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Abstract

Background: Polycyclic aromatic hydrocarbons (PAHs) are the main toxic compounds in natural bitumen, a fossil
material used by modern and ancient societies around the world. The adverse health effects of PAHs on modern
humans are well established, but their health impacts on past populations are unclear. It has previously been
suggested that a prehistoric health decline among the native people living on the California Channel Islands may
have been related to PAH exposure. Here, we assess the potential health risks of PAH exposure from the use and
manufacture of bitumen-coated water bottles by ancient California Indian societies.

Methods: We replicated prehistoric bitumen-coated water bottles with traditional materials and techniques of
California Indians, based on ethnographic and archaeological evidence. In order to estimate PAH exposure related
to water bottle manufacture and use, we conducted controlled experiments to measure PAH contamination 1) in
air during the manufacturing process and 2) in water and olive oil stored in a completed bottle for varying periods
of time. Samples were analyzed with gas chromatography/mass spectrometry (GC/MS) for concentrations of the 16
PAHs identified by the US Environmental Protection Agency (EPA) as priority pollutants.

Results: Eight PAHs were detected in concentrations of 1–10 μg/m3 in air during bottle production and 50–900 ng/L
in water after 2 months of storage, ranging from two-ring (naphthalene and methylnaphthalene) to four-ring
(fluoranthene) molecules. All 16 PAHs analyzed were detected in olive oil after 2 days (2 to 35 μg/kg), 2 weeks
(3 to 66 μg/kg), and 2 months (5 to 140 μg/kg) of storage.
Conclusions: For ancient California Indians, water stored in bitumen-coated water bottles was not a significant
source of PAH exposure, but production of such bottles could have resulted in harmful airborne PAH exposure.
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Background
Throughout human history, polycyclic aromatic hydro-
carbons (PAHs) have been an ever-present health
hazard. Consisting of two or more condensed aromatic
benzene rings and occurring in a large number of iso-
mers, the lipophilic PAHs are readily taken up by the
human body and distributed to different body systems

and tissues, including the fetus via maternal exposure
[1]. Significant health problems associated with high
and/or chronic levels of PAH exposure, which may vary
between populations and groups [2, 3], include cancer,
altered hormone levels, damage to internal organs,
deficiencies in important nutrients such as vitamin A,
reproductive and developmental impairments, and pos-
sibly neurodegeneration [4–13]. Given these deleterious
effects, recently it has been suggested that increased
tolerance of PAH exposure was an early human adapta-
tion, providing an evolutionary advantage over other
hominin species [14].

* Correspondence: seb@dbb.su.se
3Department of Biochemistry and Biophysics, Stockholm University, S-106 91
Stockholm, Sweden
5UCLA/Getty Conservation Programme, Cotsen Institute of Archaeology,
UCLA, Los Angeles, California, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Sholts et al. Environmental Health  (2017) 16:61 
DOI 10.1186/s12940-017-0261-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12940-017-0261-1&domain=pdf
http://orcid.org/0000-0001-6836-5610
mailto:seb@dbb.su.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


In modern human societies, the main sources of PAH
exposure are related to fossil fuel processing, gasoline
and diesel combustion, road paving, roofing, food pro-
cessing, and tobacco smoking, as well as occasional
extraordinary events such as major oil spills and wild-
fires [15]. In some regions biomass burning for space
heating during winter is a key source of PAH exposure
[16, 17]. In the ancient world PAH sources were fewer:
hydrocarbons could be generated by burning organic
materials, or encountered in the form of fossil bitumen
(also known as asphaltum or petroleum) formed over
millions of years by anaerobic decomposition of dead or-
ganisms. In world regions such as California, Mexico,
and the Near East, bitumen spontaneously seeps to the
Earth’s surface from certain geological formations, where
people for at least 70,000 years have been collecting and
using bitumen for a range of purposes, due to its adhe-
sive, water-repellent, and decorative properties [18–24].
Bitumen is among the best evidence for exposure to

persistent organic pollutants (POPs) in past human
populations, given its excellent preservation in the
archaeological record. Adverse effects of PAH exposure
can sometimes manifest directly in the skeleton as e.g.
poor bone quality [25], gross abnormalities [26], or re-
duced stature [9], but the actual exposure levels are
generally unknown. Unlike heavy metals such as lead,
which readily bioaccumulate in bone [27], PAHs are
typically metabolized and eliminated from the human
body within days of uptake [28]. As PAH concentra-
tions in bone or hair do not reflect chronic exposure
levels, the dose and timing of PAH exposure through-
out life must therefore be estimated indirectly through
other means. Earlier approaches to this problem
include estimating daily doses of PAHs from traditional
smoked foods [29], and presenting an exposure sce-
nario for health risk assessment of a range of traditional
native American activities and resources [30].
We previously suggested that PAH exposure from

increased use of bitumen may have contributed to a
prehistoric health decline of the Chumash Indians of
the Santa Barbara Channel region [31], evident in
ancient skeletal remains showing reduced stature, in-
creased frequencies in dental defects of linear enamel
hypoplasias, and skeletal lesions of porotic hyperosto-
sis during the Late Holocene [32–40]. While these
conditions are non-specific indicators of stress, early
life exposure to PAHs has been linked with fetal
growth disruption and anemia [10, 41–45], i.e. poten-
tial causes or factors of reduced skeletal size and poro-
tic hyperostosis [46, 47]. In the Santa Barbara
Channel, bitumen continuously seeps into the water
from natural submarine sources, contributing to PAH
exposure linked to size reduction and tissue abnormal-
ities in local marine organisms [48, 49].

Bitumen was used for a variety of purposes by the
Chumash and other native Californians, such as sealant
for containers and watercraft, glue for fixing arrowheads
and spear points to shafts, decoration on textiles and
skin, an ingredient in ritual practices and medicinal rem-
edies, chewing gum, and smoke-generating material for
signaling [31, 50–54]. On the California Channel Islands,
bitumen has been found in cultural strata between
10,000 and 7500 years old [55] and in baskets around
5000 years old [56]. For year-round inhabitants, popula-
tion growth and extended droughts made bitumen-
coated baskets crucial for storing limited supplies of
drinking water, as pottery was not used on the islands
during prehistoric times [57]. Over the subsequent
millennia, the invention of the bitumen-sealed plank
canoe (tomol) facilitated wide-ranging pelagic fishing
as well as cross-channel transportation of both people
and trade goods such as bitumen [57–59]. However,
the potential levels of PAH exposure resulting from
these cultural uses of bitumen have so far not been
investigated [31].
In this study, we employed experimental archaeo-

logical methods to assess the health risks related to PAH
exposure from the manufacture and use of bitumen-
coated water bottles. We first used traditional materials
and techniques to create water bottle replicas, based on
ethnographic, ethnohistoric, and archaeological evi-
dence. We then measured PAH concentrations in air
during the manufacturing process, and in water and
olive oil stored in one of the vessels for varying periods
of time. Gas chromatography/mass spectrometry (GC/
MS) was used to determine in all samples the concentra-
tions of the 16 priority PAHs identified by the United
States Environmental Protection Agency (EPA). The re-
sults were assessed in relation to recommended expos-
ure levels for modern populations, and previous
knowledge about health, diet, and technology in native
Californian societies.

Methods
Water bottle replication
Two replicate water bottles (Fig. 1 and Additional file 1:
Figure S1) were produced following procedures outlined
in ethnohistoric accounts, and supported by archaeo-
logical finds. These replicas were manufactured in a style
similar to basketry bottles from coastal and insular
southern California, such as a small specimen found in
the Cuyama drainage system in the Sierra Madre Moun-
tains [60]. Using a Monterey chert flake and a bird bone
awl as tools, the basketry frameworks were woven from
Juncus sp. rush collected in coastal northern California,
a plant previously attributed to water bottle basketry
production in southern California ([60, 61]:167, 204).
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The procedure for coating the twined basketry with
bitumen followed ethnohistoric accounts of the Lone
Woman of San Nicolas Island [62], as well as data gener-
ated from archaeological assemblages from the region
[51, 56, 63]. Choosing the appropriate material(s) was
however not trivial. In the Late Period (AD 1150–1782)
bitumen had become a staple commodity among the
Chumash, with cakes of the material “always kept on
hand for immediate use” [64] and traded all along the
channel shores ([65]:51–52). Different forms of the ma-
terial existed. According to the ethnographic accounts
collected by John P. Harrington, the historic Chumash
differentiated between hard bitumen mined from land
deposits (woqo) and soft bitumen washed ashore from
submarine seeps (malak) ([65]:51–52). Only the hard
bitumen was deemed good enough to be used when
constructing the tomol plank canoe. Chunks of hard
bitumen were then broken up with pounding stones,
mixed with pine pitch and sometimes with red ochre,
and boiled until the substance reached proper
consistency [65]. Three different mixtures were used: the
yop, with a larger proportion of bitumen than pitch, was
used to glue the planks together; adding additional pitch
to the yop produced a waxy substance used to

waterproof the milkweed fibers that tied the planks to-
gether; and adding red ochre to the yop produced the
mixture used as paint sealant [65]. As we did not know
whether the woqo-bitumen or the malak-bitumen would
be more appropriate to use for basket-coating, we made
two baskets with one of each material.
For the first bottle, patches of float bitumen (malak)

collected from the coast of San Nicolas Island in the
southern California Channel Islands were used. In line
with archaeological evidence [52, 63, 66], an abalone
(Haliotis rufescens) shell was used as a mixing dish, and
the malak was indirectly heated with tarring pebbles
(Additional file 1: Figure S1 and Figure S2). These small
(20–40 mm) meta-volcanic pebbles, which are virtually
identical to the bitumen-coated heating stones (tarring
pebbles) found in archaeological assemblages throughout
the Channel Islands [56, 66], were gathered from a con-
glomerate outcrop on San Nicolas Island adjacent to the
archaeological site of CA-SNI-40. The malak was then
put in the base of a basketry framework, and hot tarring
pebbles were added to melt the malak. After 1 minute,
the basket was lifted with both hands and swirled rapidly
in a rotary motion, generating centrifugal force that
allowed the pebbles to push the malak into the basket
weave. The process was repeated six times, after which
the malak effectively coated the interior vessel surface.
The exterior surface was coated with malak that was
first heated with tarring pebbles in the shell dish and
then applied using a beveled sea mammal bone and a
piece of hard wood as tools (Additional file 1: Figure S3).
After the entire bottle had been coated with malak, it was
slowly rotated over an open flame to re-melt the malak on
the outer surface, thereby creating a smooth exterior as well
as sealing potential leaks (Additional file 1: Figure S1).
For the second bottle, hard bitumen (woqo) was col-

lected from a mainland seep (“quarry”) in Goleta on
the Santa Barbara coast. This site was previously an
important source of bitumen for indigenous southern
California groups [63]. Large chunks of solid bitumen
were crushed using a hammer and anvil technique
relying on two sandstone beach cobbles (Additional
file 1: Figure S2). However, when this woqo was pulver-
ized, it would not melt from direct heating (open
flame) nor from indirect heating (hot tarring pebbles).
Ethnographically, it has been noted that “high quality”
mainland bitumen was mixed with conifer resin (pitch)
and subsequently traded or used for gluing purposes [63].
Guided by ethnohistoric descriptions [65] and trial-and-
error, we prepared a mixture consisting of roughly 55%
woqo and 45% conifer resin from a local Pinus radiata
species (Additional file 1: Figure S1). That is, we arrived at
the mixture known to the Chumash Indians as yop. Our
yop had a consistency similar to that of the malak, and it
was applied to the basketry framework in the same way.

Fig. 1 A completed water basket-bottle coated with a mixture of
pitch and bitumen (yop), in which water and olive oil were stored
for liquid PAH analysis
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For the current PAH measurements, it has previously
been shown that the water-soluble fraction of hydrocar-
bons has been washed away in malak/float bitumen
[31, 67]. As PAH levels consequently should be higher
for liquids stored in the yop-coated bottle, this vessel
was selected for the water/oil storage experiments de-
scribed below.

Air analysis
Following standard methods developed by the US EPA
in 1999, sorbent Poly-Urethane Foam (PUF) cartridges
were obtained from Test America (Sacramento, Califor-
nia) and operated with a Gilian GilAir-5 air sampling
pump from PINE Environmental (San Leandro, Califor-
nia). These pumps require a pre-calibration of between
1 and 5 L/min, so the pump used in this component of
the study was arbitrarily set to take in air at a 3 L/min
rate throughout a 30 min sample window. The pump
was placed approximately 1 m from the bitumen pro-
cessing area during coating of the basketry water bottle
framework. The GC/MS analysis of both experimental
and control (blank) samples at the TestAmerica labora-
tory revealed that under these experimental conditions
none of the 16 targeted PAHs exceeded concentrations
above the detection limits.
In a follow-up experiment, we increased the flow rate

of the PUF sampler to 5 L/min (i.e. the upper limit of
the pump pre-calibration) and extended the sampling
period to 1 hour. Although an air flow of 7–9 L/min
would be more consistent with human respiration dur-
ing sedentary activities, the measured PAH concentra-
tions (in μg/m3) do not depend on the air flow during
sampling, and a higher air flow may run the risk of
“breakthrough” where the sample media become satu-
rated and no longer retain all pollutants collected during
sampling. As shown below, the upper pre-calibration
limit of 5 L/min was enough to obtain accurate concen-
trations for a number of PAHs. In this experimental
setup we exclusively sampled the surrounding air during
the process of mixing pulverized quarry bitumen and
conifer resin, using the materials and techniques de-
scribed above. In total, 522 g of bitumen and 422 g of
conifer resin were pulverized, mixed, and heated with
tarring pebbles in an abalone shell. Over the one-hour
sampling period, tarring pebbles were alternated from
the driftwood fire into the abalone mixing dish to keep
the yop in a viscous state. As the experiment was con-
ducted outdoors and a slight wind was prevailing from
southwest to northeast, a 50 cm high windbreak was
constructed around the bitumen processing area. For the
initial 10 min of sampling, the PUF media were fixed to
the wall of the windbreak and secured 40 cm above the
mixing dish. During the subsequent 50 min sampling
interval, the PUF media were secured approximately

10 cm above the bitumen mixing dish to ensure ad-
equate samples of tar/pitch vapors (Additional file 1: Fig-
ure S2). Upon completion of the 1 hour field sample, the
PUF media were sealed in sterile aluminum foil within
an air-tight container, placed on ice to cool to around 4 °
C with no post-sampling exposure to light, and trans-
ported within the hour to the TestAmerica laboratory
for GC/MS analysis.

Liquids analysis
To measure PAH concentrations in liquids stored in
the bitumen-coated water bottle, controlled experi-
ments with olive oil and distilled water were carried
out at Stockholm University, Sweden. The replicate
bottle was first filled with double-distilled water
(ddH2O), which was allowed to sit in the bottle without
stirring or other agitation at room temperature for a
period of 2 months and then removed for analysis. The
bottle was then re-filled with commercial olive oil ob-
tained at a local super market and stored at room
temperature without agitation (Additional file 1: Figure
S3). Samples of the olive oil were collected after 2 days,
2 weeks, and 2 months. The water and olive oil samples
were analyzed with GC/MS for the 16 EPA priority
PAHs in the μg/L – ng/L range at ALS Scandinavia
(Stockholm, Sweden).

Results
For the air samples recorded during bottle manufacture,
seven priority PAHs were detected in concentrations
around 1–4 μg/m3 (Table 1). The PAHs encountered
ranged from two-ring (naphthalene and methylnaphtha-
lene) to four-ring molecules (fluoranthene). For the
water sample, similar molecules were found. After 2
months of incubation in the bottle, PAHs in the size
range of naphthalene to fluoranthene had accumulated
in the water in concentrations of 0.05–0.9 μg/L. Also
some aliphatic hydrocarbons of sizes C16 – C35 were de-
tected (Table 1). The most abundant PAHs in the water
were naphthalene, phenanthrene, and acenaphthalene,
while in the air sample naphthalene, phenanthrene, and
2-methylnaphthalene showed the highest concentrations.
For the olive oil stored in the bottle, all 16 PAHs tested
for were encountered in concentrations above the detec-
tion limits. The concentrations of these PAHs increased
over time: after 2 days of storage the PAH levels ranged
from 2 to 35 μg/kg, while they ranged from 3 to 66 μg/
kg after 2 weeks, and from 5 to 140 μg/kg after 2
months (Table 1). As in the water sample, the most
abundant PAHs in the olive oil were two- and three-ring
PAHs such as naphthalene, phenanthrene, and fluorene.
The concentrations of larger four- to six-ring PAHs were
an order of magnitude lower. Some PAHs were already
present in the commercial olive oil before it was poured
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into the vessel, most notably phenanthrene (13 μg/kg),
which raises questions about the quality of the product.

Discussion
In the global environment at least 100 different known
PAHs are widespread, with typical properties such as
low volatility at room temperature, poor solubility in
water, and high lipophilicity. These characteristics be-
come more pronounced with increasing molecular
weight, which is accompanied by increased melting/
boiling points, increased lipophilicity, decreased aque-
ous solubility, decreased vapor pressure, and increased
resistance to oxidation and reduction (Additional file 1:
Table S1). In assessing the toxic potential of an envir-
onmental sample, the 16 EPA PAHs are often used to
represent all PAHs and evaluated as a sum, although
other PAHs of considerably higher toxicity have been
identified in the decades since the list was established
[68]. The main advantage to using the 16 EPA PAHs in
this study is their comparability and analytical
consistency with a wide range of datasets and studies
from the last several decades.
Although they are usually discussed as a group, PAHs

of different molecular weight vary substantially in their
behavior and distribution in the environment and the
human body. Some individual PAHs, such as those de-
tected at particularly high levels in the present study,
have been linked specifically to certain effects and

adverse outcomes. Most air concentration data for indi-
vidual PAHs focus on the five-ring compound benzo(a)-
pyrene (B[a]P), which is one of the most toxic PAHs
known and widely used in epidemiological studies as an
indicator for PAH exposure ([69]:xx-xxi). Given that
B[a]P was not detected among the 44 PAHs that we
previously identified in bitumen from the California
Channel Islands region [31], it is not surprising that
B[a]P was also not detected in this study. Instead, the
smallest and most soluble compounds (e.g., ace-
naphthene, fluorene, naphthalene, and phenanthrene)
showed the highest concentrations in all the experimen-
tal samples (Table 1). These compounds have been
assessed for toxicity relative to B[a]P, and have been
assigned low toxic equivalency factors (TEFs, also known
as Relative Potency Factors or RPFs) in the order of
0.001 (Additional file 1: Table S1). Using these factors,
the potency of a PAH mixture can be calculated in terms
of B[a]P potency equivalence (B[a]P PEQ) by the relative
potency approach [70]. Each PAH concentration is then
multiplied by its TEF (or RPF) factor (Additional file 1:
Table S1), the contributions of each PAH are added, and
the sum is the B[a]P potency equivalence which is to be
compared to the EPA’s B[a]P reference values [70].
Of the detected PAHs only naphthalene — the sim-

plest PAH, consisting of two fused benzene rings — has
been given both an oral reference dose (RfD) and an
inhalation reference concentration (RfC) in EPA’s

Table 1 Concentrations of individual PAHs in the air, water, and olive oil samples analyzed in this study

Compound Air (μg/m3) Water (ng/L) Olive oil (μg/kg)

1 h 2 months blank 2 days 2 weeks 2 months

Acenaphthene 1.7 37 ± 11 <0.93 1.6 4.6 7.9

Acenaphthylene 1.3 873 ± 262 <1.6 20 45 77

Anthracene 0.72 49 ± 15 3.4 9.4 9.8 25

Benzo[a]anthracene <0.67 <0.010 2.4 6.3 6.6 12

Benzo[a]pyrene <0.67 <0.010 <0.28 4.4 3 8

Benzo[b]fluoranthene <0.67 <0.010 <0.6 3 4 7.8

Benzo[g,h,i]perylene <0.67 <0.010 <0.47 2.2 3 16

Benzo[k]fluoranthene <0.67 <0.010 <0.5 2 2.4 5.3

Chrysene <0.67 <0.010 <0.79 3.2 7.9 13

Dibenzo[a,h]anthracene <0.67 <0.010 <0.34 1.6 <0.79 <0.73

Fluoranthene 1.6 74 ± 22 <2.3 16 26 36

Fluorene 1.7 124 ± 37 <2.6 15 37 140

Indeno[1,2,3-cd]pyrene <0.67 <0.010 <0.031 <0.47 <0.66 5.7

Naphthalene 4.4 206 ± 62 <12 21 31 67

Phenanthrene 4.2 281 ± 84 13 35 66 80

Pyrene <0.67 70 ± 21 2.3 21 37 71

2-Methylnaphthalenea 9.2 n/a n/a n/a n/a n/a

Aliphatic C16-C35 n/a 13 ± 4 n/a n/a n/a n/a
aNot one of the 16 priority PAHs identified by the United States Environmental Protection Agency (EPA)
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Integrated Risk Information System (IRIS) (Additional
file 1: Table S1). Naphthalene was furthermore one of
the PAHs detected in high concentrations in all of the
air, water, and oil samples. As it would be too lengthy
to discuss in detail the health effects of all detected
PAHs, we here focus the discussion on total PAH mix-
ture toxicity in terms of B[a]P potency equivalence and
on naphthalene as a model PAH. Naphthalene is readily
absorbed by humans and other animals via inhalation,
dermal contact, and oral ingestion [71]. The inhalation
RfC for naphthalene is 3 × 10−3 mg/m3, calculated by
the EPA based on a lowest-observed-adverse-effect-
level (LOAEL) of 10 ppm (human equivalent concen-
tration = 9.3 mg/m3) for nasal lesions in mice exposed
by inhalation for 2 years [72]. The oral exposure RfD is
2 × 10−2 mg/kg*day (Additional file 1: Table S1), based
on a no-observed-adverse-effect-level (NOAEL) of
100 mg/kg/day for the absence of decreased mean ter-
minal body weight in male rats exposed by gavage for
13 weeks [72].
Air sampled while preparing yop for water bottle

manufacture showed a moderate naphthalene concentra-
tion, i.e. 4.4 μg/m3 measured 10–40 cm from the melt-
ing bitumen. This is slightly higher than the EPA’s
inhalation RfC of 3 μg/m3, i.e. the concentration of
naphthalene that one supposedly can breathe every day
for a lifetime that is not anticipated to cause harmful
noncancer health effects. As a comparison, modern
cigarette smoke measured a few meters from the
cigarette contains about 2.7 μg/m3 of naphthalene [73],
i.e. somewhat less than the bitumen smoke. As the PAHs
in cigarette smoke are produced via pyrolysis, similar
PAH levels would have been produced when native Cali-
fornians smoked tobacco [74]. The B[a]P potency
equivalence of the air sample is 140 ng/m3, which is
much higher than EPA’s inhalation RfC of 2 ng/m3. The
main contribution to the high B[a]P PEQ is from
fluoranthene (Table 1). Given that the experimental air
sample was collected very close to the melting bitumen,
few individuals would have experienced such high inhal-
ation exposure levels, at least if the bitumen was proc-
essed in an open area. Still, it cannot be ruled out that
individuals who regularly worked with melted bitumen
could have experienced harmful airborne PAH exposure.
Drinking water stored in the water bottle did not reach

significantly high levels of PAH contamination. After 2
months of storage, the measured naphthalene concentra-
tion of 0.2 μg/L is considerably lower than the median
concentration found in modern US public water systems
(1 μg/L) [43]. Using the formula D = (C x IR x EF)/BW,
where D = exposure dose (mg/kg*day), C = contaminant
concentration (mg/L), IR = intake rate of contaminated
water (L/day), EF = exposure factor (unitless), and
BW = body weight (kg), the estimated exposure dose of

naphthalene via drinking water ingestion for a 70 kg adult
is D = (0.0002 mg/L × 3 L/day × 1)/70 kg = 8.6 × 10−6 mg/
kg*day. Assuming that water accounted for the total fluid
intake of Channel Islanders, and following the recom-
mendation for traditional tribal communities of 3 L/day
for intake rate [30], this estimate is nonetheless far
below the EPA’s oral RfD for naphthalene of 2 × 10−2 mg/
kg*day. Using the relative potency approach provides a
B[a]P PEQ of 7.5 ng/L in the water, again with fluoran-
thene contributing most of the toxicity. Making the same
assumptions as above produces an oral intake of 0.32 ng/
kg*day of B[a]P PEQ, which is far less than EPA’s oral RfD
for B[a]P of 0.3 μg/kg*day.
Olive oil stored in the bottle showed much higher

PAH concentrations than the water, which is expected
due to the general lipophilicity of PAHs (Table 1). Most
PAHs showed a concentration increase over time, and
olive oil stored in the bitumen-coated water bottle for 2
months showed high concentrations of in particular
fluorene (140 μg/kg), phenanthrene (80 μg/kg), pyrene
(71 μg/kg), and naphthalene (67 μg/kg) (Table 1). Al-
though olives were not cultivated in California until the
eighteenth century [75], these results suggest that fatty
foods such as fish, shellfish, and marine mammals could
have absorbed substantial amounts of PAHs from being
in contact with bitumen used to e.g. coat baskets, repair
fractured soapstone bowls, or glue mortar-basket hop-
pers [53].
Native Californians may furthermore have been ex-

posed to PAHs by consuming marine animals from the
Santa Barbara Channel, which is contaminated with
PAHs from the submarine oil seeps. PAH concentrations
in the Channel range from 0.6 to 28 μg/L in sediments
from areas of active seepage [67, 76]. Bile naphthalene
levels were between 59 and 111 μg/g in rainbow surf-
perch (Hypsurus caryi) [49] and between 5 and 20 μg/g
in Pacific sanddab (Citharichthys sordidus) [77] caught
in these waters. For California sea otters from this region
the liver naphthalene levels were less than 1 μg/g [78],
i.e. lower than in the fish, which is reasonable given that
mammals have more efficient PAH degradation mecha-
nisms than fish. As whole-body PAH concentrations
are lower than in liver and bile, consumption of e.g.
500 g/day [30] of contaminated fish/otter would result
in a naphthalene intake well below EPA’s RfD value of
20 μg/kg body weight per day [43].
In summary, non-negligible PAH levels, somewhat

higher than those in cigarette smoke, were present in
the fumes from the melting bitumen/pitch (yop) mix-
ture. Fluoranthene was here the main toxicant. These
results suggest that production of bitumen-coated ob-
jects such as water bottles and canoes could have been
a source of harmful PAH exposure for prehistoric
California Indians. Very small amounts of PAHs were
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found in water stored for 2 months in a bitumen-coated
water bottle, indicating such water was safe to drink. Much
higher PAH concentrations were observed in olive oil
stored in the vessels, suggesting that harmful PAH expos-
ure could have originated from fatty foods that had been
in contact with bitumen-containing food processing items.
Fatty fishes from the Santa Barbara Channel are contami-
nated with PAHs from submarine oil seeps, but consump-
tion of such fish yields PAH intakes at tolerable levels. As
PAHs typically are more toxic in mixtures due to synergis-
tic effects [79], and as PAHs are especially harmful during
the early developmental stages of life (i.e. prenatal and
childhood) [11, 70, 80–82], further research and risk as-
sessments in this area would benefit from the inclusion of
age-specific information and adjustment factors.
From an archaeo-technology point of view, it is inter-

esting that yop and malak were both found to be suit-
able materials for water-bottle coating, while pure woqo
was not. One implication of this finding is that the pre-
historic Channel Islanders, who only had local access to
malak washing up on the shores, were self-sufficient
with respect to water bottle manufacture. Trade of woqo
from the mainland to the Islands is however well docu-
mented in ethnographic literature [63, 65], indicating
that for certain uses the harder woqo was superior to the
softer malak. It can also be noted that boiling a combin-
ation of bitumen and wood pitch to a mixture with suit-
able working properties is a practice described by the
sixteenth century German scholar Agricola in De Re
Metallica, his famous treatise on mining and metallurgy
in mediaeval Saxony [83]. Apparently many cultures
using bitumen as a crafting material discovered the ad-
vantages of this mixture. Thus, the PAH exposure data
reported here are likely relevant also for crafts people
from other cultures preparing similar mixtures, even
though the exposure levels for specific PAHs likely vary
with the bitumen/pitch ratio.

Conclusions
For ancient California Indians, water stored in bitumen-
coated water bottles was not a significant source of PAH
exposure, but production of such bottles could have re-
sulted in harmful airborne PAH exposure. Consumption
of PAH-contaminated fish resulted in PAH exposure at
tolerable levels. Thus, sub-lethal PAH exposure remains a
possible factor in the health decline over time previously
observed among the prehistoric coastal Chumash [31],
but further research should emphasize the increased sen-
sitivity to PAH exposure during prenatal and childhood
stages. Studies that combine experimental archaeology
with toxicology are few but valuable, as they may expand
temporal perspectives in human toxicology and epidemi-
ology, and can provide a broader evolutionary context for
risk assessment in the present and future.
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