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Abstract

Background: Increasing evidence suggests that prenatal exposure to arsenic, even at common environmental
levels, adversely affects child health. These adverse effects include impaired fetal growth, which can carry serious
health implications lifelong. However, the mechanisms by which arsenic affects fetal health and development
remain unclear.

Methods: We addressed this question using a group of 46 pregnant women selected from the New Hampshire
Birth Cohort Study (NHBCS), a US cohort exposed to low-to-moderate arsenic levels in drinking water through the
use of unregulated private wells. Prenatal arsenic exposure was assessed using maternal urine samples taken at
mid-gestation. Samples of the fetal portion of the placenta were taken from the base of the umbilical cord insertion
at the time of delivery, stored in RNAlater and frozen. We used RNA sequencing to analyze changes in global gene
expression in the fetal placenta associated with in utero arsenic exposure, adjusting for maternal age. Gene set
enrichment analysis and enrichment mapping were then used to identify biological processes represented by the
differentially expressed genes. Since our previous analyses have identified considerable sex differences in placental
gene expression associated with arsenic exposure, we analyzed male and female samples separately.

Results: At FDR < 0.05, no genes were differentially expressed in female placenta, while 606 genes were
differentially expressed in males. Genes showing the most significant associations with arsenic exposure in females
were LEMD1 and UPK3B (fold changes 2.51 and 2.48), and in males, FIBIN and RANBP3L (fold changes 0.14 and 0.15).
In gene set enrichment analyses, at FDR < 0.05, a total of 211 gene sets were enriched with differentially expressed
genes in female placenta, and 154 in male placenta. In female but not male placenta, 103 of these gene sets were
also associated with reduced birth weight.

Conclusions: Our results reveal multiple biological functions in the fetal placenta that are potentially affected by
increased arsenic exposure, a subset of which is sex-dependent. Further, our data suggest that in female infants, the
mechanisms underlying the arsenic-induced reduction of birth weight may involve activation of stress response
pathways.
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Background
An abundance of epidemiological studies have linked
prenatal arsenic exposure to a range of adverse infant
health outcomes, including spontaneous abortion and
neonatal mortality; reduced birth weight; and increased
risk of infections in infanthood (reviewed in [1]). Al-
though the effects of high-level exposure are more
severe, reports suggest that even levels close to the
World Health Organization’s recommended drinking
water limit of 10 μg/L, which are estimated to affect
millions of people worldwide [2], can be harmful. The
New Hampshire Birth Cohort Study (NHBCS) is an
ongoing cohort study that was initiated in 2009 to elu-
cidate the effects of such common levels of prenatal
exposure to arsenic on maternal and infant health [3].
Participants in the study are pregnant women who use
an unregulated private water supply in a US region
with low to moderate groundwater arsenic levels. Ana-
lyses of the NHBCS have already revealed associations
of arsenic exposure with fetal growth measures includ-
ing birth weight [4]; childhood infections [5]; and vari-
ous physiological and molecular changes in both the
cord blood and placenta [6–10].
Birth weight, a measure of fetal growth, can be an im-

portant indicator of risk of both childhood and adult dis-
ease conditions including neurocognitive disorders,
diabetes, hypertension, and renal disease [11]. Several
epidemiological studies have found decreased birth
weight associated with greater in utero exposure to ar-
senic [12, 13], and this has been observed even at rela-
tively low levels of exposure [4, 14]. However, thus far,
the mechanism by which arsenic impairs fetal growth is
unclear. We have addressed this question by analyzing
how arsenic exposure is associated with gene expression
in the fetal placenta. The fetal placenta plays a central
role in the regulation of fetal growth, controlling the
flow of nutrients and oxygen, producing essential hor-
mones, and acting as a protective barrier. Moreover, it
accumulates arsenic to up to three times the level in ma-
ternal blood [15]. Thus, it is likely that the effects of ar-
senic on the fetal placenta play a major role in the
etiology of low birth weight caused by prenatal exposure.
We used RNA sequencing (RNA-seq) as an unbiased,
transcriptome-wide approach to identify genes whose
expression in the fetal placenta is related to arsenic ex-
posure. Further, using bioinformatic analyses, we identi-
fied biological processes related to arsenic exposure, and
to birth weight, and used these data to identify potential
mechanisms through which arsenic impacts fetal placen-
tal function to reduce fetal growth and birth weight. In
this initial study, we focused on a group of 46 infants
with the lowest and highest levels of prenatal arsenic
exposure among a subcohort of the NHBCS. Based on
the sexual dimorphism observed in previous analyses of

the NHBCS [16, 17], we analyzed the placentas of male
and female infants separately.

Materials and methods
The New Hampshire birth cohort study (NHBCS)
The study cohort was selected from a subcohort of 312
mother-child pairs who were enrolled in the New
Hampshire Birth Cohort Study (NHBCS) [3] between
February 2012 and September 2013. Participants were
English-speaking, mentally competent women between
18 and 45 years of age, pregnant with a singleton infant,
whose home water supply was from a private, unregu-
lated well at their home. Demographic data, pregnancy
history and outcome, and lifestyle factor information
were collected using prenatal and delivery records and
questionnaires. All subjects provided written informed
consent in accordance with the requirements of the In-
stitutional Review Board of Dartmouth College.

Study cohort
For this study, we initially aimed to select 12 infants of
each sex with the highest prenatal arsenic exposure
within our NHBCS subcohort, and the 12 infants of each
sex with the lowest exposure, based on maternal urinary
arsenic levels excluding arsenobetaine (U-As, as detailed
under “Urine sample collection and arsenic measure-
ment” below). Power analysis, performed using the
RNASeqPower R package [18], indicated adequate statis-
tical power (80%) to detect a 2.1-fold change in gene
expression using this sample size. One male sample was
later found to not have an available urine sample, and
one female sample (with low arsenic exposure) was
found to be an outlier by principal component analysis
of gene expression, as described below. After this exclu-
sion, median average maternal gestational U-As levels
were as follows: male high exposure group: 21.04 μg/L
(IQR 25.55 μg/L); male low exposure group: 0.67 μg/L
(IQR 0.31 μg/L); female high exposure group: 13.81 μg/L
(IQR 8.87 μg/L); female low exposure group: 0.74 μg/L
(IQR 0.21 μg/L). Other demographic details are provided
in Table 1.

Arsenic exposure assessment
For assessment of prenatal arsenic exposure in this
study, we used total maternal urinary arsenic, exclud-
ing arsenobetaine (U-As), measured from spot urine
samples at mid-gestation. An advantage of using this
measure of exposure is that, due to the relatively high
levels of arsenic in urine, we were able to measure
species levels individually and remove arsenobetaine,
which is considered non-toxic [19]. To minimize vari-
ation in arsenic intake from household water during
gestation, participants were selected for the NHBCS
who had not changed residence since their last
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menstrual period, and were not planning to move resi-
dence before delivery. Household water arsenic was
previously shown to be strongly associated with mater-
nal urinary arsenic in the NHBCS [3], consistent with
it being a major source of exposure.

Urine sample collection and arsenic measurement
Details of sample collection and arsenic measurement
have been described previously [6]. Briefly, maternal
spot urine samples were collected at approximately
24–28 weeks of gestation, into acid-washed containers
containing diammonium diethyldithiocarbamate to
stabilize trivalent methyl arsenic species [20], and fro-
zen at − 80 °C until analysis (within 24 h of collection).
Samples were analyzed for levels of five individual
arsenic species: arsenite (AsIII), arsenate (AsV),
dimethylarsinic acid (DMAV), monomethylarsonic acid
(MMAV), and arsenobetaine, using high-performance
liquid chromatography inductively coupled plasma
mass spectrometry (ICP-MS). The detection limits
were: 0.15 μg/L for AsIII, 0.10 μg/L for AsV, 0.14 μg/L
for MMA, and 0.11 μg/L for DMA. Numbers of sam-
ples below the detection limits were as follows: AsIII:
29, AsV: 0, DMAV: 30, and MMAV: 22. We calculated
the sum of AsIII, AsV, DMAV and MMAV, with arseno-
betaine excluded, as it is considered non-toxic and is
not metabolized, and used the resulting value, denoted
U-As, as a measure of arsenic exposure. Proportions of
different arsenic species did not vary significantly
between high and low groups, except in the case of AsV,
which was slightly higher among low exposure than high
exposure males (P = 0.032, see Additional file 1).

Placenta biopsy and gene profiling
Placental biopsies were taken by medical staff in the
delivery room. Biopsies measured approximately 1 cm
deep and 1–2 cm across, and were taken at the base of
the umbilical cord insertion to minimize heterogeneity.
Any maternal decidua was removed. Samples were im-
mediately placed in tubes containing RNAlater (Life
Technologies), and then frozen at − 80 °C within 24 h.
Total RNA was extracted using the RNA/DNA

extraction kit (Norgen Biotek, Thorold, ON), quanti-
fied using a NanoDrop spectrophotometer, and stored
at − 80 °C. RNA quality was determined using an Agi-
lent 2100 Bioanalyzer, and global gene expression ana-
lysis was performed by RNA sequencing (RNA-seq) at
the Oncogenomics Core Facility at the University of
Miami. Specifically, TruSeq Stranded Total RNA-seq
Library Prep kits (Illumina) were used to convert total
RNA to cDNA libraries, which were then sequenced
using the Genome Analyzer IIx system (Illumina). The
male and female RNA-seq assays were performed sep-
arately; however, identical procedures were used for
both assays.

Bioinformatic analysis
A summary of the analysis pathway is provided in Fig. 1.
Specifically, sequencing fragments were aligned to the
human reference genome (GRCh38) using the STAR al-
gorithm [21], and reads mapping to genomic features
(transcribed RNA) were counted using featureCounts
[22]. Differential expression was assessed using DESeq2
[23]. Specifically, samples were dichotomized into high
and low arsenic exposure groups. A linear model: raw
read counts ~ groups + maternal age at enrollment +
batch was then fitted to each gene, and Wald signifi-
cance tests and their corresponding p-values were used
to assess differences in expression related to arsenic
exposure, adjusted for maternal age at enrollment and
assay batch [24]. For analyses of differences in expres-
sion related to birth weight, birth weight (in kilograms)
was considered as a continuous variable. Gestational age,
enrollment age and assay batch were also included as co-
variates in the linear models for association tests with
birth weight. The adjustments (excluding assay batch)
were based on previous analyses of the NHBCS, in
which a range of variables (maternal age, maternal
smoking status (never, former, current), maternal educa-
tion level, infant birth weight, infant sex and gestational
age) were assessed as potential confounders using a
series of linear regression models [25]. In our data, we
found the above variables to be associated with U-As/
birth weight and gene expression. To account for

Table 1 Demographic details of the study cohort

Males Females NHBCS

High exposure Low exposure High exposure Low exposure

Number of pregnant women 11 12 12 11 312

Gestational age (wks) 39.76 (1.1) 39.88 (1.0) 38.95 (1.5) 39.41 (1.6) 39.4 (1.5)

Maternal age at enrollment (yrs) 31.73 (4.3) 31.25 (4.5) 30.23 (5.5) 30.72 (3.0) 31.8 (4.8)

Number ever smoked during pregnancy 0 (0)a 0 (0)a 0 (0)a 3 (27.3)a 18 (5.8)a

Infant birth weight (kg) 3.43 (0.6) 3.49 (0.4) 3.21 (0.6) 3.19 (0.4) 3.4 (0.5)

Total urinary arsenic (U-As, μg/L) 21.04 (25.6)b 0.67 (0.3)b 13.81 (8.9)b 0.74 (0.2)b 3.7 (4.1)b

Values are presented as means (SD), anumber (%), or bmedian (interquartile range)
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multiple comparisons, we computed the False Discovery
Rate (FDR) [26].
To further evaluate the potential molecular and

functional effects of arsenic exposure, we performed
gene set enrichment analysis (GSEA) [27]. This in-
volved identifying gene sets (representing biological
processes) enriched with differentially expressed genes.
The “canonical pathways” (CP) gene set collection
from the Molecular Signatures Database (MSigDB),
comprising 1330 gene sets, was used. Gene sets were
ranked by normalized enrichment score (NES), a linear
measurement of the degree to which a gene set is over-
represented at the top or bottom of a list of genes
ranked according to their differential expression [27].
Enrichment Maps [28] were then generated to visualize
the major biological themes of the GSEA results, by
grouping the identified gene sets into clusters based on
common genes.
RNA-seq quality control data are provided in

Additional file 2. An average of 58.2 million and 68.0
million reads were sequenced from female and male
placenta samples respectively. Of these, 96.55 and
98.06% respectively were aligned to the reference gen-
ome, and 49.21 and 46.09% respectively were assigned
to genes (mapped to transcribed RNA). Principal com-
ponent analysis (PCA) of the gene expression data re-
vealed one female sample (with low arsenic exposure)
to be an outlier (Additional file 3A); this sample was
therefore excluded from subsequent analyses. PCA did
not reveal any outliers among the male samples
(Additional file 3B), but showed that the male and fe-
male samples clustered separately (Additional file 3C).

Results
The RNA-seq data were analyzed as summarized in Fig. 1.
First, we identified genes that were differentially
expressed (DE) between high- and low-U-As groups

(Additional file 4). At P < 0.05, 1748 genes were DE in
female placenta, and 2438 genes in male placenta. The
top DE genes were LEMDI and UPK3B in females (fold
changes 2.51 and 2.48), and FIBIN and RANBP3L in
males (fold changes 0.14 and 0.15). A total of 458 DE
genes at P < 0.05 were common to males and females
(data not shown). After FDR adjustment for multiple
comparisons, no genes were DE in females at FDR <
0.05, while 606 genes were differentially expressed in
males (Additional file 4). To validate these results, we
performed qPCR for four of the top DE genes in fe-
males using new tissue samples from the same placen-
tas, and found that the results were largely in keeping
with our RNA-seq data (Additional file 5).
Next, we performed gene set enrichment analysis

(GSEA) to identify gene sets enriched with DE genes in
our high versus low U-As groups. Such gene sets repre-
sent biological processes associated with arsenic expos-
ure. At a significance level of FDR < 0.05, in females, 87
gene sets were upregulated, and 124 gene sets were
downregulated, while in males, 7 gene sets were upregu-
lated, and 146 gene sets were downregulated (Additional
file 6A-D). Table 2 shows the top five gene sets in each
group, based on normalized enrichment scores (NES). In
females (Table 2A), the top upregulated gene sets were
related to cellular respiration and the ubiquitin prote-
asome system, while downregulated gene sets involved
protein synthesis and the extracellular matrix. In males
(Table 2B), the top upregulated gene sets were related to
the unfolded protein response and endocytosis/recycling
of cell surface proteins, while downregulated gene sets
involved the extracellular matrix, as in females, and
smooth muscle contraction.
We then compared the male and female GSEA results

(Additional file 6E). Six gene sets were upregulated and
61 gene sets were downregulated at high U-As in both
male and female placentas.

Fig. 1 RNA-seq data analysis. Schematic diagram summarizing the analyses described in this report. DE; differentially expressed, GSEA; gene set
enrichment analysis, EMap; enrichment map
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To better characterize these results, we generated
enrichment maps (EMaps) [28]. These maps group the
gene sets identified by GSEA into clusters, to identify
the major biological themes associated with arsenic
exposure in female and/or male fetal placentas
(Additional files 7 and 8). Comparison of the clusters
in each EMap revealed both similarities and differences
between the sexes. For example, in both male and fe-
male placentas, gene set clusters related to the extra-
cellular matrix (ECM) and muscle contraction were
downregulated, and a cluster related to the unfolded
protein response was upregulated. In contrast, several
gene set clusters were unique to females, in particular
a large upregulated cluster related to proteasomal deg-
radation, while male placentas showed downregulation
of a large gene set cluster related to a range of cell pro-
cesses/components including G protein coupled recep-
tor (GPCR) signaling, and T cell receptor activation,
only a subset of which was also downregulated in

females. In addition, clusters related to autoimmune
responses/inflammation, and interferon gamma signal-
ing, were largely unique to male placentas. These data
suggest that multiple cellular functions in the fetal pla-
centa may be altered by increased arsenic exposure at
the common environmental levels encountered in our
study, and that a subset of these potential effects are
fetal sex-dependent.
Previous studies have indicated that higher prenatal ar-

senic exposure may decrease birth weight [4, 12–14]; how-
ever, the underlying mechanisms are unknown. Thus, we
next used our RNA-seq data to identify biological pro-
cesses that may mediate adverse effects of arsenic on fetal
growth, by comparing the gene sets identified by GSEA at
high versus low U-As with those that were associated with
birth weight (as a continuous variable). In female placenta,
at FDR < 0.05, 183 gene sets were associated with birth
weight (Additional file 9A), and 103 of these were also as-
sociated with U-As (Additional file 10A). Of these, 51

Table 2 Top gene sets associated with arsenic exposure

Gene set NES

A. Female

Upregulated

KEGG OXIDATIVE PHOSPHORYLATION 3.86

REACTOME RESPIRATORY ELECTRON TRANSPORT ATP SYNTHESIS BY CHEMIOSMOTIC
COUPLING AND HEAT PRODUCTION BY UNCOUPLING PROTEINS

3.76

REACTOME CLASS I MHC MEDIATED ANTIGEN PROCESSING PRESENTATION 3.75

REACTOME ANTIGEN PROCESSING UBIQUITINATION PROTEASOME DEGRADATION 3.71

REACTOME MEMBRANE TRAFFICKING 3.70

Downregulated

NABA CORE MATRISOME −4.59

REACTOME PEPTIDE CHAIN ELONGATION −4.57

KEGG RIBOSOME −4.40

REACTOME INFLUENZA VIRAL RNA TRANSCRIPTION AND REPLICATION −4.12

REACTOME SIGNALING BY GPCR −3.87

B. Male

Upregulated

REACTOME UNFOLDED PROTEIN RESPONSE 2.17

REACTOME INSULIN RECEPTOR RECYCLING 2.10

REACTOME ACTIVATION OF CHAPERONE GENES BY XBP1S 2.04

REACTOME TRANSFERRIN ENDOCYTOSIS AND RECYCLING 2.01

REACTOME ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT ESCRT 1.99

Downregulated

NABA CORE MATRISOME −2.78

NABA ECM GLYCOPROTEINS −2.54

PID INTEGRIN1 PATHWAY − 2.37

KEGG VASCULAR SMOOTH MUSCLE CONTRACTION −2.36

NABA COLLAGENS −2.36

NES normalized enrichment score
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gene sets were upregulated and 16 downregulated at high
U-As and low birth weight, representing a total of 66 bio-
logical processes potentially mediating female birth weight
- arsenic exposure associations. The top 10 of these in-
cluded downregulation of the core matrisome (ECM com-
ponents), and upregulation of electron transport chain
and proteasome components (Table 3). An EMap was
generated of the 66 gene sets, revealing 7 gene-set clusters
(Fig. 2). The upregulated clusters were related to the ubi-
quitin proteasome pathway, cellular respiration, mRNA
synthesis/processing, and protein glycosylation; while the
downregulated clusters involved ECM components and
interactors, endothelial G-protein-coupled receptors, and
growth factors involved in wound healing and
angiogenesis.
In male fetal placenta, 147 gene sets were associated

with birth weight at FDR < 0.05 (Additional file 9B), and
100 of these were also negatively associated with U-As
(Additional file 10B). However, no gene sets were posi-
tively associated with U-As, and none showed differen-
tial associations with U-As and birth weight. Therefore,
in contrast to females, this analysis did not reveal any
biological processes that might mediate decreases in
birth weight related to arsenic exposure in male fetal
placenta.
To explore the sexual dimorphism we observed in the

biological processes linking arsenic exposure and birth
weight, we compared the gene sets associated with birth
weight in male and female placentas (Additional file 9C).
Interestingly, at FDR < 0.05, 22 gene sets were associated
with birth weight in both sexes, but 16 of these showed
opposite directions of association, namely negative in
males but positive in females. Among these 16 gene sets,
14 were also negatively associated with U-As in both
sexes, and comprised all of the downregulated gene-set
clusters potentially linking increased arsenic exposure
with lower female infant birth weight shown in the

EMap in Fig. 2. These clusters were related to ECM
components and interactors, endothelial G-protein-
coupled receptors, and wound healing and angiogenesis.

Discussion
Our RNA-seq analysis identified numerous genes whose
expression in fetal placenta appeared to associate with
arsenic exposure in a sex-dependent manner, although
these associations did not withstand adjustment for mul-
tiple comparisons in females. Further, GSEA and enrich-
ment mapping revealed both common and sex-specific
biological processes, represented by gene sets and gene-
set clusters, that were associated with arsenic exposure.
The most significant processes common to both sexes
included upregulation of the unfolded protein response
(UPR). The UPR is activated by endoplasmic reticulum
(ER) stress, an accumulation of unfolded proteins in the
ER. Arsenic has been shown in human and mouse cell
culture studies to activate the UPR [29, 30], likely by
interfering with oxidative protein folding [31]. Also com-
mon to both sexes was downregulation of ECM compo-
nents, endothelial GPCRs, and wound healing and
angiogenesis. These results are somewhat reminiscent of
a study in mice that found reduced expression of ECM
genes, and disruption of arterial ECM, in the heart and
lungs following chronic arsenic exposure [32]. These
gene sets were also inversely associated with birth weight
in female placentas, suggesting that reduced expression
of ECM components, endothelial GPCRs, and factors in-
volved in wound healing and angiogenesis may contrib-
ute to lower female infant birth weight caused by arsenic
exposure. However, interestingly, we found that, in male
placentas, these gene sets were positively associated with
birth weight. One explanation for this is that these re-
sponses are not alone sufficient to affect fetal growth,
but that, in the females in our analysis, they have

Table 3 Top 10 gene sets enriched at high arsenic exposure and reduced birth weight in female fetal placenta

Gene set U-As NES Birth weight NES U-As FDR value Birth weight
FDR value

NABA CORE MATRISOME −4.59 3.49 0 0

KEGG OXIDATIVE PHOSPHORYLATION 3.86 −3.45 0 6.51 × 10−7

REACTOME RESPIRATORY ELECTRON TRANSPORT ATP SYNTHESIS BY
CHEMIOSMOTIC COUPLING AND HEAT PRODUCTION BY UNCOUPLING PROTEINS

3.76 − 3.19 0 2.87 × 10−6

REACTOME TCA CYCLE AND RESPIRATORY ELECTRON TRANSPORT 3.69 − 3.32 0 2.17 × 10− 6

REACTOME HIV INFECTION 3.25 −3.61 1.22 × 10−5 0

REACTOME VIF MEDIATED DEGRADATION OF APOBEC3G 3.1 −3.4 2.93 × 10− 5 1.20 × 10− 6

REACTOME REGULATION OF ORNITHINE DECARBOXYLASE ODC 3.1 −3.19 3.13 × 10− 5 2.51 × 10− 6

KEGG PROTEASOME 3.09 −3.14 3.11 × 10− 5 3.86 × 10− 6

REACTOME SCF BETA TRCP MEDIATED DEGRADATION OF EMI1 3.08 −3.23 3.10 × 10− 5 2.24 × 10− 6

KEGG HUNTINGTONS DISEASE 3.01 −3.15 4.53 × 10− 5 3.94 × 10− 6

NES normalized enrichment score
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occurred in parallel with other functional changes that
directly reduce fetal growth.
Such functional changes may be represented by four

gene set clusters that were upregulated with higher ar-
senic exposure and lower birth weight in female, but not
male, placentas. These clusters represent the prote-
asome, cellular respiration, mRNA synthesis/processing,
and protein glycosylation. Some of these pathways may
be activated in response to arsenic-induced oxidative
stress. Numerous studies have found arsenic to induce
oxidative stress and reactive oxygen species production
(reviewed in [33, 34]). To counteract the effects of oxida-
tive stress, cells activate the antioxidant response path-
way. This involves activation of the NFE2L2 (Nrf2)
transcription factor, leading to transcription of a suite of
genes that have antioxidant response elements (AREs) in
their promoters. Notably, these include many subunits
of the 26S proteasome, which is upregulated to remove
oxidatively damaged proteins [35]. NFE2L2 has also been
shown to stimulate mitochondrial biogenesis [36], which
may explain the increased expression of electron trans-
port chain components. Increased transcription and
synthesis of NFE2L2 targets may also explain the ob-
served upregulation of mRNA synthesis and processing,
and protein glycosylation pathways. Increased protein
glycosylation may also be a feedback response to im-
paired protein folding in the ER in response to arsenic,
as mentioned above.
Our analyses also identified some biological processes

that were associated with arsenic exposure exclusively in
male placentas. Among the most significant of these
were upregulation of genes related to transferrin

endocytosis, and downregulation of those related to
autoimmune responses/inflammation, and interferon
gamma signaling. Transferrin is an iron transport pro-
tein that is expressed in both the cytotrophoblast and
syncytiotrophoblast of the fetal placenta [37–39]. In sup-
port of our findings, a previous study reported increased
transferrin expression in the syncytiotrophoblast of preg-
nancies complicated by maternal drug abuse, gestational
diabetes or pregnancy-induced hypertension, suggesting
that this may represent a response to intrauterine stress
[37]. Placental expression of the transferrin receptor was
also increased in conditions of iron deficiency [40].
Interferon gamma (IFNG) is a proinflammatory cytokine
that is produced by various immune cells, including nat-
ural killer and CD4+ T helper 1 (Th1) cells [41], and
plays an central role in the development of autoimmun-
ity [42]. IFNG and its receptors are also expressed by the
trophoblast of the fetal placenta; however this tissue
shows a dampened response to IFNG [41], and the fetal/
neonatal immune system tends to be tolerogenic and
Th2-biased, with minimal IFNG production, to avoid re-
sponses to maternal alloantigens [43, 44]. Our results
appear to suggest that, in male fetal placenta, arsenic ex-
posure increases this anti-inflammatory bias. This finding
aligns with a previous study of the NHBCS, which found
increased numbers of Th2-type cells in cord blood at high
arsenic exposure, although sex differences were not
observed [10]. Studies of adults chronically exposed to ar-
senic have also shown immune effects, including reduced
expression of IFNG [45]. Arsenic exposure, including pre-
natal exposure [5, 46], has been associated with increased
susceptibility to various infections, and some studies have

Fig. 2 Gene sets differentially related to arsenic exposure and birth weight in female fetal placenta. Enrichment map of gene sets that are
associated with increased arsenic exposure and reduced birth weight in female placenta (with a significance level of FDR < 0.05). Clusters thus
represent biological themes that may underlie female fetal growth inhibition by arsenic. Red circles; upregulated gene sets, blue circles;
downregulated gene sets, large yellow circles; gene set clusters, green lines indicate overlapping genes between gene sets. Clusters were labeled
based on the most common themes of the gene sets they comprise. Singleton gene sets are omitted (see Additional file 10A for a complete list
of gene sets)
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recorded sex differences in such associations, with males
tending to be more susceptible (reviewed in [47]).
Limitations of this study include the small sample size,

the large range of U-As values within the “high” and
“low”-arsenic groups, and the variation in these ranges
between male and female placenta samples. In addition,
RNA sequencing of the male and female samples were
performed separately. Therefore, although the samples
were treated and analyzed in an identical manner, it may
be that a subset of the differences observed is due to ex-
perimental variation, rather than sex. A further limita-
tion is that, in this study, we did not examine levels of
other metal toxicants in maternal urine, so cannot rule
out the possibility of a confounding effect by other ele-
ments. Another potential confounding factor is that
the participants are exposed to arsenic from different
sources, e.g. rice, seafood, and drinking water, which
contains different proportions of arsenic species and
therefore may have different effects. The relative pro-
portion of AsV in males was slightly higher in the low
arsenic group (Additional file 1), which may have influ-
enced some of the noted associations. Models were ad-
justed for RNA-seq batch, maternal age, and in the
birth weight analysis, gestational age. Additional po-
tential confounders, i.e., maternal smoking status, and
maternal education level were not found to signifi-
cantly associate with U-As in our previous analyses of
the NHBCS [25]. Another important point to acknow-
ledge is that we are using gene expression after deliv-
ery to draw conclusions about prenatal gene expression.
There are likely to be numerous changes occurring in the
fetal placenta within this period, and therefore caution
must be taken in the interpretation of our findings.
In this study, we chose to use maternal urinary arsenic

(excluding arsenobetaine), measured at mid-gestation, as
our measure of prenatal arsenic exposure. To minimize
variation in arsenic exposure between mid-gestation and
delivery, participants were selected who did not plan to
move residence between mid-gestation and delivery.
Thus, the household water supply, a major component
of overall arsenic exposure [3], remained constant. An
advantage of using urinary arsenic as the exposure meas-
ure was the ability to measure individual species, and
thus remove arsenobetaine from our calculation, which is
considered non-toxic [19]. In contrast, placental arsenic is
present in much lower levels, and therefore, when it is
used for exposure assessment, arsenobetaine cannot be
accounted for. However, clearly, mid-gestational U-As has
a number of disadvantages: primarily the time difference
between urine sampling and placental expression analysis,
and the fact that only a single sample was taken, as well as
the increased metabolism of arsenic during pregnancy
[48]. These factors must be acknowledged as important
limitations of the current study. Future studies should

include similar studies using placental arsenic for assess-
ment of prenatal exposure.

Conclusions
Our results suggest that common levels of arsenic expos-
ure are associated with multiple changes in the human pla-
cental transcriptome, a subset of which was sex-specific.
Further, we identified some potential sex-dependent mech-
anisms for the known adverse effects of arsenic on birth
weight. Overall, our findings offer insights into potential
mechanisms through which prenatal arsenic exposure may
impact the fetal placenta in a sex-dependent manner to
affect fetal health and development, which may be further
explored in future studies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12940-019-0535-x.

Additional file 1. Relative proportions of arsenic species in high and
low arsenic groups. Upper and lower ends of boxes indicate the 25th
and 75th percentiles, respectively, and black band represents the median.
Error bars represent minimum and maximum values, excluding outliers,
which are depicted as dots. P values are based on a Wilcoxon signed
rank test.

Additional file 2. RNA-seq quality control data for A) female, and B)
male placenta samples.

Additional file 3. Principal component analyses. A) female placenta
samples; B) male placenta samples; C) male and female samples.

Additional file 4. Differentially expressed genes at high versus low U-As
adjusted for maternal age at enrollment and batch. A) female placenta, B)
male placenta.

Additional file 5. qPCR validation of selected differentially expressed
genes. RNA was extracted from repeat samples of the same placentas
used for the RNA-seq analysis, and qPCR was performed using TaqMan
probes designed against a subset of the top 10 differentially expressed
genes in female placentas. Error bars show SEM. * P < 0.05.

Additional file 6. Gene sets enriched with differentially expressed genes
at high versus low U-As at FDR < 0.05, in A-B) female and C-D) male fetal
placenta, and E) comparison.

Additional file 7. Gene set enrichment analysis of arsenic-exposed
female fetal placenta. Enrichment map showing gene sets enriched with
differentially expressed genes at high versus low arsenic exposure (U-As
levels) in female fetal placenta. Clustered gene sets with a significance
level of FDR < 0.05 are shown. The “canonical pathways” gene set collection
from MSigDB was used. Red circles; upregulated gene sets, blue circles;
downregulated gene sets, large yellow circles; gene set clusters, green lines
indicate overlapping genes between gene sets; words that appear most
frequently in the gene set titles are shown. Singleton gene sets are omitted
(see Additional file 6A-B for a complete list of gene sets).

Additional file 8. Gene set enrichment analysis of arsenic-exposed male
fetal placenta. Enrichment map showing gene sets enriched with
differentially expressed genes at high versus low arsenic exposure (U-As
levels) in male fetal placenta. Clustered gene sets with a significance level
of FDR < 0.05 are shown. The “canonical pathways” gene set collection
from MSigDB was used. Red circles; upregulated gene sets, blue circles;
downregulated gene sets, large yellow circles; gene set clusters, green
lines indicate overlapping genes between gene sets; words that appear
most frequently in the gene set titles are shown. Singleton gene sets
are omitted (see Additional file 6C-D for a complete list of gene sets).
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Additional file 9. Gene sets enriched with differentially expressed genes
at high versus low birth weight at FDR < 0.05, in A) female and B) male
fetal placenta, and C) comparison.

Additional file 10. Gene sets enriched in both birth weight and U-As
analyses in A) female and B) male fetal placenta at FDR < 0.05. Gene sets
showing opposite directions of association in 9A) are asterisked.
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