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Developmental fluoride neurotoxicity:

an updated review
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Abstract

Background: After the discovery of fluoride as a caries-preventing agent in the mid-twentieth century, fluoridation
of community water has become a widespread intervention, sometimes hailed as a mainstay of modern public
health. However, this practice results in elevated fluoride intake and has become controversial for two reasons. First,
topical fluoride application in the oral cavity appears to be a more direct and appropriate means of preventing
caries. Second, systemic fluoride uptake is suspected of causing adverse effects, in particular neurotoxicity during
early development. The latter is supported by experimental neurotoxicity findings and toxicokinetic evidence of
fluoride passing into the brain.

Method: An integrated literature review was conducted on fluoride exposure and intellectual disability, with a main
focus on studies on children published subsequent to a meta-analysis from 2012.

Results: Fourteen recent cross-sectional studies from endemic areas with naturally high fluoride concentrations in
groundwater supported the previous findings of cognitive deficits in children with elevated fluoride exposures.
Three recent prospective studies from Mexico and Canada with individual exposure data showed that early-life
exposures were negatively associated with children’s performance on cognitive tests. Neurotoxicity appeared to be
dose-dependent, and tentative benchmark dose calculations suggest that safe exposures are likely to be below
currently accepted or recommended fluoride concentrations in drinking water.

Conclusion: The recent epidemiological results support the notion that elevated fluoride intake during early
development can result in IQ deficits that may be considerable. Recognition of neurotoxic risks is necessary when
determining the safety of fluoride-contaminated drinking water and fluoride uses for preventive dentistry purposes.

Keywords: Cognitive disorder, Dental caries, Drinking water, Fluoridation, Fluoride poisoning, Intellectual disability,
Neurotoxic disorder, Prenatal exposure delayed effects
Background
In 2006, the U.S. National Research Council (NRC)
evaluated the fluoride standards of the Environmental
Protection Agency (EPA) and concluded that fluoride
can adversely affect the brain through both direct and
indirect means, that elevated fluoride concentrations in
drinking-water may be of concern for neurotoxic effects,
and that additional research was warranted [1]. At the
time, and continuing through today, the EPA’s
Maximum Contaminant Level Goal (MCLG) for fluoride
was 4.0 mg/L that aimed at protecting against crippling
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skeletal fluorosis, which is still considered to be the
critical adverse health effect from fluoride exposure [2].
Following the NRC review, evidence has accumulated
that the developing human brain is inherently much
more susceptible to injury from neurotoxic agents, such
as fluoride, than is the adult brain [3]. A review and
meta-analysis published in 2012 [4] assessed a total of
27 research reports, all but two of them from China, on
elevated fluoride exposure and its association with cog-
nitive deficits in children. All but one study suggested
that a higher fluoride content of residential drinking
water was associated with poorer IQ performance at
school age. Only a couple of these studies had been con-
sidered by regulatory agencies [1, 5]. As much additional
evidence has emerged since then, it seems appropriate
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to update the assessment of potential human neurotox-
icity associated with elevated fluoride exposure, espe-
cially during early development.
The present review first outlines the importance of

drinking water as a source of fluoride exposure, followed
by the toxicokinetics of fluoride absorbed into the body,
including passage through the placenta and the blood-
brain barrier, and finally a brief summary of the experi-
mental evidence of developmental neurotoxicity. All of
this evidence supports the plausibility that elevated
fluoride exposure in early life may cause adverse effects
on the brain. The main part of this review addresses the
epidemiological studies of fluoride neurotoxicity, with a
focus on children and the dose-dependent impact of
prenatal and early postnatal exposures.

Potential sources of fluoride exposure
Fluoride occurs in many minerals and in soil [6], thus
also in groundwater; the average concentration in the
U.S. is 0.26 mg/L [7]. Since the mid-1940s, fluoride has
been added to many community water supplies with the
aim of preventing tooth decay [8]. In the U.S., fluorid-
ation is recommended at a concentration of 0.7 mg/L
[9]. Water fluoridation is applied in several other coun-
tries as well, such as Australia, Brazil, Canada, Chile,
Ireland, New Zealand, and the United Kingdom. For
adults in the U.S., fluoridated water and beverages con-
tribute an average of about 80% of the daily total fluor-
ide intake (estimated to average 2.91 mg) in fluoridated
communities [10]. In a Canadian study of pregnant
women [11], water fluoridation was the major predictor
of urinary fluoride excretion levels, with creatinine-
adjusted concentrations of 0.87 mg/L and 0.46 mg/L in
fluoridated (0.6 mg/L water) and non-fluoridated (0.12
mg/L) communities.
In addition to fluoridated water and other forms of

caries prevention, tea is an important source of fluoride
exposure, even if prepared with deionized water [12, 13].
Additional sources of fluoride intake include certain
foods (such as sardines), industrial emissions, supple-
ments, pesticide residues, and certain pharmaceuticals
that can release fluoride [1]. Few studies provide
population-based data on fluoride exposure, although
national data on plasma-fluoride concentrations are
available from a recent NHANES study in the U.S. [14].

Uptake, distribution and retention
Approximately 75–90% of ingested fluoride is absorbed
and readily distributed throughout the body, with approxi-
mately 99% of retained fluoride being bound in calcium-
rich tissues such as bone and teeth [6, 15] as well as the
calcified parts of the pineal gland [16]. Fluoride also
crosses the placenta and reaches the fetus [1, 6] and the
amnionic fluid [17]. The fluoride concentration in breast
milk is low, generally less than 0.01mg/L [1, 18], and
formula can therefore contribute much higher intakes,
especially when prepared with high-fluoride water
[19–21]. Children and infants retain higher proportions of
absorbed fluoride compared to adults, i.e., about 80–90%,
as compared to about 50–60% in adults [6, 15].
As drinking water is usually the major source of ex-

posure, the community water-fluoride concentration has
often been used as an exposure parameter in ecological
studies. For individual exposure assessment, the total
fluoride intake can be calculated from daily water con-
sumption and the intakes of other major sources, such
as tea. Analyses of biological samples, i.e., urine and
blood (generally in the form of plasma or serum) provide
information on fluoride circulating in the body [22]. In
adults, the fasting plasma-fluoride concentration, when
expressed in micromoles per liter [μmol/L], is approxi-
mately equal to the concentration in the drinking water
or in the urine expressed in mg/L [1]. Fluoride excretion
is mainly via urine, and the concentration represents
both recent absorption and releases from long-term ac-
cumulation due to continuous bone tissue remodeling
[6]. Pregnant women may show lower urinary fluoride
levels than non-pregnant controls, perhaps due to fetal
uptake and storage in hard tissues [23], although the
urinary fluoride excretion tends to increase from the
first to the third trimester [11, 24]. Children have lower
urine-fluoride concentrations, most likely due to fluoride
incorporation in the growing skeleton [1].
As indicator of daily intake [25, 26], urinary fluoride

excretion is often assessed in spot urine samples, al-
though morning urine or 24-h samples may provide
better precision, as may be the case with timed excretion
[27]. To adjust for temporal differences in urine produc-
tion, fluoride concentrations in spot samples are usually
standardized according to the creatinine concentration
and/or relative density. These considerations are import-
ant when evaluating the validity of exposure assessments
in epidemiological studies.
While the blood-brain barrier may to some extent pro-

tect the adult brain from many toxic agents, this protec-
tion is less likely in the fetus and small child with an
incompletely formed barrier [28]. As indication that
fluoride passes the blood-brain barrier, fluoride concen-
trations in human cerebrospinal fluid approach those oc-
curring in serum [29]. Further, imaging studies of
radioactive fluoride used in cancer treatment document
that circulating fluoride reaches the brain [30–33].
Within the brain, fluoride appears to accumulate in re-
gions responsible for memory and learning [34, 35].
As fluoride can pass both the placental barrier and the

blood-brain barrier, it reaches the fetal brain [36]. Ac-
cordingly, autopsy studies in endemic areas in China
have shown elevated fluoride concentrations in aborted
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fetal tissues, including brain [37, 38]. Also, fluoride con-
centrations in maternal and cord serum correlate well
[39], cord blood showing slightly lower concentrations,
apparently about 80% of the concentrations in maternal
serum [40], though depending on gestational age [17].
Fetal blood sampling techniques have allowed documen-
tation of elevated fluoride concentrations in the fetal
circulation after administration of sodium fluoride to the
mother [41]. Accordingly, assessment of fluoride in
maternal samples during pregnancy may be used as indi-
cator of fetal exposure.
Due to a well-established dose-response relationship

between early-life fluoride exposure and the degree of
dental fluorosis [6, 20, 42], this abnormality can serve as
a useful biomarker of developmental fluoride exposure.
When water fluoridation was first introduced in the
middle of the twentieth century, U.S. health authorities
estimated that less than 10% of children in fluoridated
communities (at 1 mg/L water) would develop dental
fluorosis, and only in its mildest forms [43]. Subsequent
epidemiological studies have demonstrated prevalence
and severity of fluorosis much higher than predicted
[9, 44, 45]. Increased occurrence of dental fluorosis has
also been recorded in fluoridated areas in the United
Kingdom [46]. This increase may be related to the
widened use of fluoridated water for beverages and food
products for general consumption and for formula prepar-
ation for infants [19, 21], as well as increased usage (and
ingestion) of fluoride-containing toothpastes among pre-
schoolers [47].

Experimental neurotoxicity
In vitro studies have documented fluoride toxicity to
brain cells, most of the studies using high fluoride
concentrations, though some effects have been demon-
strated at lower, more realistic levels [48, 49]. In the
low-dose studies, 0.5 μmol/L (10 μg/L) was sufficient to
induce lipid peroxidation and result in biochemical
changes in brain cells [48], while 3 μmol/L (57 μg/L) in-
duced inflammatory reactions in brain cells [49]. These
concentrations are similar to the upper ranges of serum-
fluoride levels reported in the general population [6]. In
addition, fluoride can negatively affect brain develop-
ment in rats at levels below those that cause dental le-
sions [50].
Utilizing computerized surveillance of rat behavior, a

landmark study showed signs of neurotoxicity at ele-
vated fluoride exposure [51], and more recent studies
have reported fluoride-induced neurochemical, biochem-
ical, and anatomic changes in the brains of treated ani-
mals, although often at doses much above human
exposure levels. Among possible mechanisms of devel-
opmental neurotoxicity is toxicity to the thyroid gland
[52], a mechanism relevant in regard to several
neurotoxicants [53, 54]. Thus, the NRC concluded that
fluoride is an endocrine disrupter that can affect thyroid
function at intake levels as low as 0.01 to 0.03 mg/kg/day
in individuals with iodine deficiency [1].
A 2016 review by the National Toxicology Program

(NTP) focused on fluoride neurotoxicity in regard to
learning and memory [55]. At water concentrations
higher than 0.7 mg/L, NTP found a low-to-moderate
level of evidence. The evidence was the strongest (mod-
erate) in animals exposed as adults and weaker (low) in
animals exposed during development, where fewer stud-
ies were available at relevant exposure levels. Most ex-
perimental studies had used concentrations exceeding
the levels added to water in fluoridation programs, but
the NTP recognized that rats require about five times
more fluoride in their water to achieve the same serum-
fluoride concentrations as humans [55].
Subsequently, several additional developmental studies

have been published, including two that reported im-
paired learning/memory in rats consuming water with
fairly low fluoride concentrations [56, 57]. However, not
all studies have reported adverse effects [58], perhaps
due in part to strain or species-related differences in vul-
nerability to fluoride. In addition, most animal studies
used subchronic exposure scenarios and, due to the lack
of fluoride transfer into milk, neonatal exposure was not
considered, thereby likely underestimating the effect
from early-life exposure. Overall, the experimental evi-
dence of developmental neurotoxicity appears to be
strengthened and to provide plausibility to the potential
occurrence of neurodevelopmental effects in humans.

Methods
Publications on fluoride neurotoxicity in humans were
identified from the PubMed data base by using “fluoride”
along with search terms “neurotoxic*”, “neurologic”, and
“intelligence”. The searches were narrowed by limiting
to “human,” “most recent 10 Years,” and “English.” Add-
itional searches using “fluoride” also included search
terms “prenatal exposure delayed effects”[MeSH] or
“neurotoxicity syndrome”[MeSH]. Secondary searches
used combinations of fluoride with “maternal exposure”
or “academic disorder, developmental”.
Supporting literature from earlier years was obtained

by using the terms “occupational exposure” or “endemic
disease”. References cited in the publications and in re-
cent review reports [55, 59–61] were also retrieved, as
were publications listed by PubMed under “Similar arti-
cles”. Because these articles may not represent an ex-
haustive list of relevant studies, separate searches
included the web site of the journal Fluoride (http://
www.fluorideresearch.org/) and the site (http://oversea.
cnki.net/kns55/default.aspx) that covers many Chinese-
language journals not included in PubMed. Full-text

http://www.fluorideresearch.org/
http://www.fluorideresearch.org/
http://oversea.cnki.net/kns55/default.aspx
http://oversea.cnki.net/kns55/default.aspx
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copies of all relevant studies were obtained, and studies
were disregarded if no more than an abstract in English
was available.
For the purpose of identifying safe exposure levels,

regulatory agencies routinely use benchmark dose calcu-
lations [62]. While such calculations would normally
require access to the original data, approximate BMD
and BMDL results can be generated from descriptive
data on associations between maternal urinary fluoride
concentrations and the child’s IQ [63]. The benchmark
dose (BMD) is the dose leading to a pre-defined change
(denoted BMR) in the response (in this case, an IQ loss),
when compared to comparable, but unexposed individ-
uals. The BMR must be defined before the analysis [62],
and recent practice suggests that a decrease in IQ of one
point is an appropriate BMR [64–67].
In the above framework, the difference between the

expected IQ level at the unexposed background (E [Y
(0)]) and at the BMD (E [Y (BMD)]) is equal to the
BMR:

E Y 0ð Þ½ �−E Y BMDð Þ½ � ¼ BMR

In a linear model (Y(d) = α + βd + ɛ), we get BMD =
−BMR/β. The main result of the benchmark analysis is
the benchmark dose level (BMDL), which is defined as a
lower one-sided 95% confidence limit of the BMD. In
the linear model

BMDL ¼ −BMR=βlower

where βlower is the one-sided lower 95% confidence limit
for β [67]. Thus, in this model the benchmark results are
a function of statistics routinely calculated in regression
analysis.
For a linear dose-response model, epidemiological

studies that report developmental fluoride exposure in
regard to IQ will allow computation of BMD and BMDL
based only on the regression coefficient and its uncer-
tainty, assuming a Gaussian distribution.

Results
Occupational and endemic area studies
The neurotoxicity of chemicals is often first discovered
from workplace exposures [68], later followed by case
reports and small studies of highly-exposed children or
pregnant women, then confirmed in population studies
that are later complemented by prospective studies [69].
The same seems to be true of fluoride. A brief summary
is therefore presented on the progress of this evidence
before focusing on developmental exposures.
In connection with his seminal studies of occupational

fluoride poisoning in the 1930s, Kaj Roholm reported
evidence of nervous system effects in the Copenhagen
cryolite workers [70]: “The marked frequency of nervous
disorders after employment has ceased might indicate
that cryolite has a particularly harmful effect on the cen-
tral nervous system.” (p. 178). Later on, the Manhattan
Project in the 1940s recorded neurological effects in
workers exposed to uranium hexafluoride gas (UF6), and
the “rather marked central nervous system effect with
mental confusion, drowsiness and lassitude as the con-
spicuous features” was attributed to the fluoride rather
than uranium [71].
Subsequent occupational health studies are somewhat

harder to interpret, as fluoride exposure usually occurs
as part of a mixture, e.g., in aluminum production [72].
Nonetheless, industrial fluorosis (a.k.a. osteosclerosis)
was found to be associated with gradually progressive
effects on the normal function and metabolism of the
brain and other aspects of the nervous system [73], and
a review highlighted difficulties with concentration and
memory accompanied by general malaise and fatigue
[74]. More recent studies have applied neuropsychological
tests to assess cognitive problems associated with occupa-
tional fluoride exposures [75, 76]. The present literature
search did not reveal any recent publications on neurotox-
icity from occupational fluoride exposure. While Roholm
[70] described unusually serious dental fluorosis in a son
of a female cryolite worker, none of the occupational stud-
ies identified referred to adverse neurobehavioral effects in
the progeny of female workers.
Opportunities for epidemiological studies of the gen-

eral population depend on the existence of comparable
groups exposed to different and stable amounts of fluor-
ide, e.g., from drinking water. Such circumstances are
difficult to find in many industrialized countries, as
water-fluoride concentrations may not be well defined,
residents may consume beverages from a variety of
sources, and exposures are affected by residences chan-
ging over time. Multiple epidemiological studies of de-
velopmental fluoride neurotoxicity have been conducted
in countries such as China where elevated water-fluoride
concentrations may exceed 1mg/L in many rural com-
munities. In these settings, families typically remain at
the same residence, with a well-defined water source
that has provided fairly constant fluoride exposures.
Studies from high-fluoride endemic areas in China have

reported on abnormal neuropathology findings from
aborted fetuses [37] and lower nerve cell numbers and
volumes in fetal brain tissue at the elevated exposures
[38]. Deviations observed in neurotransmitters and recep-
tors have suggested neural dysplasia [77], as later repli-
cated along with decreased excitatory aspartic acid and
elevated inhibitory taurine in comparison to controls [78].
Although these studies are in agreement with the notion
that fluoride from the mother’s circulation can pass into
the fetal brain with subsequent anatomic and biochemical
changes, the studies related to elevated fluoride exposure
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originate primarily from coal burning, which may have
contributed other, undocumented contaminants.
Additional community studies in adults have focused on

cognitive problems and neurological symptoms in subjects
with skeletal fluorosis. Using neuropsychological tests, in-
cluding the Wechsler scale, 49 adult fluorosis patients
were compared with controls and showed deficits in
language fluency, recognition, similarities, associative
learning, and working memory [79]. Further, cognitive im-
pairment in elderly subjects from a waterborne fluorosis
area was found to be much more common than in less-
exposed controls [80]. Dementia diagnosis in North
Carolina was more common at higher water-fluoride con-
centrations [81], and similar findings for fluoride (and
aluminum) have recently been reported from Scotland
[82]. Excess occurrence of neurological symptoms (i.e.,
headaches, insomnia, and lethargy) have also been re-
corded in both adults and children from waterborne fluor-
osis areas [83]. However, these studies are hard to
evaluate due to uncertainty about past fluoride exposure
levels and the possible influence of other risk factors. The
literature search did not reveal any other recent studies
that added important evidence in this regard.

Cross-sectional studies of children in exposed
communities
Most studies that have investigated fluoride’s impact on
childhood IQ are from locations in China with elevated
exposure to fluoride, within and outside of known en-
demic areas [1, 4, 84]. When water supplies derive from
springs or mountain sources, small or large pockets of in-
creased exposures may be created near or within similar
areas of lower exposures, thus representing useful epi-
demiology settings. The fluoride exposure from the house-
hold water would then represent the only or major
difference between nearby neighborhoods. At the time,
children in rural China had very little exposure to fluori-
dated dental products [85]. The local water-fluoride con-
centration can then serve as a feasible and appropriate
exposure parameter, and some studies emphasized that
the children were born in the particular study area, and/or
had been using the same water supply since birth. Reliable
exposure assessment then becomes possible when rural
families remain for a long time at the same residence. Any
deviation from stable exposure would result in exposure
misclassification and thereby a likely underestimation of
the toxicity [86]. Thus, the consistency of study findings
supports the likelihood that developmental fluoride expos-
ure causes cognitive deficits [4]. Although the study de-
signs are technically cross-sectional, many of the settings
allowed consideration of the current exposure as an indi-
cator also of a longer-term exposure level.
Most study reports have not been widely disseminated

and considered in literature reviews. Four studies from
China that were published in English [87–90] were cited
in the 2006 NRC report [1], while the World Health
Organization (WHO) considered only two [87, 90] in its
revised Environmental Health Criteria document on fluor-
ide from 2002 [26]. A meta-analysis from 2007 included
five studies [91], four of which were not in a subsequent
review [84]. The latter review was cited by the EU Scien-
tific Committee on Health and Environmental Risks
(SCHER) working group in 2010 [5] in support of a con-
clusion that the evidence of neurotoxicity was insufficient.
A meta-analysis from 2012 was based on a collabor-

ation with Chinese experts on fluoride toxicity and cov-
ered 27 cross-sectional studies reporting associations
between children’s intelligence and their fluoride expos-
ure [4]. Overall, children who lived in areas with high
fluoride exposure had lower IQ scores than those who
lived in low exposure or control areas, the average differ-
ence being close to 7 IQ points. These findings were
consistent with an earlier review [84], but included nine
more studies and more systematically addressed study
selection, exclusion information, and bias assessment.
Two of the 27 studies that we included in the analysis

were conducted in Iran [92, 93], while all other study
populations were from China. Two cohorts were ex-
posed to fluoride from coal burning [94, 95], but other-
wise the study populations were exposed to fluoride
through drinking water contaminated from soil minerals.
Due to the use of different cognitive tests, normalized
data were used to estimate the possible effects of fluor-
ide exposure on intelligence. The results were materially
unchanged in various sensitivity analyses, as were ana-
lyses that excluded studies with possible concerns about
co-factors, such as iodine deficiency and arsenic toxicity,
or non-water fluoride exposure from coal burning [4].
Among the 27 studies, all but one showed random-effect

standardized mean difference (SMD) estimates that indicated
an inverse association, ranging from − 0.95 to − 0.10 (one
study showed a slight, non-significant effect in the opposite
direction). The overall random-effects SMD estimate (and
95% confidence interval, CI) was − 0.45 (− 0.56, − 0.34).
Given that the standard deviation (SD) for the IQ scale is 15,
an SMD of − 0.45 corresponds to a loss of 6.75 IQ points. Al-
though substantial heterogeneity was present among the
studies, there was no clear evidence of publication bias [4].
Given the large number of studies showing cognitive deficits
associated with elevated fluoride exposure under different
settings, the general tendency of fluoride-associated neuro-
toxicity in children (p < 0.001) seems robust.

Recent cross-sectional studies of children
The present study presents an updated literature search
that revealed 14 new studies on the association between
early-life fluoride exposure and IQ in children (Table 1).
All 14 studies reported apparent associations between
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elevated fluoride exposure and reduced intelligence,
although one did not reach statistical significance. The
several new Chinese-language studies showed similar
associations between fluoride exposure and reduced IQ
[96, 101–103, 105, 107, 108], although often published
as short reports in national journals and according to
the standards of science at the time. Similar findings
were reported from India [98, 100, 110] and Africa
[104, 106]. As with the previous reports, most of these
newer studies suffer from limitations of covariate reporting,
which limited the opportunity to assess possible bias. Also,
a variety of outcomes have been employed, such as neuro-
psychological tests and Raven-based intelligence scales. Of
note, fluoride exposure was accompanied by other contami-
nants from coal burning in some studies [96, 99, 101, 102].
Four studies used the degree of dental fluorosis as exposure
parameter, and three of them reported a clear negative
association with IQ [100, 103, 107], although statistical
significance was not reached in one study [102]. The water-
fluoride concentrations tended to be somewhat lower than
in previous studies and thus more relevant to exposures
occurring outside of endemic areas.
To ascertain the validity of the methodology used in

Chinese studies of fluoride neurotoxicity, my colleagues
and I carried out a small study in Sichuan using methods
commonly applied in Western neurobehavioral epidemi-
ology [97]. The 51 children examined had lived in their
respective communities all their life, i.e., at least since
conception. All three measures of fluoride exposure
showed negative associations for cognitive function tests.
One exposure parameter was the known water-fluoride
concentration at the residence where the child was born,
another was the child’s morning urine-fluoride after
having ingested fluoride-free water the night before (nei-
ther measure reached formal statistical significance as
predictor of cognitive deficits). The strongest and
statistically significant association was seen with the de-
gree of dental fluorosis that served as a marker of the
child’s early-life fluoride exposure. Other recent studies
(Table 1) also found dental fluorosis to be a useful risk
indicator. While one previous study in the U.S. failed to
observe a relationship between dental fluorosis and
behavior (parental assessment by the Child Behavior
Checklist) [111], a dose-response relationship between
urinary fluoride concentrations (range, 0.24–2.84 mg/L)
and reduced IQ was reported in a population without
any severe dental fluorosis [112].
A recent meta-analysis of waterborne fluoride expo-

sures [60] covered 18 studies with water-fluoride con-
centrations below 4 mg/L; clear IQ reductions were
observed at water-fluoride concentrations of about 1
mg/L and above. In addition, four cross-sectional
studies reported linear relationships between urinary
fluoride (one study also included plasma-fluoride) and
IQ among children living in areas with mean water-
fluoride contents of 1.4 mg/L, 1.5–2.5 mg/L, 1.4 mg/L,
and 0.5–2.0 mg/L [99, 107, 109, 113].
Although meta-analysis of studies has previously been

carried out [4, 60], the heterogeneity of the new studies
and differences in exposure assessment and cognitive
tests suggested that a joint analysis would require too
many assumptions to provide useful evidence on the
dose-dependence of neurotoxicity. The information
summarized in Table 1 therefore serves as qualitative
documentation that elevated fluoride exposure during
early development is associated with cognitive deficits.
Although the presence of confounding bias cannot be
excluded, the fairly uniform findings under different
study conditions would argue against any serious bias.
The largest study, by far, reported an IQ loss of 4.29
(95% CI, 0.48–8.09) and 2.67 (0.68–4.67) for each in-
crease by 0.5 mg/L in the fluoride concentration in water
and urine, respectively [107]. A recent study with indi-
vidual exposure data [109] reported lower losses of 0.79
(0.28–1.30) and 0.61 (0.22–0.99) IQ points for each
increase by 0.5 mg/L in fluoride in water and urine, re-
spectively. Of note, the ranges of exposures in these
studies overlap with concentrations commonly reported
from regions without endemic disease.

Prospective studies
More weight must be placed on prospective studies that
include assessment of individual levels of fluoride expo-
sures in early life (Table 2). Two prospective studies
from New Zealand explored the possible neurobehav-
ioral consequences of community water fluoridation.
The first study reported no association between behav-
ioral problems and residence in a fluoridated community
during the first 7 years of life [114]. However, like the
subsequent study, the authors had no access to individ-
ual measurements of fluoride exposure, and the expos-
ure status relied solely on residence in a fluoridated
community and its duration, where age at the time of
residence was apparently not considered.
A more comprehensive study was based on a birth co-

hort established in Dunedin, New Zealand from births in
1972–1973 [115]. The 1037 children were recruited at age
3 years, and IQ tests were administered at ages 7, 9, 11
and 13 years, and again at age 38; the average IQ result for
992 subjects was used for comparison between residents
in areas with and without water fluoridation. No signifi-
cant differences in IQ in regard to fluoridation status were
noted, and this finding was independent of potential con-
founding variables that included sex, socioeconomic sta-
tus, breastfeeding, and birth weight. Prenatal fluoride
exposure was not considered. The average difference in
childhood exposure between fluoridated vs. non-
fluoridated areas was estimated to be 0.3mg/day [117].
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However, the 93 cohort subjects who did not live in a
fluoridated area may well have received fluoride supple-
ments, as was the case for a total of 139 children in the
study, thereby impacting on the exposures [20]. A further
concern is that formula may have contributed substantial
fluoride exposure [19, 21], and it is therefore interesting
that breastfeeding – and thus avoidance of formula – in
the fluoridated areas contributed an advantage that aver-
aged 6.2 IQ points at age 7–13 years, while the advantage
was less (4.3) in the non-fluoridated areas [115]. Subse-
quently, the authors estimated the average total fluoride
intake up to age 5 years, including tablets, toothpastes,
and dietary sources, without finding any IQ difference
[118]. However, information on maternal tea consumption
during pregnancy was not obtained, although tea has long
been recognized as an important source of fluoride in
New Zealand [119]. Lead exposure in this cohort was later
reported to cause IQ deficits [120], but control for the
blood-lead concentration at age 9 years showed no change
in the results for fluoride [117]. Despite the shortcomings,
this study has been hailed as evidence that fluoridated
water is “not neurotoxic for either children or adults,
and does not have a negative effect on IQ” [121].
This conclusion seems rather optimistic [122], given
the fact that the exposure assessment was imprecise
(especially for prenatal exposure) and that the statis-
tical power was probably insufficient to allow identifi-
cation of any important IQ deficit.
More recent studies provide more robust evidence. In

a prospective study from an area in Mexico with ele-
vated levels of fluoride in drinking water, maternal preg-
nancy urine-fluoride (corrected for specific gravity) was
examined for its association with scores on the Bayley
Scales among 65 children evaluated at age 3–15months
[24]. The mothers in the study had average urine-
fluoride concentrations at each of the three trimesters of
pregnancy of 1.9, 2.0, and 2.7 mg/L (higher than the fol-
lowing study). The fluoride exposure indicators during
first and second trimesters were associated with signifi-
cantly lower scores on the Bayley Mental Development
Index score after adjustment for covariates [24].
The existence of the ELEMENT (Early Life Exposure

in Mexico to Environmental Toxicants) birth cohort
allowed longitudinal measurements of urine-fluoride in
pregnant mothers and their offspring and their associa-
tions with measures of cognitive performance of the
children at ages 4 and 6–12 years [63]. The cohort had
been followed to assess developmental lead neurotox-
icity, and biobanked urine samples were available for
fluoride analysis and adjustment for creatinine and dens-
ity. Most of the mothers provided only one or two urine
samples, thereby introducing some imprecision in the
exposure estimate. Child cognitive function was deter-
mined by the General Cognitive Index (GCI) of the
McCarthy Scale at age 4 years in 287 children, and IQ by
an abbreviated Wechsler scale (WASI) at age 6–12 years
in 211 children. Urinary fluoride (mg/L) in the mothers
averaged 0.90 (s.d., 0.35) and, in the children, 0.82 (s.d.,
0.38). Covariates included gestational age, birth weight,
sex, parity, age at examination, and maternal characteris-
tics, such as smoking history, marital status, age at
delivery, maternal IQ, and education. After covariate
adjustment, an increase in maternal urine-fluoride by 1
mg/L during pregnancy was associated with a statisti-
cally significant loss of 6.3 (95% CI, − 10.8; − 1.7) and 5.0
(95% CI, − 8.2; − 1.2) points on the GCI and IQ scores,
respectively. These associations remained significant,
and the effect sizes appeared to increase, in sensitivity
analyses that controlled for lead, mercury, and socioeco-
nomic status.
Although adjustment could not be made for iodine de-

ficiency or arsenic exposure, any residual confounding
was judged to be small in this population. Important
strengths are that the cohort was followed from birth
with meticulous documentation for lead exposure and
other neurobehavioral risks. This study also ascertained
the childhood fluoride exposure at the time of IQ testing
(6–12 years) and found no indication of adverse impact
on the IQ in the cross-sectional analysis [63].
Between 2008 and 2011, 2001 pregnant women were

recruited into the Maternal-Infant Research on Environ-
mental Chemicals (MIREC) cohort in Canada. A subset
of 601 of their children were examined at age 3–4 years,
slightly less than half of them residing in fluoridated
communities [116]. Maternal spot urine samples were
obtained from each of the three semesters of pregnancy,
and results were analyzed for those 512 mother-child
pairs where urine was available from all three semesters,
so that the overall average urine-fluoride could be used
as an exposure biomarker, with adjustment for specific
gravity and creatinine. Information was obtained on food
and beverage intakes, including tea (assuming a fluoride
content of 0.52 mg in each cup of black tea). Intellectual
abilities were assessed using the age-appropriate Wechs-
ler scale that provided a full-scale IQ. Covariate adjust-
ment included exposures to other neurotoxicants and
other relevant covariates, such as sex, age at examin-
ation, and maternal exposure to indirect smoking, race,
and education [116]. As had been shown by the same re-
search group in a previous study of a larger population
[11], women residing in fluoridated communities had
higher urine-fluoride concentrations (0.69 vs 0.40 mg/L)
and also higher calculated daily fluoride intakes from
water and other beverages (0.93 vs. 0.30 mg/day). Re-
gression analyses showed that an increase in urine-fluor-
ide of 1 mg/L was associated with a statistically
significant loss in IQ of 4.49 points in boys, though not
in girls. An increase of 1 mg/L of fluoride in water and
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an increase of 1 mg/day of fluoride intake was associated
with an IQ loss of 5.3 points and 3.66 points, respect-
ively, for both boys and girls [116]. Thus, this study at
somewhat lower exposures is in good agreement with
the data from the two studies carried out in Mexico.
In an extension of the MIREC study of prenatal fluor-

ide exposures, the authors subsequently assessed the
possible impact of fluoride exposure from reconstituted
formula in fluoridated and non-fluoridated communities
[123]. After adjustment for prenatal fluoride exposure
and other covariates, each increase by 1 mg/L in the
water fluoride concentration was found to be associated
with a statistically significant decrease of 8.8 IQ points
in the children who had been formula-fed in the first 6
months of life, while no such difference was seen among
the exclusively breastfed children. Although the results
were somewhat unstable and included only 68 formula-
fed children from fluoridated communities, these results
support the notion that early postnatal brain develop-
ment is also likely to be vulnerable to neurotoxicant ex-
posures, as is well documented, e.g., from arsenic
exposure in infancy [124].
The substantial IQ losses associated with elevated

water-fluoride concentrations are in accordance with
the difference of almost 7 IQ points between exposed
groups and controls in the meta-analysis from 2012
[4]. Also, the largest cross-sectional study from 2018
showed a statistically significant loss of 8.6 IQ points
for each increase by 1 mg/L in the fluoride concentra-
tion in water [107], although somewhat less in an-
other recent study [109].
Several additional reports using other cognition mea-

sures are also of relevance. Another Canadian study ana-
lyzed data from two cycles of the Canadian Health
Measures Survey (CHMS) [125]. Randomly measured
urine-fluoride results from children aged 3-to-12 years
were linked to parental reports or self-reported learning
disabilities. When the two cycles of the CHMS were
combined (both including at least 1100 subjects), un-
adjusted urine-fluoride was significantly correlated with
an increased incidence of learning disabilities. However,
this effect lost its statistical significance after controlling
for creatinine and specific gravity. The authors con-
cluded that there was no robust association between
fluoride exposure and reported learning disability among
Canadian children at the ages studied. However, the ex-
posure assessment probably did not reflect the time of
greatest vulnerability to fluoride, and the information on
learning disability was somewhat uncertain, also in re-
gard to the time of appearance. A more recent analysis
relying on the same data showed that elevated fluoride
in tap water was associated with an increased risk of
Attention-Deficit/Hyperactivity Disorder (ADHD) symp-
toms and ADHD diagnosis among Canadian youth,
although the association with ADHD was not present
when urine-fluoride concentrations were used as expos-
ure indicator [126].
A related study of the ELEMENT population showed

that elevated prenatal fluoride exposure was associated
with higher scores on the Conners’ Rating Scale and
thus with tendencies toward inattention and develop-
ment of ADHD [127].
These prospective studies from North America fo-

cused on prenatal and early postnatal exposure known
as a key window of neurological vulnerability [69]. All of
these studies relied on individual exposure indicators,
thus providing substantial support to the conclusion that
elevated fluoride exposure during early development can
cause neurotoxicity.

Retrospective studies of fluoride neurotoxicity
A few retrospective studies are available but provide only
weak evidence on the possible existence of fluoride-
related neurotoxicity. A Swedish study utilized the regis-
ter of military conscripts who underwent neurocognitive
tests [128]. The authors then estimated the water-
fluoride concentrations for each of the about 80,000
subjects based on their residential history, where the geo-
graphic location of the current residence was linked to a
water supply with a known fluoride content. The study
found no meaningful or consistent relationship between
the test results and the home water-fluoride concentration
(0 to 2mg/L). The study did identify a relationship
between water-fluoride and increased income, which the
authors attributed to improved dental health. However,
the study did not have access to specific individual fluor-
ide exposure data, nor was developmental exposure
assessed. This study is therefore non-informative due to
the likely misclassification of any causative exposure.
In the U.S., parental reports on ADHD among 4-to-

17-year-olds were collected from the National Survey of
Children’s Health and combined with information on
water fluoridation at state level [129]. The prevalence of
artificial water fluoridation in 1992 predicted signifi-
cantly the state prevalence of ADHD from the surveys in
2003, 2007 and 2011. After adjustment for socioeco-
nomic status, each 1% increase in artificial fluoridation
prevalence in 1992 was associated with approximately
67,000 to 131,000 additional ADHD diagnoses from
2003 to 2011. Given the state-level exposure assessment
and the use of parental reports of ADHD, this ecological
study has important weaknesses, although the findings
are in agreement with other recent studies. However, the
study has been criticized, as inclusion of mean elevation
as a covariate apparently abolishes the significance of
fluoridation as a predictor [130].
Overall, the retrospective studies are limited by expos-

ure data that do not necessarily reflect early-life
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conditions and therefore add little weight to the infor-
mation otherwise available on fluoride neurotoxicity in
children.

Dose-dependence and benchmark doses
The studies reviewed show dose-dependent fluoride
neurotoxicity that appears to be statistically significant
at water concentrations of or below 1mg/L, but the
studies themselves do not identify a likely threshold.
Regulatory agencies often use benchmark dose calcula-
tions to develop non-cancer health-based limits for diet-
ary intakes, such as drinking water [62, 131]. One recent
report [132] used this approach to generate benchmark
results from a study of more than 500 children in China
[89]. The authors used a high BMR of 5 IQ points, but
results were also given for a more appropriate BMR of 1
IQ point. For the latter, the BMDL was calculated to be
a daily intake level of 0.27 mg/day [132]. Using the aver-
age water intake of 1.24 L/day in non-pregnant women
[133], the BMDL corresponds to a water concentration
of 0.22 mg/L. The report did not provide data for urine-
fluoride concentrations.
As described in the Methods section, the regression

coefficients and their standard deviations, as provided in
the published reports [63, 116], were applied to estimate
tentative BMD values. Assuming linearity and Gaussian
distributions, the right-hand columns of Table 3 show
the calculated results for the two prospective studies
with the maternal urine-fluoride concentration as the
exposure parameter in regard to the cognitive function
measures (both boys and girls). For the ELEMENT
study, results for the larger number of children with CGI
outcomes are also shown. Overall, the BMDL results ap-
pear to be in agreement.
The Table 3 results also appear to be reliable, given that

the studies provide ample coverage of subjects with lower-
level exposures close to the BMDL. The Canadian chil-
dren had lower prenatal exposures than the Mexican
study subjects, and along with the apparent lack of fluor-
ide effects in girls, the BMD results are higher than in the
ELEMENT study, although the greater uncertainty results
in a fairly low BMDL. The results suggest a BMDL of
about 0.2 mg/L or below, a level that is similar to the re-
sult calculated from the study in China [89, 132] and
clearly below commonly occurring exposure levels, even
in communities with drinking water fluoridation.
Table 3 Adjusted differences in cognitive outcomes per mg fluoride
benchmark dose results (boys and girls) in regard to maternal urinar

Study Reference Number Outcome U-fluorid

ELEMENT [63] 287 GCI 0.84

ELEMENT [63] 211 IQ 0.82

MIREC [116] 512 IQ 0.51
Plausibility and implications
The present review updates the conclusions from a 2012
meta-analysis of cross-sectional studies of intellectual
deficits associated with elevated fluoride exposure [4].
Subsequent epidemiological studies have strengthened
the links to deficits in cognitive functions, several of
them providing individual exposure levels, though most
of the new studies were cross-sectional and focused on
populations with fluoride exposures higher than those
typically provided by fluoridated water supplies. Pro-
spective studies from the most recent years document
that adverse effects on brain development happen at
elevated exposure levels that occur widely in North
America and elsewhere in the world, in particular in
communities supplied with fluoridated drinking water
[24, 63, 116, 123]. These new prospective studies are of
very high quality and, given the wealth of supporting hu-
man studies and biological plausibility, leave little doubt
that developmental neurotoxicity is a serious risk associ-
ated with elevated fluoride exposure, especially when
this occurs during early brain development. While
evidence on the neurotoxic impact of early postnatal
exposure remains limited [21, 123], other neurotoxicity
evidence suggests that adverse effects are highly
plausible [124].
Research on laboratory animals confirms that elevated

fluoride exposure is toxic to the brain and nerve cells, as
already indicated by the NRC review [1]. The evidence
today is substantially more robust. The NTP review
placed more confidence in fluoride impairing learning in
adult animals due to fewer experimental studies being
available on developmental exposure [55]. Still, not all
studies are in agreement [58], perhaps due to species or
strain differences in vulnerability. However, fluoride is
known to pass the placental barrier and to reach the
brain, and the animal studies bear out the importance of
the prenatal period for fluoride neurotoxicity. Toxicant
exposures in early life can have much more serious con-
sequences than exposures occurring later in life, and the
developing brain is known to be particularly vulnerable
[69]. Thus, the vulnerability of early brain development
supports the notion that fluoride neurotoxicity during
early life is a hazard of public health concern [134].
Dental fluorosis has been dismissed as a “cosmetic” effect

only [6, 135, 136], but the association of dental changes with
intellectual deficits in children [95, 97, 100, 103, 107, 112]
per liter maternal urine (U-fluoride) during pregnancy, and
y fluoride excretion (mg/L urine adjusted for creatinine)

e (median) Estimate 95% CI BMD BMDL

−6.3 −10.8; − 1.7 0.16 0.10

−5.0 −8.2; − 1.2 0.20 0.13

−2.0 − 5.2; 1.3 0.51 0.21
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suggests that dental fluorosis should no longer be ig-
nored as non-adverse. Dental fluorosis may perhaps
serve as a sensitive indicator of prenatal fluoride ex-
posure, and information is needed to determine to
which extent the time windows for dental fluorosis
development in different tooth types [137] overlap
with vulnerable periods for brain development.
Although the adverse outcome pathway is unclear,

several epidemiological studies suggest that thyroid dys-
function is a relevant risk at elevated fluoride exposures.
Thus, studies in children have reported deficient thyroid
functions, including elevated TSH (thyroid stimulating
hormone) at elevated fluoride exposure [138–142], and
one study linked elevated fluoride exposure to both thy-
roid dysfunction and IQ deficits [109]. In Canada, elevated
urine-fluoride was associated with increased TSH among
iodine-deficient adults, though not in the general popula-
tion, after exclusion of those with known thyroid disease
[143]. In England, the diagnosis of hypothyroidism was
nearly twice as frequent in medical practices located in a
fully fluoridated area, as compared to non-fluoridated
areas [144]. These findings are highly relevant to the
neurotoxicity concerns, as thyroid hormones are crucial
for optimal brain development [53, 54].
Given that fluoride is excreted only in minute amounts

in human milk [1, 18], the focus on prenatal exposure
appears justified, but formula-mediated neonatal expo-
sures represent an additional concern, as indicated by
dental fluorosis studies [137] and the most recent study
from Canada [123]. The human brain continues to
develop postnatally, and the period of heightened vul-
nerability therefore extends over many months through
infancy and into early childhood [69]. Fluoride exposures
during infancy are of special concern in regard to for-
mula produced with fluoride-containing water [21, 145].
Unfortunately, current animal models do not appropri-
ately cover neonatal fluoride exposure. Thus, future
studies that focus on exposures prenatally, during in-
fancy, and in later childhood may allow more detailed
assessment of the vulnerable time windows for fluoride
neurotoxicity.
One prospective study suggested that boys may be

more vulnerable to fluoride neurotoxicity than girls
[116]. Given that endocrine disrupting mechanisms
often show sex-dependent vulnerability [146], further re-
search is needed to understand the extent that males
may require additional protection against fluoride expos-
ure. Recent studies have also identified possible genetic
predisposition to fluoride neurotoxicity [113, 147]. This
means that some subgroups of the general population
will be more vulnerable to fluoride exposure so that ex-
posure limits aimed at protecting the average population
may not protect those with susceptible genotypes, as has
been shown, e.g., for methylmercury neurotoxicity [148].
The impact of iodine deficiency on fluoride vulnerability
also needs to be considered [143].
Past studies of fluoride-exposed workers suggest pos-

sible neurotoxicity, but recent evidence rather points to
possible accelerated aging in fluoride-exposed adults
[80–82]. As has been proposed for other developmental
neurotoxicity [134, 149], early-life exposure to fluoride
deserves to be examined in regard to its possible impact
on the risk of adult neurodegenerative disease.
Despite the growing evidence, health risks from ele-

vated exposures to fluoride have received little attention
from regulatory agencies. Thus, the EPA’s regulation of
fluoride in water, most recently confirmed in 2016, is
based on the assumption that crippling fluorosis is the
most sensitive adverse effect [59]. The MCLG for fluor-
ide (4 mg/L) may perhaps serve that purpose, but it is
clearly not protective of adverse effects on the brain,
especially in regard to early-life exposures. In its most
recent review of fluoride [59], the EPA referred to the
2012 meta-analysis [4] and highlighted that IQ deficits
occurred at water-fluoride concentrations “up to 11.5
mg/L”, although this level represented only the highest
exposure in the 27 studies assessed. Neither the EPA nor
a U.S. federal panel [9, 59] noted that most of the studies
included in the review had water-fluoride concentrations
below the MCLG of 4 mg/L. Thus, out of the 18 studies
that provided the water-fluoride concentrations, 13
found deficits at levels below the MCLG, with an aver-
age elevated level at 2.3 mg/L, the lowest being 0.8 mg/L
[4]. The results in Table 1 show that the recent cross-
sectional results from different communities are in ac-
cordance with the previous review [4] and extend the
documentation of cognitive deficits associated with only
slightly elevated exposures.
The appearance of prospective studies that offer strong

evidence of prenatal neurotoxicity should inspire a
revision of water-fluoride regulations. The benchmark
results calculated from these new studies, though tenta-
tive only at this point, support the notion that the
MCLG is much too high. Depending on the use of
uncertainty factors, a protective limit for fluoride in
drinking water would likely require that the MCGL be
reduced by more than a 10-fold factor, i.e., below the
levels currently achieved by fluoridation.
The notion that fluoride is primarily a developmental

neurotoxicant means that fluoride – an element like lead,
mercury, and arsenic – can adversely affect brain develop-
ment at exposures much below those that cause toxicity
in adults. For lead and methylmercury, adverse effects in
children are associated with blood concentrations as low
as about 10 nmol/L. Blood-fluoride concentrations associ-
ated with elevated intakes from drinking-water may ex-
ceed 20 μg/L, or about 1 μmol/L, i.e., about 100-fold
greater than the serum concentrations of the other trace
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elements that cause neurodevelopmental damage. Thus,
although fluoride is neurotoxic, it appears to be much less
potent than elements that occur at much lower concentra-
tions in the Earth’s crust. Although substances that occur
naturally in the biosphere may be thought to be innocu-
ous, or even beneficial as in the case of fluoride, the
anthropogenic elevations in human exposures may well
exceed the levels that human metabolism can successfully
accommodate [150].
Perhaps dentistry interests in promoting water fluorid-

ation have affected the risk assessment and reduced the
regulatory attention to fluoride toxicity. Thus, reports on
fluoride toxicity have been disregarded under a heading
referring to “Anti-Fluoridation Activities” [121], and our
review article [4] was said to rely on “selective readings”
[115], with IQ deficits occurring at high fluoride concen-
trations “up to 11.5 mg/L” [151], although most of the
studies related to concentrations that were only slightly
elevated. Further, an ecological study without individual
exposure data [115] that failed to identify an association
with IQ was considered as strong support of the safety
of water fluoridation and more relevant to fluoridation
policy than other evidence on neurotoxicity [121].
While water fluoridation continues to be recom-

mended [9], the benefits appear to be minimal in recent
studies of caries incidence [152]. Perhaps due to modern
use of topical fluoride products, especially fluoridated
toothpaste, countries that do not fluoridate the water
have seen drops in dental cavity rates similar to those
observed in fluoridated countries [153]. This finding is
in agreement with the observation that fluoride’s pre-
dominant benefit to dental health comes from topical
contact with the surface of the enamel, not from inges-
tion, as was once believed [154, 155]. Already in 2001,
the U.S. Centers for Disease Control (CDC) concluded
that fluoride supplementation during pregnancy did not
benefit the child’s dental health [156]. Consensus has
since then been building on the lack of efficacy of water
fluoridation in preventing caries [152].
It therefore appears that population-based increase of

systemic fluoride exposure may be unnecessary and, ac-
cording to the evidence considered in this review, coun-
terproductive. The focus should therefore shift from
population-wide provision of elevated oral fluoride in-
take to consideration of the risks and consequences of
developmental neurotoxicity associated with elevated
fluoride exposure in early life. The prospective studies
suggest that prevention efforts to control human fluoride
exposures should focus on pregnant women and small
children. In addition to drinking water, attention must
also be paid to other major sources of fluoride, such as
black tea [13]. Thus, excessive tea-drinking is known to
potentially cause skeletal fluorosis [12], and the possible
impact of tea drinking deserves to be considered along
with other possible sources that may affect pregnant
women and small children.
The evidence on fluoride neurotoxicity in the general

population is fairly recent and unlikely to represent the
full toxicological perspective, including adverse effects that
may occur at a delay, as has been seen with many develop-
mental neurotoxicants in the past [134]. While some eco-
logical studies failed to identify clear evidence for fluoride
neurotoxicity, they cannot be relied on as proof that ele-
vated fluoride exposure is safe, in particular regarding
early brain development. Recent prospective studies with
individual exposure assessments provide strong evidence,
and the large number of cross-sectional studies from pop-
ulations with stable and well-characterized exposures pro-
vide additional support.

Conclusions
Previous assessment of neurotoxicity risks associated
with elevated fluoride intake relied on cross-sectional
and ecological epidemiology studies and findings from
experimental studies of elevated exposures. The evidence
base has greatly expanded in recent years, with 14 cross-
sectional studies since 2012, and now also three pro-
spective studies of high quality and documentation of
individual exposure levels. Thus, there is little doubt that
developmental neurotoxicity is a serious risk associated
with elevated fluoride exposure, whether due to commu-
nity water fluoridation, natural fluoride release from soil
minerals, or tea consumption, especially when the ex-
posure occurs during early development. Even the most
informative epidemiological studies involve some uncer-
tainties, but imprecision of the exposure assessment
most likely results in an underestimation of the risk [86].
Thus, the evidence available today may not quite reflect
the true extent of the fluoride toxicity. Given that devel-
opmental neurotoxicity is considered to cause perman-
ent adverse effects [69], the next generation’s brain
health presents a crucial issue in the risk-benefit assess-
ment for fluoride exposure.
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