)

N
ev
er

84
(1
0.
3)

28
(1
7.
1)

14
(8
.1
)

0.
07

30
(1
0.
7)

12
(6
)

0.
26

Se
ld
om

35
9
(4
3.
9)

80
(4
8.
8)

93
(5
3.
8)

10
2
(3
6.
4)

84
(4
1.
8)

O
nc
e
ev
er
y
ot
he
r
w
ee
k

18
1
(2
2.
1)

29
(1
7.
7)

40
(2
3.
1)

67
(2
3.
9)

45
(2
2.
4)

A
t
le
as
t
on

ce
a
w
ee
k

19
4
(2
3.
7)

27
(1
6.
5)

26
(1
5)

81
(2
8.
9)

60
(2
9.
9)

Ph
ys
ic
al
ac
tiv
ity
,n

(%
)

<
1
h/
w
ee
k

22
2
(2
7.
1)

47
(2
8.
7)

38
(2
2)

0.
39

90
(3
2.
1)

47
(2
3.
4)

0.
00
4

1
h/
w
ee
k

13
3
(1
6.
3)

27
(1
6.
5)

28
(1
6.
2)

54
(1
9.
3)

24
(1
1.
9)

1–
2
h/
w
ee
k

22
0
(2
6.
9)

41
(2
5)

42
(2
4.
3)

74
(2
6.
4)

63
(3
1.
3)

at
le
as
t
3
h/
w
ee
k

24
3
(2
9.
7)

49
(2
9.
9)

65
(3
7.
6)

62
(2
2.
1)

67
(3
3.
3)

Ed
uc
at
io
n,
n
(%
)

El
em

en
ta
ry

11
(1
.3
)

5
(3
.0
)

1
(0
.6
)

0.
20

3
(1
.1
)

2
(1
.0
)

0.
99

H
ig
h
sc
ho

ol
/v
oc
at
io
na
l

30
8
(3
7.
7)

82
(5
0.
0)

84
(4
8.
6)

83
(2
9.
6)

59
(2
9.
4)

U
ni
ve
rs
ity
/C
ol
le
ge

49
9
(6
1.
0)

77
(4
7.
0)

88
(5
0.
9)

19
4
(6
9.
3)

14
0
(6
9.
7)

A
bb

re
vi
at
io
n:

BM
Ib

od
y
m
as
s
in
de

x,
CO

C
co
m
bi
ne

d
or
al

co
nt
ra
ce
pt
iv
e

* B
as
ed

on
W
ilc
ox
,t
.te

st
or

C
hi
-s
qu

ar
e
te
st

Björvang et al. Environmental Health           (2020) 19:67 Page 5 of 14



older women who used COCs had a reduction in fe-
cundability for those in the second and fourth quartiles
of p,p’-DDE (FR 0.56; 95% CI 0.36–0.87 and FR 0.65;
95% CI 0.42–0.99, respectively), and second quartile of
PCB 183 (FR 0.60; 95% CI 0.39–0.93) compared to their
quartiles (Fig. 3). Sensitivity analyses with censored data
at 10 and 14 months showed similar results (Supp Figs. 2
and 3).
Prior to age and COC stratification, every 10-fold in-

crease in exposure to PCB 74 and 118 had a 3-fold (OR
3; 95% CI 1.33, 6.79) and 4-fold (OR 4.06; 95% CI 1.28,
12.88) odds to be infertile, respectively (Suppl Table 1).
The third quartile of HCB had 125% (OR 2.25; 95% CI
1.06, 4.78) higher odds to be infertile compared to the
first quartile (Suppl Table 1). After stratification, every
10-fold increase in exposure to PCB 187 had an 8-fold
higher odds for infertility in women aged ≥29 years old
who did not use COC (OR 7.99; 95% CI 1.02, 62.83)
(Fig. 4). There were also higher odds for infertility for
those in the second quartile of PCB 99 (OR 5.62; 95% CI
1.15, 27.5), fourth quartile of PCB 153 (OR 4.53; 95% CI

1.23, 16.64), third quartile of PCB 156 (OR 5.04; 95% CI
1.47, 17.22), fourth quartile of PCB 180 (OR 6.08; 95%
CI 1.42, 26.07), fourth quartile of PCB 183 (OR 4.38;
95% CI 1.11, 17.21), and third and fourth quartiles of
PCB 187 (OR 3.87; 95% CI 1.11, 13.5 and OR 4.26; 95%
CI 1.17, 15.48) (Fig. 4). However, none of the chemicals
was significantly associated to infertility in the three
other groups of women (Fig. 4).
Because the chemicals were highly correlated (Fig. 1),

WQS regression was performed to study the exposure to
POPs as a mixture. The WQS-index was not signifi-
cantly associated with TTP nor infertility prior to strati-
fication. However, after stratification, there was a 9%
increase of the log transformed TTP for every one quar-
tile increase of the WQS-index in women aged ≥29 years
old not using COCs (β = 0.09; SE = 0.04; p < 0.05) (Fig. 5
and Table 3). Identified chemicals of concern (i.e.
weights above 7.6% cutoff) were PCB 183 (35.6%), PCB
156 (23.4%), PCB 187 (14.7%) and PCB118 (10.9%).
There was also a 79% increase in odds for infertility (OR
1.79; 95% CI 1.03, 3.11) (Fig. 5 and Table 3). Chemicals

Fig. 1 Correlation of POPs in maternal serum. Chemicals included are those detected in more than 70% of the samples. Data are presented as
Spearman’s rank correlation rho ranging from −1.0 (dark blue) to 1.0 (dark red). All correlations are significant (p < 0.001). Number of observations can
be found in Table 2. Abbreviations: HCB - hexachlorobenzene; p,p´-DDE - dichlorodiphenyldichloroethylene; PCB – polychlorinated biphenyl
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of concern were PCB 187 (42.2%), PCB 156 (22.1%),
PCB 74 (9.8%), PCB 183 (9.2%), and transnonachlor
(8.0%). None of the WQS-indexes were significantly as-
sociated with TTP nor infertility in the three other
groups of women.

Discussion
The main finding of our study showed that serum con-
centrations of certain POPs were significantly associated
with lower fecundability and higher odds of infertility in
women aged ≥29 years who did not use COC as their
most recent pre-pregnancy contraceptive even though
none of the POPs were associated with fecundability
prior to stratification. Our findings suggest that pre-
pregnancy use of combined oral contraceptives and age
may modify the link between POPs and fecundability.
To our knowledge, this is the first study to investigate
the chemicals both individually and as a mixture as well
as focus on POPs exposure and the effect modification
by pre-pregnancy COC use and age in relation to
fecundability.

In the individual chemical stratified analyses, higher
concentrations of PCBs 153, 180, 183 and 187 were as-
sociated either with lower fecundability and/or higher
odds for infertility in at least one stratum. However, this
monotonic dose response was not observed with HCB,
p,p’-DDE, PCBs 99, 138, 156, and 183, where only either
the second or third quartiles were significant, but not
the fourth quartile. Nonetheless, these chemicals were
still associated with reduced fecundability, albeit challen-
ging conventional toxicological dogmas such as mono-
tonicity. There was a positive correlation among the
chemicals analyzed, where higher exposure to one POP
was linked to increased exposure to other POPs. This
demonstrates the need for taking mixture exposures into
account since we are exposed to several compounds at
the same time. In the current study, we used the WQS
regression in determining the chemicals of concern in
mixtures that were associated with longer TTP and in-
fertility, which was significant among women aged ≥29
years not using COCs. In this stratum, while the chemicals
in the individual analyses were in part similar to those che-
micals of concern in the mixture (i.e. PCB 156, 183 and

Fig. 2 (a) Cumulative concentration and (b) relative proportion of POPs in NHANES 2007–2010 and SELMA cohort. Geometric means of serum
concentrations of the 13 analyzed compounds were used to determine cumulative burden and relative proportion in women aged 20–39 years
in NHANES conducted in 2007–2010 in the United States and Swedish SELMA cohort both unstratified and stratified. Abbreviations: POPs –
persistent organic pollutants; COC – combined oral contraceptives; HCB - hexachlorobenzene; p,p´-DDE – dichlorodiphenyldichloroethylene; PCB
– polychlorinated biphenyls; NHANES – National Health and Nutrition Examination Survey
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187 for both TTPand infertility), there were still chemicals
that were significant only for the individual analyses (i.e.
PCB 180 for TTP; PCB 99, 153, and 180 for infertility) but
not for the mixtures and vice versa (i.e. PCB 118 for TTP;
PCB 74 and transnonachlor for infertility). Hence, it is im-
portant to study chemicals as a mixture because possible
antagonistic, synergistic or additive properties between
chemicals may be overlooked when chemicals are assessed
individually, which may lead to underestimation of hazards
and risks [39]. As of yet, there is no single overarching
systematic, comprehensive, and integrated approach in

understanding mixtures but there is continuous effort glo-
bally to develop strategies in studying mixtures. To quan-
tify the effects of mixtures, several statistical approaches
have been proposed from simple linear regression to ad-
vanced machine learning techniques but there is no one
particular method that outperforms the other [40]. This
study supports the need to design and optimize approaches
in addressing mixtures in epidemiological studies.
Comparison of our results to previous findings is chal-

lenging. We have found that most previous studies only
utilized pre-pregnancy use of COCs to adjust their

Fig. 3 Associations of POPs exposure with TTP using Cox regression. Dot shows fecundability ratio (FR) with 95% confidence interval error bars of
chemicals as continuous (log) and quartiles (Q1 as reference). FR > 1 denotes higher fecundability and shorter TTP while FR < 1 denotes lower
fecundability and longer TTP. FR indicated with * for p value < 0.05. P trend shown for significant linear trend of FR. Abbreviations: COC –
combined oral contraceptives; HCB - hexachlorobenzene; p,p´-DDE – dichlorodiphenyldichloroethylene; PCB – polychlorinated biphenyls; Q1 –
first quartile, Q2 – second quartile, Q3 – third quartile, Q4 – fourth quartile
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model but did not examine it further through stratifica-
tion. Nonetheless, these studies have shown associations
of POPs to longer TTP [23, 24] while other studies failed
to replicate these results [20, 22]. Similar to our results,
it has also been shown that PCB mixtures were associ-
ated with longer TTP [41]. In our study, stratification
allowed studying the association of the chemicals in four
homogenous groups taking into account two important
factors: age and COC use. While this approach pre-
vented direct comparison between groups, we were able
to draw specific inferences on associations of chemicals
on each stratum.

Previous studies show inconclusive evidence on return
to fertility after cessation of COCs. While it was seen
that TTP in former COC users were comparable with
other contraceptive methods [13], another study showed
reduction in TTP after COC use [14]. On the other
hand, duration of use may play a role in this association
as it was also shown that short-term use of COC may
cause delay in return-to-fertility or longer TTP while
long-term use of COC has no deleterious effects on fe-
cundability [15]. However, other studies have shown that
external factors such as contraceptive use and lifestyle
were not as important predictors of TTP as biological

Fig. 4 Associations of POPs exposure with infertility using logistic regression. Dot shows odds ratio (OR) with 95% confidence interval (CI) error
bars of chemicals as continuous (log) and quartiles (Q1 as reference). OR > 1 denotes higher odds for infertility while OR < 1 denotes lower odds
for infertility. OR indicated with * for p value < 0.05. P trend shown for significant linear trend of OR. Abbreviations: COC – combined oral
contraceptives; HCB - hexachlorobenzene; p,p´-DDE – dichlorodiphenyldichloroethylene; PCB – polychlorinated biphenyls; Q1 – first quartile, Q2 –
second quartile, Q3 – third quartile, Q4 – fourth quartile
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factors such as age of conception and menstrual cycle
length [42]. Nonetheless, our findings show that both
COC use and age play a role on TTP and its relationship
with POPs.
The proportions of chemicals differed between

SELMA and NHANES, showing that exposure patterns
may vary between countries. While both cohorts were of
similar reproductive age and time period, other factors
such as occupation, race and lifestyle factors may con-
tribute to these differences. This further emphasizes the
need to focus further studies on mixture approach in
analyzing chemicals exposure. Importantly, POPs are
not the only chemicals women of reproductive age are
exposed to. Recent biomonitoring studies consistently
find more than 300 environmental chemicals or their
metabolites in the serum of nearly all analyzed individ-
uals [43]. It is of high priority to study how extensive

mixtures of chemicals collectively modulate reproductive
functions in women.

Possible biological mechanism
One of the molecular mechanisms that possibly
could explain our results is the well-known impact of
COCs on adenosine triphosphate (ATP)-binding cas-
sette (ABC) transporters [44]. ABC transporters are
highly conserved transmembrane proteins that are re-
sponsible for the efflux of substances towards the
extracellular space. With this efflux, substances are
eliminated and prevented from accumulating inside
the cell [45]. While it aids in many physiological pro-
cesses such as steroid production and immunological
processes, it also provides support by efflux of envir-
onmental toxins out of the cells [46]. A number of
ABC proteins, such as P-glycoprotein encoded by the

Fig. 5 Association between POP mixture and fertility outcomes in women ≥29 years old not using COCs. Graph shows shape and direction of
association between weighted quantile sum (WQS) index and (a) time-to-pregnancy and (b) infertility. Logistic regression fit was for women with
parity = 1, non-smoker, regular menses, and BMI = 24 kg/m2

Table 3 Weighted quantile sum index stratified according to age and use of combined oral contraceptives (COCs). Data presented
are estimate (SE) and OR (95% CI)

Group Outcome: TTPa

Estimate (SE)b
Chemicals of concernc Outcome: Infertility

OR (95% CI) b
Chemicals of concernc

< 29 years old Non-COC user −0.02(0.05) – 0.97 (0.22–4.26) –

COC user 0.03 (0.03) – 0.92 (0.35–2.41) –

≥ 29 years old Non-COC user 0.09 (0.03)* PCB 183, 156, 187, 118 1.79 (1.03–3.11)* PCB 187, 156, 74, 183,
transnonachlor

COC user 0.07 (0.04) – 1.27 (0.07–2.3) –
alog transformed + 1
bAdjusted with parity, regularity of menses, maternal BMI, and smoking
cChemicals with weight greater than 7.6%
* p < 0.05
Abbreviations: CI confidence interval, COCs combined oral contraceptives, PCB polychlorobiphenyl, OR odds ratio, SE standard error, TTP time-to-pregnancy
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ABCB1 gene, were shown to be upregulated by estro-
gen and progesterone (i.e. hormones that are present
in COCs) [44, 47]. With the increased production of
the ABC transporters, environmental chemicals such
as POPs could possibly be eliminated from the cell
[46], suggesting to less toxic effects on reproductive
functions. It has also been shown that there is an
age-related downregulation of ABC transporters [48],
which possibly explains observing the association
mostly in women older than 29 years old. Further
studies are warranted to confirm this hypothesis.

Limitations of the study
Our study has limitations. The chemical concentrations
were not lipid adjusted. In addition, our study focused
on combined oral contraceptives, excluding other hor-
monal contraception methods such as progesterone only
pills and intrauterine device with hormones. There was
neither data on the duration and type of the COC use
prior to discontinuation. Moreover, while we recognize
that paternal factors may also affect TTP, the only pater-
nal data in the cohort was BMI, which was eventually
not included in the model because it did not modify the
FR more than 10%. Unplanned pregnancies were also
not available in the cohort. Lack of these data may lead
to overestimation of findings, hence, further studies are
needed to confirm these results. Because this study uti-
lized a pregnancy cohort, the least fertile couples were
less represented. In addition, different statistical analyses
were performed when studying the chemicals as individ-
ual compounds and as a mixture. While Cox propor-
tional hazard was not a problem for possible presence of
non-monotonic dose response, it cannot handle highly
correlated predictors and cannot be used for mixture
analysis. On the other hand, WQS was appropriate for
handling intracollinearity but limited to monotonic dose
response. Hence, comparison of results between the ana-
lyses must be taken with caution.

Conclusions
Although the studied 13 chemicals were banned sev-
eral decades ago, many of them were still detected in
majority of the serum samples collected in 818 preg-
nant women during the period 2007–2010 living in
Sweden. Even though none of the POPs were associ-
ated with fecundability prior to stratification, our re-
sults indicate that higher POP exposure, both as
individual chemicals and as a mixture, may be associ-
ated with lower fecundability and increased infertility
in women ≥29 years old not using COC as their most
recent pre-pregnancy contraception method. This is
important as more and more women postpone child-
bearing, which could make the chemical effects more
profound. This observation could also help explain

some of the contradictory findings in the literature.
Use of COCs may modify the relationship between
POPs and TTP. This study also supports studying mix-
tures in epidemiological studies to further understand
combination effects of chemicals.
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