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Abstract

Background: Air pollution in Beijing, especially PM2.5, has received increasing attention in the past years. Although
exposure to PM2.5 has been linked to many health issues, few studies have quantified the impact of PM2.5 on the
risk of influenza-like illness (ILI). The aim of our study is to investigate the association between daily PM2.5 and ILI
risk in Beijing, by means of a generalized additive model.

Methods: Daily PM2.5, meteorological factors, and influenza-like illness (ILI) counts during January 1, 2008 to
December 31, 2014 were retrieved. An inverse Gaussian generalized additive model with log link function was
used to flexibly model the nonlinear relationship between the PM2.5 (single- and multiday lagged exposure)
and ILI risk, adjusted for the weather conditions, seasonal and year trends. We also assessed if the effect of
PM2.5 differs during flu season versus non-flu season by including the interaction term between PM2.5 and flu
season in the model. Furthermore, a stratified analysis by age groups was conducted to investigate how the
effect of PM2.5 differs across age groups.

Results: Our findings suggested a strong positive relationships between PM2.5 and ILI risk at the flu season
(October-April) (p-value < 0.001), after adjusting for the effects of ambient daily temperature and humidity, month and
year; whereas no significant association was identified at the non-flu season (May-September) (p-value = 0.174). A short
term delayed effect of PM2.5 was also identified with 2-day moving average (current day to the previous day) of PM2.5

yielding the best predictive power. Furthermore, PM2.5 was strongly associated with ILI risk across all age groups
(p-value < 0.001) at the flu season, but the effect was the most pronounced among adults (age 25–59), followed
by young adults (age 15–24), school children (age 5–14) and the elderly (age 60+) and the effect of PM2.5 was the
least pronounced for children under 5 years of age (age < 5).

Conclusions: Ambient PM2.5 concentrations were significantly associated with ILI risk in Beijing at the flu season
and the effect of PM2.5 differed across age groups, in Beijing, China.
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Background
Air pollution has been well documented as a major
public health issue for many areas of the world, as a
growing body of epidemiological and clinical evidence
has shown that pollutants increase the risks of numerous
diseases [1–7]. Airborne particulate matter is a mixture of
liquid and solid material of varying size and chemical
characteristics, which includes dust, dirt, soot, smoke, and
liquid droplets emitted into the air. The sizes of the inhal-
able particles are limited to be those within aerodynamic
diameters of 10 μm or less (PM10) in aerodynamic diam-
eter. PM10 consists of two size fractions, fine and coarse,
which have both different physiologic and different source
characteristics. The particles mechanically generated from
agriculture, mining, road traffic, and related sources are
generally larger than 2.5 μm, which are usually referred to
as coarse mass particles (PM2.5-10). In contrast, particles
resulting from combustion processes are generally less
than 2.5 μm, which are defined as fine particles (PM2.5).
Toxicological and epidemiological studies suggest that

PM2.5 are especially harmful [2, 4–6, 8, 9], since smaller
particles are more likely to penetrate deeper into the
lungs and blood streams unfiltered [10]. Studies have
shown exposure to PM2.5 is associated with a number of
adverse health outcomes ranging from respiratory disease
[9, 11, 12] to cardiovascular disease [1, 4, 13]. Elevated
fine-particulate concentrations are also the cause of
mortality [2, 3, 14, 15]. This is also one of the important
reasons for WHO designating all countries to have stan-
dards for PM2.5. In 2013, a longitudinal study involving
312,944 people in nine European countries revealed that
that the lung cancer rate rose 22 % for every increase of
10 μg/m3 in PM10. The smaller PM2.5 were particularly
deadly, with a 36 % increase in lung cancer per 10 μg/
m3and the effect of PM2.5 was not affected by adjust-
ment for PM2.5-10 [9]. Other studies also revealed the
similar findings showing that PM10 and PM2.5 are sig-
nificantly associated with all cause and cause-specific
mortality [2]; whereas no such associations were ob-
served for PM2.5-10 [2, 6, 8, 16]. Those studies suggested
that the proportion of PM2.5 in the PM10 composition
is more important and might be more strongly related to
adverse health effects. Thus, PM2.5 pollution has gained
increasing attention, especially for those living in
metropolitan areas [17].
Beijing, the capital city in China, has been suffered

with severe air pollution in the last decade due to rapid
industrial expansion and the increased number of auto-
mobiles on the road. The number of heavy or more severe
pollution days (PM2.5 > 75 μg/m3) has been hovering over
hundred days annually in Beijing [18, 19]. In China, much
attention on air pollution has been focused on PM10

[20, 21]. Few studies have devoted to study the PM2.5

exposure on health impact, partly because of lack of

such information, until recently China has released
PM2.5 concentrations in major cities to the public [22].
Researchers believe that airborne pollution particles

provide “condensation nuclei” to which virus droplets
attach; however, the quantitative research on the associ-
ation between air pollution and influenza is still rare,
considering that extreme ambient pollution is a biologic-
ally plausible risk factor, and that more intense pollution
are imminent this century. Despite a recent study show-
ing that PM2.5 was associated with monthly influenza
cases [22], there are few studies using daily pollution
and influenza data, and no study has been conducted to
date investigating the effects of PM2.5 on influenza risk
by age group. Such research is needed, as influenza epi-
demics constitute a serious public health problem associ-
ated with increased morbidity and mortality, especially in
high risk populations, with children, the elderly, and pa-
tients with chronic diseases being particularly vulnerable
to air pollution [23]. As such, it is important to determine
if the effect of PM2.5 varies over different age groups.
Meteorological factors, in particular temperature and
humidity, have also been shown contributing to the risk of
influenza infections, such that both low temperature and
humidity increase the spread of influenza viruses [24, 25].
However, to our knowledge, no studies have precisely
examined the association between PM2.5 and influenza
by age groups, after controlling the confounding effects
of meteorological factors.
In the present study, we provide direct evidence to sup-

port the role of ambient fine particulate matter exposure,
after adjusting for the effects of weather conditions in the
dynamics of influenza and thereby address an emerging
question fundamental to the understanding of influenza
epidemiology. A generalized additive model was utilized
to flexibly model the nonlinear relationship between the
daily PM2.5 and daily influenza risk in Beijing from year
2008 to 2014, while adjusting for the effects of ambient
daily temperature and humidity, status of being week day
or weekend/holiday, month and year. We also assessed if
the effect of PM2.5 differs across various age groups. To
explore the delayed impact of PM2.5, lag effect of PM2.5

was also considered.

Methods
Data sources and description
Influenza data consisted of reports of daily number of
patients seeking medical attention with influenza-like
illness (ILI), defined as the one with body temperature
more than 38° Celsius and cough or sore throat, from
January 1, 2008 to December 31, 2014 in the capital city
of China, Beijing. The data was retrieved from the surveil-
lance system at the Beijing Centre of Disease Control [26].
The influenza surveillance system has been reported
elsewhere [27]. In brief, the surveillance is conducted in
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150 level two and level three hospitals in Beijing, which
consists of hospitals from national, city and district level.
The data has a reasonable representativeness given that
the sentinel hospitals cover all the 16 districts in Beijing,
and the data were from the all outpatients related to
respiratory disease treatment. Health care system in
each sentinel hospital reports the data to the Beijing
Centre of Disease Control every day from online system,
and staffs in the district Centre of Disease Controls are
responsible for data validation.
Average daily measurements of PM2.5 from January 1,

2008 to December 31, 2014 were retrieved from an air
quality monitoring site at the US Embassy in Beijing,
which is located at the Chaoyang district. The Embassy’s
air pollution data was used because it recorded detailed
measurements of PM2.5 over a long period of time, despite
originating from only one location. The data was validated
and used by other paper [22]. Temperature and relative
humidity were considered as the potential confounders of
the association between PM2.5 and ILI risk. Daily tempera-
tures and relative humidity, spanning the study period,
were obtained through the China Weather Network’s out-
door weather reports. Daily counts of ILI, air pollution
levels and weather data were linked by date and analyzed.
This study was approved by the Institutional Review
Board at Beijing Centre of Disease Control [28].

Statistical analysis
In epidemiological research, one most frequently used
model for modeling counts data is the Poisson regres-
sion. A severe limitation of the Poisson model is that the
mean and variance of the dependent variable are assumed
to be equal, conditional on any covariates [29]. In practice,
a very common complication when modeling discrete re-
sponses is the presence of overdispersion, when the vari-
ance of the response is greater than the mean [30]. It is
generally caused by positive correlation between responses
or by an excess variation between response counts. If
overdispersion is present in a dataset, the standard errors
of the estimates could be underestimated (i.e. a variable
may appear to be significant predictor when it is in fact
not significant) [29]. Negative binomial (NB) regression
has been suggested as an alternative to the Poisson, which
accounts for overdispersion by adding an additional dis-
persion (variance) parameter to the Poisson model [31].
However, the negative binomial distribution also imposes
some constraints on the mean and variance relationship,
whose validation also needs to be seriously assessed. Over
the past decades, the family of inverse Gaussian dis-
tributions [32, 33] has attracted the attention of many
researchers in studying the number of event occurrences
for a wide range of field. The inverse Gaussian distribution
is particularly useful for dealing with data of considerable
skewness [34]. In such cases, the choice is made upon the

basis of goodness of fit and upon the ease of working
with the distribution. As such, we carefully examined
the Poisson, the negative binomial and the inverse
Gaussian regression models to identify which model
fits the data well and fits the data the best. In fact, all three
types of distributions belong to the exponential family in a
generalized linear modeling framework [35]; therefore, all
the interpretation of the regression coefficients are the
same, if the same link function is applied. Here, we used
the most commonly used log link function for ease of
interpretation [36].
To allow for comparability, all models were adjusted

for the same meteorological variables (temperature and
humidity) and time variables (year and day of the week).
We screened all variables for multi-collinearity. All the
three types of models can be written in the following
form:

log μtð Þ ¼ α0 þ log ntð Þ þ f 1 PM2:5;t−p
� �

I flu seasontð Þ
þf 2 PM2:5;t−p

� �
I nonflu seasontð Þ

þ f 3 temperaturetð Þ þ f 4 humidityt
� �

þf 5 monthtð Þ þ
X

k
βkI yeart ¼ k

� �

þγI week dayt
� �

;

where μt represents the expected mean number of indi-
viduals reporting ILI on day t and α0 denote the inter-
cept. We let nt denote the population size on day t,
which is estimated by fitting a sigmoid function to the
annual population size of Beijing spanning the study
period [37–39], since only annual population of Beijing
can be retrieved for this study. We define the ILI in-
cidence rate as the ratio of μt relative to nt. Following
the standard practice in generalized additive models,
fj(x), j = 1,…,5, are the penalized smoothing spline functions
for PM2.5 at flu season (October-April), non- flu season
(May-September), temperature, humidity and month, re-
spectively. That is, fj(x) = ∑i = 1

q bi(x)δi, where bi(x), i = 1,… q
are a set of basis functions and δi are the corresponding
regression coefficients. These basis functions are sections
of polynomials that join at a number of knot locations.
Common type of basis functions include cubic B-splines
or thin-plate splines [36]. The smoothness of the spline
functions were automatically estimated using unbiased
risk estimation [36]. To explore the delayed impact of
PM2.5 on ILI risk, we lagged PM2.5 by p days, denoted by
PM2.5,t − p representing the measurement of PM2.5 taken at
day p prior to ILI case report date t, p = 0, 1,… 5. For
example, a lag of 0 days (lag 0) corresponds to the current
day PM2.5, and a lag of 1 day (lag 1) refers to the previous-
day PM2.5. We also investigated the effect of accumulated
exposures of PM2.5 on ILI incidence by taking mean of
lag01 (PM2.5 averaged over the current day and the
previous day), and up to mean lag05. We selected a
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lag according to the lowest Akaike Information Criterion
(AIC) [28]. I(A) is an indicator variable, such that if A is
true then I(A) = 1 and 0, otherwise; βk is the regression
coefficient for year k and γ is the regression coefficient for
weekday. To investigate if the effect of PM2.5 varies with
age, stratified analysis at different age groups was also
conducted, with age groups being classified as <5, 5–14,
15–24, 25–59, ≥60 years old. The statistical analysis was
conducted using the mgcv package in R [36]. All statistical
tests were two-sided and P-values with less than 0.05 were
considered statistically significant.

Results
The distributions of daily ILI cases, daily PM2.5, daily
temporal and humidity from January 1, 2008 to December
31, 2014 are depicted in Fig. 1. On average, there were
1763 ILI cases per day, 695 for age <5, 448 for age 5–14,
191 for age 15–25, 357 for age 25–29 and 71 for age 60+
(Table 1). Daily mean concentration of PM2.5 was 100.66
μg/m3, with standard deviation 80.86 μg/m3, which was
more than four times higher than the WHO’s guideline of
25 μg/m3. The maximum PM2.5 reached at 568.6 μg/m3

on January 12, 2013, which was record breaking [22]. At
the flu season (October-April), the number of ILI cases
for all age groups, except for <5 years old, tends to be
higher than the corresponding the number of ILI cases
at the non-flu season (May-September). The median
(Q1-Q3) for PM2.5 at flu season is 77.62 μg/m3 (44.50
μg/m3–131.00 μg/m3) and at the non-flu season is 83.26
μg/m3 (52.25 μg/m3–115.70 μg/m3). The temperature
and humidity tend to be lower at the flu season as com-
pared to the non-flu season with the mean (Q1-Q3) for
temperature at flu season is 6.35 °C (-0.90 °C, 14.72 °C)
and at the non-flu season is 25.60 °C (23.30 °C, 27.50 °C );
the mean (Q1-Q3) for humidity at flu season is 46 g/m3

(30 g/m3–63 g/m3) and at the non-flu season is 63 g/m3

(48 g/m3–73 g/m3) (Table 1).
We compared the model fits for the Poisson, negative

binomial and inverse Gaussian generalized additive models
with log link functions when PM2.5 was lagged at single
day or moving average ranging from 0 to 5 days prior to
ILI reporting date. The detailed model comparison was
presented in Table 2. Based on the Akaike’s Information
Criterion (AIC) [28], the inverse Gaussian generalized
additive model using the 2-day moving average of PM2.5

yielded the best fit. We further examined how well do the
fitted values of response variable correspond to the ob-
served data using the chi-square goodness of fit test. The
results indicated that the inverse Gaussian generalized
additive model with the 2-day moving average of
PM2.5fitted the data very well (deviance = 0.102, df =
2463, p-value = 1), where the deviance measures the
overall difference between the fitted values and the
observed values of the response variable. The inverse
Gaussian model provided a much better fit than the nega-
tive binomial regression (deviance =2525, df = 2464, p-
value = 0.193); whereas the Poisson regression yielded a
substantially larger deviance and failed to fit the data
adequately (deviance = 358761, df = 2448, p-value < 0.001).
Therefore, the inverse Gaussian generalized additive model
was used in the subsequent analyses. All the covariates
were statistically significant except for holiday weekend;
therefore, it was removed from the subsequent analysis.
The exposure–response relationships for PM2.5 (lag01)

and ILI risk at the flu season (left panel of Fig. 2) sug-
gested a very strong positive relationship between PM2.5

and ILI risk (p-value < 0.001), even after controlling for
the weather conditions, seasonal and year trends. The
estimated effect (slope) of PM2.5 was only marginal when
PM2.5 was between 0 and about 70 and then increased

Fig. 1 The time course of daily influenza cases, daily PM2.5, daily temperature and average humidity from January 1, 2008 to December 31, 2014
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sharply up until 200 and the trend tended to plateau
between 200 and 300, which was followed by a sharp in-
crease afterwards. We also observed a positive relation-
ship between PM2.5 and ILI risk at the non-flu season
(right panel of Fig. 2), but the effect was not statistically
significant (p-value = 0.174), since all the pointwise 95 %
confidence intervals covered zero and became very wide
at higher values of PM2.5 because of limited data in this
range (Table 1).
The ILI risk stayed high when temperature was below

zero and then sharply decreased as temperature increased

up until about 20 °C and then plateaued (p-value < 0.001),
shown in the left panel of Fig. 3. The ILI risk also de-
creased with increased humidity (p-value < 0.001) (right
panel of Fig. 3). Such inverse relationship between influ-
enza risk and weather condition is consistent with other
studies [40, 41], showing that wintertime cold tempera-
tures increase respiratory morbidity and mortality, which
is likely attributed to the fact that the virulence of influ-
enza is expected to be stronger near zero than at sub-
freezing temperatures and a decrease in temperature
makes airways more susceptible to the onset of respiratory
infections [41].
The left panel of Fig. 4 indicated that the ILI risk

reached the peak during January and then decreased
sharply until mid of February followed by a rapid upward
trend during early spring and then increased steadily for
the rest of the year. The steep drop might be due to large
migration out of the city during the Spring festival, which
is a traditional festival for family reunion in China. On
average, the relative risk of ILI tended to be higher in years
2009, 2011 and 2012 as compared to 2008, 2013 and 2014
and year 2011 had the lowest ILI risk, shown in the right
panel of Fig. 4.
We also investigated the effect of PM2.5 by flu season

across different age groups. PM2.5 had almost no effect
on influenza incidence across all age groups at the non-
flu season (shown in the bottom panels in Fig. 5), which
is consistent with the findings from the overall analysis
previously stated. By contrast, at the flu season, the effect
(slope) of PM2.5 was not significantly different from zero
when PM2.5 was below about 70 μg/m3; whereas when
PM2.5 was beyond 70 μg/m3, the effect of PM2.5 had an
increasing gradient as PM2.5 increased. Such pattern was
clearly more substantial in the middle aged groups and
tended to be most pronounced for age group 25–59
(shown in the top panels of Fig. 5). In general, PM2.5 had

Table 1 Summary statistics of daily ILI counts, PM2.5, and weather conditions in Beijing, China, during January 1, 2008 to
December 31, 2014 (Q1, Q2 and Q3 denote the 25th, 50th and 75th percentile, respectively)

Variable Flu season (October-April) Non-flu season (May-September)

Mean ± SD Minimum Q1 Q2 Q3 Maximum Mean ± SD Minimum Q1 Q2 Q3 Maximum

Daily ILI counts by age groups

<5 695.45(227.78) 270 529 673 815 1717 657.45(152.24) 357 539 648 782 1088

5–14 448.38(250.29) 124 311 389 505 2794 349.26(86.40) 153 289 341 406 710

15–24 191.29(225.80) 32 90 119 205 2097 104.44(25.47) 44 86 103 120 197

25–59 356.89(294.82) 79 179 246 429 1627 218.73(63.67) 78 176 211 260 512

60+ 71.24(53.97) 10 40 54 83 381 51.52(22.86) 16 38 48 62 447

Fine airborne particulate matter (μg/m3)

PM2.5 100.66(80.86) 2.92 44.50 77.62 131.00 568.00 90.14(53.24) 9.79 52.25 83.26 115.70 463.00

Meteorological Measures

Temperature 7.13(8.87) −12.50 −0.90 6.35 14.72 26.60 25.09(3.36) 11.20 23.30 25.60 27.50 34.50

Humidity 47.39(19.82) 8 30 46 63 95 59.86(17.63) 13 48 63 73 97

Table 2 AIC scores for the Poisson, negative binomial and
inverse Gaussian generalized additive model with log link
function modeling the ILI incidence rate in association with
PM2.5 interacting with flu season, while adjusting for daily
temperature, humidity, month and year effects. The PM2.5 is
lagged by 0, 1, 2, 3, 4, and 5 days prior to the ILI reporting
date and lag01 (PM2.5 averaged over the current day and the
previous day), lag 02 (PM2.5 averaged over the current day,
the previous day and 2 days before the current day) and so on,
up to mean lag05 (PM2.5 averaged over the past 6 days)

lag Inverse Gaussian Negative binomial Poisson

0 36828 37244 381533

1 36842 37249 381169

2 36881 37284 385726

3 36913 37314 390007

4 36919 37320 390605

5 36912 37314 389934

01 36817 37237 381769

02 36818 37233 380303

03 36828 37243 381532

04 36840 37251 380915

05 36847 37256 381354

The bolded number indicates the smallest number in the table
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Fig. 2 The panels display the estimated partial effect of 2-day moving average (current day to the previous day) of PM2.5 at the flu season
(October-April) and non-flu season (May-September), based on the inverse Gaussian generalized additive model: log μtð Þ ¼ α0 þ log ntð Þ þ
f 1 PM2:5;lag01
� �

I flu seasontð Þ þ f 2 PM2:5;lag01
� �

I nonflu seasontð Þ þ f 3 temperaturetð Þ þ f 4 humidityt
� �þ f 5 monthtð Þ þ

X
k
βk I yeart ¼ k

� �
:

The X-axis is the PM2.5 concentration (2-day moving average). The solid lines indicate the estimated log relative risk of ILI and the dashed lines
indicate the corresponding 95 % confidence intervals

Fig. 3 The panels display the estimated partial effect of temperature and humidity based on the inverse Gaussian generalized additive model:
log μtð Þ ¼ α0 þ log ntð Þ þ f 1 PM2:5;lag01

� �
I flu seasontð Þ þ f 2 PM2:5;lag01

� �
I nonflu seasontð Þ þ f 3 temperaturetð Þ þ f 4 humiditytð Þ þ f 5 monthtð Þ þX

k
βk I yeart ¼ k

� �
: The x-axis tick labels in the panels represent the observed values temperature and humidity, respectively. The solid lines

indicate the estimated log relative risk of ILI and the dashed lines indicate the corresponding 95 % confidence intervals
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the greatest effect sizes for adults (age 25–59), followed
closely by young adults (age 15–24), and then elderly (age
60+) and school age children (age 5–14) and the PM2.5

has the least pronounced effect for the children under
5 years of age (age <5). To further compare the effect of
PM2.5 across different age groups, Fig. 6 displayed the
effect of PM2.5 with PM2.5 being set as 100 μg/m3 to 500
μg/m3 at an increment of 50 μg/m3. The graph demon-
strated that log relative risk of ILI was not substantially
different across all age groups when PM2.5 was below 250
μg/m3; whereas when PM2.5 was around 300 μg/m3, the
log relative risk of ILI at age 25–59 remained to be highest
compared with other age groups, followed closely by the
age groups 15–24 and 60+. The width of the confidence
intervals became larger as PM2.5 increased, due to the lim-
ited observations at the extremely large values of PM2.5.

Discussion
This study is one of the few to investigate the association
between PM2.5 and ILI. The results of the present study
are based on one of the most extensive data sets used
thus far in Beijing, China to assess the impact of PM2.5

on daily influenza. We provided evidence for the first
time, to our knowledge, that PM2.5 is non-linearly asso-
ciated with daily ILI risk based on an inverse Gaussian
generalized additive model, after adjusting for the wea-
ther conditions, seasonal and year trend. We have
assessed the potential lagged effect of PM2.5 on ILI risk
and our study suggested that PM2.5 averaged over the

current day and the previous day had the greatest pre-
dictive power.
Apart from the statistical evidence of PM exposure en-

hancing the risk of respiratory viral illness, there has
been increasing evidence to support major hypotheses
on the biological mechanism underlying this relationship
[42–45]. Transmission of viruses via airborne routes is
influenced by droplet suspended in the air and the drop-
let size determines whether the particle will quickly set-
tle to an environmental surface or remain airborne long
enough to be inhaled into the respiratory tract of a sus-
ceptible host. For example, a study has shown that air-
borne viruses may be transported by dust storms, which
contains many PM [46]. In fact, PM is small enough to
suspend in the air for long periods of time, which may
provide “condensation nuclei” to which virus droplets at-
tach [45]. Many studies have also reported that PM in-
duces both airway epithelial damage and barrier
dysfunction, which could result in a temporary immuno-
suppressive pulmonary microenvironment [42–45].
Further, the differential effect of PM2.5 at the flu sea-

son as compared with the non-flu season advances our
further understanding of the biological mechanisms of
the influenza transmission. Our findings indicated that
the ILI risk increased progressively with increased PM2.5

at the flu season; whereas the effect of PM2.5 was not
significant at the non-flu season. We speculate that at
the flu season, the amount of viral load was sufficiently
high and also the hosts were more susceptible through
body cooling and/or drying of the respiratory tract. By

Fig. 4 The panels display the estimated partial effect for month and year, based on the inverse Gaussian generalized additive model: log μtð Þ ¼
α0 þ log ntð Þ þ f 1 PM2:5;lag01

� �
I flu seasontð Þ þ f 2 PM2:5;lag01

� �
I nonflu seasontð Þ þ f 3 temperaturetð Þ þ f 4 humidityt

� �þ f 5 monthtð Þ
þ
X

k
βk I yeart ¼ k

� �
: The solid lines indicate the estimated log relative risk of ILI and the dashed lines indicate the corresponding 95 % confidence

intervals. For the effect of year, year 2008 is set as baseline
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Fig. 5 Estimated partial effect of PM2.5 based on the stratified analysis for each age group at the flu season (top panels) and non-flu season (bottom
panels), based on the inverse Gaussian generalized additive model: log μtð Þ ¼ α0 þ log ntð Þ þ f 1 PM2:5;lag01

� �
I flu seasontð Þ þ f 2 PM2:5;lag01

� �
I nonflu seasontð Þþ

f 3 temperaturetð Þ þ f 4 humidityt
� �þ f 5 monthtð Þ þ

X
k
βk I yeart ¼ k

� �
: The X-axis is the PM2.5 concentration (2-day moving average). The solid lines

indicate the estimated log relative risk of ILI and the dashed lines indicate the corresponding 95 % confidence intervals

Fig. 6 The log relative risk of ILI in association with PM2.5 when PM2.5 was set as 100 μg/m3 to 500 μg/m3 at an increment of 50 μg/m3, by age
groups, when all the other covariates were held at their mean levels
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contrast, at the non-flu season, even when PM2.5 was
high, the hosts were not as susceptible to virus infection,
might partly because the warmer temperature and
higher humidity govern the hosts to be resistant to virus
infection leading to the overall lower amount of viral
load suspended in the air. As such, both the amount of
viral load and pollutant emits as the viral agent could
play crucial roles simultaneously determining how PM2.5

facilitates the influenza virus transmission.
The other novel contribution of our study is that we

assessed the effect of PM2.5 on influenza risk by age
groups. Our findings were consistent with other studies.
For instance, a number of studies have concluded that
PM2.5 components such as elemental carbon, organic
carbon, nitrates, and sulfate were associated with higher
proportions of respiratory conditions such as pneumonia,
asthma, and bronchitis, based on the hospital admissions
for respiratory conditions among children [47–49], in
healthy or susceptible and occupational adults [50]. The
finding was also consistent with previous studies on
elderly populations reporting associations between
PM2.5levels and hospitalizations for respiratory diseases,
including respiratory tract infections, chronic obstruct-
ive pulmonary disease, and pneumonia [51, 52]. A
number of research have been conducted to identify if
there are certain subpopulations are particularly sus-
ceptible to PM10 and some research has shown that the
effect of PM10 did not vary with age [53]; however, few
studies have been conducted to evaluate if and how the
effect of PM2.5 differs across different age groups. Our
results indicated that at the flu season, PM2.5 was strongly
associated with ILI risk across all age groups (p-value <
0.001), but PM2.5 had the greatest effect sizes for adults
(age 25–59), followed by young adults (age 15–24), and
then elderly (age 60+) and school age children (age 5–
14) and the PM2.5 has the least pronounced effect for
the children under 5 years of age (age <5). The differ-
ence in effect sizes across the age groups may be attrib-
utable to the exposure differences to the outdoor
environments, such as home, schools, workplaces, vehi-
cles, etc. Individuals aged between 25 and 59 or 15–24,
who commute to work or school in personal vehicles or
public transportation on roadways, are those mostly likely
to be exposed to a substantial portion of their daily dose
of air pollution during commuting activities [54, 55]. The
high exposure to the outdoor pollutants for those people
might partially explain why the effect of PM2.5 among
those people is almost consistently more pronounced
compared with other age groups. Interestingly, the
number of ILI cases for the groups of individuals be-
tween 25 and 59 or 15–24 are markedly lower com-
pared with the under 5 years of age group (Table 1).
Similarly, the number of ILI cases for the elderly popu-
lation is the lowest across all age groups, whereas the

impact of PM2.5 is almost as high as the young adults
and occupational adults. We hypothesize that the eld-
erly people are mostly likely to suffer from chronic dis-
eases, such as asthma, chronic obstructive pulmonary
disease (COPD), diabetes, and cardiovascular disease,
which may determine their susceptibility to the short-
term exposure to elevated levels of air pollution [44,
56]. Such hypothesis is supported by toxicology experi-
ments. For example, researchers have exposed normal
and compromised rats to concentrated ambient parti-
cles drawn from the outside air in Boston. After three
days of exposure to concentrated ambient particles (6 h
per day at 228 to 288 μg/m3), mortality was 37 %
among rats with induced chronic bronchitis, 19 %
among rats with monocrotyline-induced inflammation,
and 0 % among normal rats [6]. The elderly with pre-
existing chronic respiratory diseases are therefore particu-
larly venerable, since PM can increase oxidative stress, ag-
gravate background inflammation and transient declines
in lung function, leading to acute exacerbation of respira-
tory symptoms [42, 44, 57]. The effect of PM2.5 for the
under 5 year of age group, albeit weaker, is interesting.
The number of ILI cases for the under 5 years of age
group is the highest among all the age groups (Table 1),
since their lungs are still developing ability to fight off
bacterial and viral infections, so they are more suscep-
tible to influenza viruses. Youngsters are therefore
urged to stay indoor during flu season to reduce their
exposures to influenza viruses. Nevertheless, the effect of
PM2.5 is still significantly associated with ILI for the chil-
dren of age under 5, so exposure to outdoor pollutants
must occur indoors for the association to be plausible.
Ventilation modifies the ability of ambient particles to
penetrate indoors. The fraction of the fine particles pene-
trate indoors as shown to range between 0.3 and 1.0 de-
pending on home ventilation rates [58]. As such, lower
exposure to PM2.5 for the children who most of the time
staying indoors may lead to the reduced effect of PM2.5 on
ILI incidence.
There are several limitations to our study. First, the

PM2.5 data was based on only one monitoring site.
Although it can reflect the exposure of the PM2.5 in
Beijing in general, the PM2.5 varied from location to
location. Future studies with multiple surveillance data are
warranted, which could more accurately reflect the expos-
ure. The ILI cases might be also underreported, since not
all the patients visit the surveillance hospitals in the net-
work and the people with mild influenza symptoms tend
to visit the local physician or stay at home. In addition,
misclassification of the influenza may occur, since the
ILI symptoms are very similar to other respiratory dis-
eases. Our current study suggested that PM2.5, as a
specific component of the mixture of air pollutants
is significantly associated with ILI. However, different
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pollution sources can be variably associated with dif-
ferent outcomes interactively and simultaneously and no
single pollution source can be attributed to an outcome. A
number of studies demonstrated that PM effect remained
robust, after controlling the effects of other pollutants,
such as the carbon monoxide (CO), sulfur dioxide (SO2),
Nitrogen dioxide (NO2), or ozone (O3) [14, 20, 21, 59–
62]. A recent systematic review was also conducted based
on thirty-three time-series and case-crossover studies in
the Chinese population reporting mortality effects of acute
exposure to six air quality criteria pollutants including
PM10, PM2.5, SO2, NO2, O3, and CO [63]. Their study
suggested per 10 μg/m3 increases in PM10 and PM2.5, the
summary risks of excess death increased 0.32 % (95 % CI:
0.23, 0.40) and 0.51 % (95 % CI: 0.30, 0.73) in respiratory
mortality, after controlling for other pollutants. Although
most studies consistently suggested the robust association
of PM2.5 and adverse health outcomes, we recognize other
pollutants could be responsible for the adverse health out-
comes. Therefore, interpretation our current study should
be cautious and replication of the study with more com-
prehensive exposure data is needed. Furthermore, the ef-
fects of PM2.5 could be a function of its complex chemical
components and composition [64–66]. Therefore, further
investigations to advance our understanding of the chem-
ical constituents and sources of PM2.5 are warranted for
designing effective emission control policies [67].
In addition, future estimates can be performed for

different gender groups, provided that the population
size for such groups can be retrieved or estimated. There
are other potential sources of heterogeneity, e.g. ones
having to do with the geographic distribution of partici-
pants and their underlying health conditions. Last, the
present study is based on Beijing, and more extensive
studies are warranted to ascertain how generalizable our
results are to other regions. Given the gap in knowledge,
our results provided a good starting point and a priori
hypothesis for further studies. Further laboratory studies
are in great need to understand the plausible mechanisms
underlying the association; as well as longitudinal studies
to confirm the causal relationship between exposure to
PM2.5 and influenza onset.

Conclusions
Our novel findings suggested that residents in Beijing
should be considered at increased risk of ILI during
highly polluted days at the flu season (October-April).
Such associations are not confounded by long-term time
trends, or by weather conditions, all of which were prop-
erly controlled in the generalized additive model. While
weather is an important predictor of ILI, there was no
evidence in these analyses that the PM2.5 associations
were confounded by weather. Furthermore, the effect of
PM2.5 was strongly associated with ILI risk across all age

groups, but the effect was the most pronounced among
adults (age 25–59), followed by young adults (age 15–24),
school children (age 5–14) and the elderly (age 60+) and
the effect of PM2.5 was the least pronounced for the
children under 5 years of age (age < 5). These findings pro-
vided an improved understanding of interplay of PM2.5

and influenza viruses at the flu season and how the effect
of PM2.5 on ILI risk differed by age groups, which are of
great importance in order to enhance the accuracy of
surveillance systems, to have more precise predictions
on influenza epidemics and pandemics in the future
to help both environmental policy-making and public
health preparedness.
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