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Abstract

Background: Recent interest in the health effects of air pollution focuses on identifying combinations of multiple
pollutants that may be associated with adverse health risks.

Objective: Present a methodology allowing health investigators to explore associations between categories of
ambient air quality days (i.e., multipollutant day types) and adverse health.

Methods: First, we applied a self-organizing map (SOM) to daily air quality data for 10 pollutants collected between
January 1999 and December 2008 at a central monitoring location in Atlanta, Georgia to define a collection of
multipollutant day types. Next, we conducted an epidemiologic analysis using our categories as a multipollutant
metric of ambient air quality and daily counts of emergency department (ED) visits for asthma or wheeze among
children aged 5 to 17 as the health endpoint. We estimated rate ratios (RR) for the association of multipollutant
day types and pediatric asthma ED visits using a Poisson generalized linear model controlling for long-term, seasonal,
and weekday trends and weather.

Results: Using a low pollution day type as the reference level, we found significant associations of increased asthma
morbidity in three of nine categories suggesting adverse effects when combinations of primary (CO, NO2, NOX, EC, and
OC) and/or secondary (O3, NH4, SO4) pollutants exhibited elevated concentrations (typically, occurring on dry days with
low wind speed). On days with only NO3 elevated (which tended to be relatively cool) and on days when only SO2 was
elevated (which likely reflected plume touchdowns from coal combustion point sources), estimated associations were
modestly positive but confidence intervals included the null.

Conclusions: We found that ED visits for pediatric asthma in Atlanta were more strongly associated with certain day
types defined by multipollutant characteristics than days with low pollution levels; however, findings did not suggest
that any specific combinations were more harmful than others. Relative to other health endpoints, asthma exacerbation
may be driven more by total ambient pollutant exposure than by composition.
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Introduction
Currently, there is much scientific interest in investiga-
tions of multiple pollutants in air pollution health studies
to fill a general lack of knowledge surrounding the impacts
of multiple pollutants and health [1–5]. It is anticipated
that quantification of such ‘multipollutant’ health risks will
more accurately reflect the etiologic relationships between
air pollution and adverse health and that certain combina-
tions of pollutants may be found to be more toxic than
others for particular outcomes [2]. It is important to note
that this knowledge gap is not the result of lack of under-
standing of how air pollution exposure occurs (i.e., via
inhalation of complex pollutant mixtures) but rather the
result of limitations of traditional epidemiologic models
and exposure characterization methodologies [6, 7]. Fac-
tors such as the strong multicollinearity between different
pollutants present in most air pollution data sets present
inferential challenges since standard statistical analyses
will typically result in inflation of standard errors. In
response, several promising methodologies for character-
izing multiple pollutants and examining multipollutant
health risks appear in the environmental epidemiology
literature [8–12]; however, a recent review by Oakes,
Baxter et al. (2014) notes that there is no gold standard for
multipollutant exposure characterization or health effects
estimation and that much remains to be learned [7].
In order to fill this knowledge gap it is clear that more

research on the development and application of multi-
pollutant exposure metrics in health studies is needed.
For example, it is still largely unknown whether or not
multipollutant metrics provide a reasonable explanation
of air pollution health effects or if they provide any im-
provement upon single pollutant metrics. The reliability
of many multipollutant methods, as well as potential
impacts of exposure characterization error and con-
founding, remain uncertain.
To address this problem, we focus on multipollutant

features driving local air quality (in this case at the city
level). Different weather elements (such as temperature,
humidity, wind speed, and boundary layer height) and pol-
lution sources interact in locally characteristic and distinct
manners with local air quality. Therefore, understanding
of such features on a local scale could play an important
role in the development of a multipollutant exposure
characterization. For example, if a study found that the
daily occurrence of a particular multipollutant combin-
ation has stronger impacts on health than others, we
might conclude that further studies of this combination
are needed. However, if this event only occurs on a small
fraction of days in the study (e.g., < 1 %), investigators may
be somewhat less concerned about development of more
complex methods needed for further investigation.
In the present study, we explore short-term associations

between multiple pollutants and emergency department
(ED) visits for pediatric asthma by addressing the follow-
ing research questions:

� What multipollutant combinations are present on
days in our study period and how often do these
multipollutant day types occur? What do ‘typical’
multipollutant day types look like and what do ‘rare’
or ‘extreme’ multipollutant day types look like?

� How does each multipollutant day type observed in
our study associate with health? Do certain day
types associate more strongly with adverse health
than others?

Our overarching goal in addressing these questions is to
increase our understanding of how multipollutant combi-
nations associate with acute pediatric asthma morbidity
and to provide insight into development of methods that
can be useful for guiding future efforts aimed at exploring
risks associated with exposure to multiple pollutants.

Methods
To address our first set of research questions, we apply an
unsupervised learning tool known as the self-organizing
map (SOM) [Pearce, Waller et al. (2014) explain the use of
SOMs for ambient air quality classification] to develop
categories of days (i.e., multipollutant day types) based on
ambient air quality data that reflect how multipollutant
combinations vary in time at our study location. To
address our second set of research questions we apply a
time-series epidemiologic model [13] to estimate associa-
tions of multipollutant day types and pediatric asthma
morbidity. We also perform a sensitivity analysis exploring
the impact of our choice of number of categories and
compare results to single pollutant models.

Developing multipollutant day types
The SOM algorithm [14] applies an unsupervised learning
process to project features discovered in input data onto
the elements of a regular one- or two-dimensional array
(i.e., the ‘map’) in an organized fashion. In addition to pro-
viding an efficient means of interpreting and visualizing
complex multipollutant data sets, the ‘map’ facilitates
understanding of between-class relationships – a charac-
teristic not available with traditional techniques [10]. The
way SOM is used here is similar to cluster analysis [8];
however, we tailor our approach towards identifying a
collection of multipollutant day types that can be used as
independent exposure variables rather than the discovery
of ‘distinct’ profiles in our data.
We applied SOM to daily measures of ten air pollutants

collected at a central air monitoring location in an indus-
trial and commercial area in downtown Atlanta in order
to identify categories of days that reflect the temporal vari-
ation in multipollutant conditions observed from January
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1, 1999 to December 31, 2008. Pollutants included in the
analysis included measures for 1-hr maximum carbon
monoxide (CO) in ppm, 1-hr maximum nitrogen dioxide
(NO2) and nitrous oxides (NOx) in ppb, 8-hr maximum
ozone (O3) in ppb, 1-hr maximum sulfur dioxide (SO2) in
ppb, and five 24-hr average PM2.5 components in μg/m3:
elemental carbon (EC), organic carbon (OC), nitrate
(NO3), ammonium (NH4), and sulfate (SO4). For more de-
tail on application of SOM see Additional file 1.

Selecting the number of multipollutant day types
With SOM, as well as for other clustering techniques,
the choice of the number of categories is an important
step that must be determined by the user [10]. Although
several procedures exist for identifying groups in data
[15], the issue has yet to be formalized for our purposes
and thus we guide our decision using criteria we believe
support an exploratory epidemiologic investigation. As
such, our aims are to identify a number of day types that
minimizes the information lost in our exposure of inter-
est yet retains enough power and precision for statistical
inference. To achieve this, we begin by applying princi-
pal components analysis (PCA) to our data to identify
the primary modes of variance as well as provide a
means to graphically explore grouping structure. Next,
we evaluate the distribution of variance explained in our
data as a function of class number as information loss is
a concern. Lastly, we evaluate the relative frequency
distribution of multipollutant day type assignments as a
function of category number to better understand sam-
ple size considerations. Results are used collectively to
assist in selecting a number of multipollutant day types
for use in our epidemiologic analysis. It is important to
note that the unsupervised nature of our study is
exploratory and thus our intention is to identify day
types that can inform hypothesis generation for further
research not ‘ideal’ risk categories [16].

Health outcome data
We obtained aggregate daily counts for pediatric asthma
related emergency department (ED) visits for children
ages 5 to 18 years from 41 hospitals within metropolitan
Atlanta for our study period. We defined ED visits for
pediatric asthma as all visits with a code for asthma
(493.0–493.9) or wheeze (786.07) using the International
Classification of Diseases, 9th Revision.

Epidemiologic modeling
We modeled associations between multipollutant day
types and pediatric asthma emergency department
visits using a case-crossover design within the frame-
work of a Poisson generalized linear model allowing for
overdispersion. The general framework of our model is
similar to those applied in previous studies of Atlanta
data [9, 11, 13]. In brief, the dependent variable was the
daily number of pediatric asthma emergency depart-
ment visits and the primary exposure variable was a
categorical variable with indicators for each multipollu-
tant day type. To control for potential confounding, the
model included indicator variables for year, season,
month, day-of-the-week, hospital, and holidays, their
interactions; and, to control for weather, cubic polyno-
mial terms for three-day averages of mean temperature
and mean dew point temperature. Models also included
interactions between temperature and season.
The estimated main effects are rate ratios (RRs) com-

paring the adjusted pediatric asthma rate for each multi-
pollutant day type as compared with that under the
referent day type. In order to maximize the contrasts
between day types in our analysis the referent group was
specified as the SOM category with the lowest overall
pollutant concentrations. This comparison was chosen
to approximate the effect of a given day type versus a
relatively ‘clean air’ referent category.
As a sensitivity analysis we compare the magnitude and

stability of estimated associations as a function of class
number by running our epidemiologic model using output
from classifications with 2 categories to a maximum of 20
categories. Finally, to discuss our findings in context with
traditional approaches we present single pollutant RRs for
interquartile range increases in each pollutant.

Results
Selecting the number of multipollutant day types
Plotting a PCA projection of our data (Fig. 1a) in combin-
ation with the component loading weights reveals a
primary mode of variation (PC1) dominated by CO, NO2,
NOX, EC, and OC, a subset of pollutants indicative of pri-
mary pollution, and a primary mode of variation (PC2)
weighted towards SO4, NH4, and O3, marking it as a
measure of secondary pollution. The relative lengths and
direction of the SO2 and NO3 loading weights suggest
behaviors independent from these two primary modes of
variance (which capture approximately 65 % of the vari-
ance in our data). Although strong grouping is not evident
in this display, PCA suggests that at least 4 separate modes
of variance are needed to capture the primary features in
this dataset.
Examination of the individual pollutant variance ex-

plained as a function of class number reveals a positive
nonlinear relationship between class number and pollu-
tant variation (Fig. 1b). We also see that certain pollutants
(e.g., NOX, SO4, NH4) are better represented by the classi-
fications than others (e.g., SO2, NO3, NO2), a feature that
may have important implications for subsequent analysis.
For our purposes, minimization of such intra-classification
spread is desired in addition to a general expectation that
the metric capture as much of the information available in



Fig. 1 Graphical and statistical evaluation measures used to aid in selection of number of day types. Panel a presents a principal components analysis
(PCA) projection of our multipollutant data. The grey points represent the scores for daily observations along the first two principal components and the
dark arrows indicate the corresponding loading vectors for each pollutant. Panel b displays the distribution of adjusted R2 values from simple regression
models fit to each pollutant as a function of the number of day types. Each pollutant has a unique symbol and the trend line reflects the mean. Panel c
displays the distribution of frequency assignments to each day type. Grey points reflect observed frequencies and trend line reflects the mean
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the original data as possible. As such, we see approxi-
mately 8 groups are needed to retain half the information
of the original data for 9/10 pollutants (SO2 being the
exception) and that over 12 groups are needed to capture
more than half the variance of all pollutants.
The frequency counts of class assignments shows a

strong relationship between number of categories and the
distribution of day types available for testing (Fig. 1c).
Here a nonlinear decreasing trend illustrates how smaller
numbers of categories provide larger sample sizes and
more categories provides smaller sample sizes. We require
a classification that retains numbers of days in each day
type to be useful in further analyses and thus, to assist, we
have added two reference lines to the plot – a black
dashed line for a suggested minimum sample size of
100 days (which equates to ~3 % of all days) and a grey
dashed line for identification of relatively rare events at a
frequency of 10 % (approximately 365 individual days)
during our study period. These indicators suggest we
could reasonably examine all classifications containing
around 10 categories or less.
Collectively, these findings improve our understanding
of the variance structure of our data and reveal how differ-
ent partitions of our data can be used to capture certain
properties of interest for our exposure characterization
(Fig. 1). Based on these findings, we determined that a
classification consisting of 9 categories was sufficient to
describe ambient air quality days because it has the benefit
of providing a modest approximation of the original data
(all R2 > 0.5 except SO2) and reasonable sample sizes (all
day types > 100 days).
Multipollutant day types
To answer our first set of proposed questions we present a
3x3 SOM that illustrates ambient air quality using 9 cat-
egories of days that reflect the range of multipollutant
events frequently observed at our monitoring location
(Fig. 2). Each category is described as a multipollutant day
type (MDT) and is referenced using SOM [x,y] coordi-
nates. Furthermore, MDT profiles are displayed as bar-
plots that present mean centered values on a percentage



Fig. 2 A 3 × 3 SOM of 9 multipollutant day types observed in Atlanta, GA, from January 1, 1999 to December 31, 2008. For each type, profile bars
reflect the average (±SD) pollutant concentrations on assigned days zeroed to the overall mean on a percentage scale. Coordinate labels are in
brackets [] and the relative frequencies (%) and within-class sample size (n) are presented in the upper right hand corner of each panel
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scale along with their standard deviations. For summary
statistics of the SOM see Table 1.
We found that the most common types of days at our

study location are characterized by profiles in the bot-
tom left corner of the map (Fig. 2). The most frequent
type of day (24 % of all days) in our study, MDT [1, 1],
reveals that air quality conditions for Atlanta are most
often well below average (i.e., the overall mean pollutant
levels for Atlanta). Such relatively ‘clean’ days were
found to be distributed across all seasons and were
accompanied by low air pressures, higher humidity, and
higher wind speed suggestive of strong atmospheric
mixing and rain (Fig. 3). Another common type of day
(MDT [2, 1]; 17 %) groups springtime events that entail
slightly above average concentrations for secondary pol-
lutants (O3, NH4, and SO4) and a relatively warm and
stable atmosphere. MDT [1, 2] assembles cooler dry
days with near to slightly above average concentrations



Table 1 Means (standard deviations) for pollutant concentrations and meteorological variables in each SOM category, Atlanta, GA, 1999 to 2008

SOM [X,Y] CO
(ppm)

NO2
(ppb)

NOx
(ppb)

O3
(ppb)

SO2
(ppb)

PM2.5 EC
(μg/m3)

PM2.5 OC
(μg/m3)

PM2.5 NH4
(μg/m3)

PM2.5 NO3
(μg/m3)

PM2.5 SO4
(μg/m3)

PM10
(μg/m3)

PM2.5
(μg/m3)

TEMP
(C)

DEWTMP
(C)

[1, 1] 0.5 (0.3) 26.3 (7.8) 44 (23) 31.1 (11.9) 8.5 (8.5) 0.7 (0.3) 2.3 (0.8) 0.9 (0.4) 0.6 (0.4) 2.6 (1.1) 16 (6.5) 9.1 (2.9) 16.1 (7.6) 10.5 (9.1)

[1, 2] 1.1 (0.5) 45.1 (8.7) 119.7 (55.9) 35.1 (12.9) 10 (7.7) 1.2 (0.5) 3.6 (1.1) 0.9 (0.4) 0.9 (0.5) 2.6 (1.1) 20.3 (7.6) 11.9 (3.3) 14.4 (6.3) 6.6 (8.4)

[1, 3] 0.8 (0.5) 36.7 (9.4) 91.8 (54.8) 21.2 (10.8) 12.8 (12) 1.3 (0.6) 3.8 (1.8) 1.7 (0.7) 2.8 (1) 3.6 (1.7) 20 (8) 16.1 (6.1) 6.9 (5.3) 1.2 (7.8)

[2, 1] 0.7 (0.4) 34.1 (10.2) 58.3 (31.3) 56.2 (13.5) 9.5 (9) 1.2 (0.4) 3.7 (1) 2.2 (0.6) 0.5 (0.3) 6.7 (1.9) 28.2 (7.1) 18.7 (4.2) 24.2 (3.7) 17.1 (4.2)

[2, 2] 0.9 (0.6) 41 (10.5) 95.4 (57) 36.5 (16.1) 48.8 (17.1) 1.1 (0.6) 3.1 (1.1) 1.3 (0.6) 0.9 (0.6) 3.8 (2.1) 20.6 (8.1) 13.2 (5.3) 13.8 (8.9) 5.8 (10.5)

[2, 3] 2.4 (0.7) 53.3 (12.2) 308.8 (100.5) 30.9 (14.2) 18.4 (14) 2.6 (0.9) 6.1 (1.7) 1.1 (0.5) 1.3 (0.7) 3 (1.5) 27 (8.4) 18.6 (5.1) 11.9 (5.3) 3.4 (6.9)

[3, 1] 1.2 (0.5) 49.5 (13.4) 109.3 (59.2) 78.6 (18.5) 17.1 (14.3) 2 (0.7) 5.5 (1.7) 4.1 (1) 0.7 (0.4) 12.5 (2.9) 43.5 (9.9) 31.6 (5.8) 26.2 (3) 18.5 (2.9)

[3, 2] 1.4 (0.5) 57.7 (11.6) 158.8 (64.9) 64.7 (15.5) 12.9 (9.9) 2 (0.7) 5.4 (1.5) 2 (0.6) 0.7 (0.3) 5.6 (1.8) 33 (8.6) 20.6 (4.6) 21.7 (4.3) 12.6 (5.3)

[3, 3] 3.3 (0.9) 72.9 (20) 444.2 (130.2) 36.6 (19.7) 23.7 (16.3) 4.5 (1.5) 11 (3.9) 1.8 (1.2) 1.6 (0.9) 4.9 (3.2) 43.9 (16.9) 29.9 (9.6) 13.9 (5.5) 4.8 (7.4)

Overall 1.1 (0.8) 41 (15.8) 116.4 (109.1) 42.6 (21.3) 14.6 (15.1) 1.4 (1) 4 (2.3) 1.6 (1.1) 0.9 (0.8) 4.6 (3.2) 24.8 (11.7) 16.2 (7.9) 17.2 (8.1) 10 (9.1)
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Fig. 3 Seasonal frequencies, particulate matter, and meteorological summaries for the 9 multipollutant day types identified in Atlanta, GA, from
January 1, 1999 to December 31, 2008. Panel a provides the seasonal frequency counts for each type. Panels b-g provide boxplots illustrating the
distribution of particulate matter and meteorology under each category. Grey indicates our referent level; Light blue indicates insignificant day
types; Red indicates day types significantly associated with asthma
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for primary pollutants such as NO2 and NOX. Collect-
ively, these profiles capture 57 % of days in Atlanta and
thus we would consider such types to represent ‘typical’
air quality events at our study location.
Moving to other sections of the map we find types of

days that were somewhat less common and indicative of
extreme conditions for a variety of combinations of pol-
lutants (Fig. 2). In the center MDT [2, 2] exemplifies
8 % of days when SO2 concentrations are well above
average. In the upper left MDT [1, 3] captures extreme
NO3 days that occurred 7 % of the time under cool, wet,
stable conditions. This agrees well with understanding of
how low temperatures and high relative humidity con-
tribute to the formation of nitrate rich aerosols in
Atlanta [17]. Moving right, we see that 11 % of days
(MDT [2, 3] and [3, 3]) were dominated by well-above
average to extreme conditions for several primary pollut-
ants such as CO, NO2, NOX, EC, and OC. Consistent
with these relatively cold dirty days are the high pressure,
low wind speeds, and low humidity conditions suggestive
of poor atmospheric mixing and potential inversions
(Fig. 3). Furthermore, MDT [2, 3] and MDT [3, 3] exhibit
high ratios of OC/EC (2.39 and 2.43, respectively) and
thus are indicative of days dominated by mobile source
emissions from gasoline [17]; however, MDT [3, 3] is far
less frequent (3.3 % of days) and highlights days when
several pollutants are two to three times higher than aver-
age – a scenario we might a priori describe as the most
hazardous air quality scenario in our study.
Moving towards the right center, MDT [3, 2] represents

a relatively polluted type of day when concentrations were
above average for several primary and secondary pollut-
ants. Accompanying weather was warm, dry, and stable,
conditions known to promote outdoor physical activity
[18]. In the bottom right, MDT [3, 1] represents days
dominated by extreme concentrations for O3, NH4, and
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SO4. This chemical profile occurred primarily in summer
under relatively hot, humid conditions and suggests high
photochemical activity.

Associations with pediatric asthma emergency department
visits
The questions addressed in this section are: How does the
occurrence of each type of multipollutant day observed in
our study associate with the health outcome of interest?
Do certain combinations associate more strongly with
adverse health than others? Using MDT [1, 1] as a refer-
ent, results show significant associations with three types
of days in Atlanta (Fig. 4). The strongest association (RR:
1.04, 95 % CI: 1.02, 1.05) was found for MDT [3, 2] – a
type of day characterized as being generally well mixed
and having above average concentrations (Fig. 2). Signifi-
cant associations were also identified for MDT [3, 3] and
MDT [3, 1], day types that reflect extreme concentrations
for either a collection of primary pollutants (CO, NO2,
NOX, EC, and OC) or a set of secondary pollutants (O3,
NH4, and SO4). Collectively, these events encompassed
approximately 20 % of days in our study and occurred on
days when particulate matter was above average (Fig. 3).
Results for MDT’s describing more typical (i.e. high fre-
quency) air quality days ([1, 2], [2, 1]) and air quality days
with single pollutant extremes ([1, 3], [2, 2]) were positive
but not significant. Moderate-to-high concentration days
dominated by primary pollution (MDT [2, 3]) yielded a
positive estimated association but with confidence interval
Fig. 4 Rate ratios of emergency department visits for pediatric asthma on
day type as compared to the referent group [1, 1] in Atlanta, Georgia from
that includes the null; the result is intermediate between
the low pollution days ([1, 2] and [2, 1]) and the high pri-
mary pollution days ([3, 3]).

Sensitivity analysis
Results from our epidemiologic analysis with multiple
SOMs revealed that RRs for multipollutant day types were
somewhat sensitive to variations of class number (Fig. 5);
however, based on the properties of the classifications a
certain degree of variability was expected. By overlaying
the SOM-derived chemical profiles found to be signifi-
cantly associated with pediatric asthma from all classifica-
tions derived using a range of categories from 2 to 20 we
are able to see if identification of similar types of days
resulting in associations with adverse health was captured
by multiple categorizations of our data (Fig. 5a). We see a
general clustering of profiles significantly associated with
asthma morbidity, a feature that suggests that profiles
capturing similar features in the air quality data resulted
in similar associations with asthma morbidity.
A strip plot of RRs for each class number reveals how

the magnitude and stability of estimates vary as a function
of the number of categories. Generally, we found that add-
ing additional levels to our classifications produced cat-
egories with larger rate ratios and standard errors. These
trends were somewhat expected, as the increases in magni-
tude of the estimates likely reflect increasing magnitude of
the contrasts between tested categories and increasing
standard errors correspond with decreasing sample sizes. It
day following occurrence (i.e., lag 1) of each SOM-based multipollutant
1999 to 2008



Fig. 5 Results from sensitivity analysis of number of categories. Panel a presents a Principal Component Analysis biplot of the multipollutant data in
our study. Vectors depict the primary modes of variation in the data (i.e., loading weights) and circles reflect estimated Rate Ratios (RR) using Poisson
regression for SOM generated multipollutant profiles from a range of classifications (categories n = 2:20) found to be significantly associated with our
outcome (p< 0.05). Panel b presents the distribution of rate ratio estimates for each SOM classification. Categories found significant (p < 0.05) are colored
black, and to indicate estimate stability, size of the symbol is inversely proportional to the estimated standard error (SE). Dashed lines reflect quartiles for
the distribution of RRs across all classifications
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is important to note that we varied the referent level
between the different SOMs in order to explore different
ranges of contrasts and not to facilitate comparison to
specific results in our 3x3 SOM. In addition to general
trends, we also found that above a certain number of cat-
egories larger distinctions between the RRs became more
apparent as well as emergence of ‘protective’ types of days.

Single pollutant results
Using single pollutant models we identified significant
associations for interquartile range (IQR) increases in
CO, NO2, NOX, O3, EC, OC, NH4, and PM10 and PM2.5

(Fig. 6). Overall, RR estimates for these pollutants were
generally similar and agreed well with our SOM-based
findings that ED visits for pediatric asthma are rather
non-specific – a finding seen in previous studies [13].

Discussion
In this study, we identified nine multipollutant day types
that reflect temporal patterns in multipollutant days at
our monitoring site and applied them as categories of
exposure in an epidemiologic analysis. Observed daily
conditions ranged from windy, wet types of days with
low levels for all pollutants to generally dry, stable (i.e.,
low wind speeds) days with elevated pollution for either
primary- or secondary-driven combinations or both
types of pollutants (Figs. 2 & 3). Epidemiologic analysis
identified clear associations between higher levels of
pollution and adverse health. We found significant asso-
ciations of increased asthma morbidity for three MDTs
(Fig. 4): 1) days that were most warm, with low winds
and humidity (MDT [3, 1]), and very high levels for
secondary pollutants (O3 and ammonium sulfates); 2)
days that were the driest and most stable (MDT [3, 3]),
with very high primary pollutants from vehicles (CO,
NOx, EC, and OC), and 3) days that were generally
warm, stable and dry (MDT [3, 2]) with elevated levels
for both primary and secondary pollutants. Each of these
three ‘harmful’ day types was unhealthy to a similar de-
gree. On the other extreme, wet, windy days with low



Fig. 6 Rate ratios (RR) and 95 % confidence intervals for interquartile range increases in lag 1 ambient air pollution concentrations for single pollutants
in Atlanta, Georgia from 1999 to 2008
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pollution levels were not found to be significantly associ-
ated with asthma incidence.
Between these extremes, intermediate, non-significant

associations were observed for several SOM types: warm,
low-wind days when primary pollutants were elevated but
not as high as MDT [3, 3] (MDT [2, 3]), cool days when
nitrate was high (MDT [1, 3]), and days when SO2 was
high (MDT [2, 2]) that likely occurred when coal combus-
tion plumes touched down over downtown Atlanta. MDTs
[1, 2] and [2, 1] were most similar to our referent group
(MDT [1, 1]) both in terms of relatively low pollution
levels and meteorology.
These findings indicate a greater burden of asthma mor-

bidity on days when either primary or secondary pollut-
ants are at their highest concentrations, and on days when
both primary and secondary pollutants are moderately ele-
vated (warm sunny days exhibiting high photochemical
activity in combination with traffic emissions). Moreover,
days with isolated extremes for SO2 or NO3 were modestly
suggestive of adverse impacts on asthma exacerbation.
Results for typical conditions indicated that normal-to-low
levels of air pollution were generally not harmful. Thus,
overall increases in pollution appear to adversely impact
pediatric asthma exacerbation more than any unique com-
bination, a conclusion reached by other analyses of the
Atlanta data assessing this particular outcome [9, 11].
Comparison of epidemiologic results of our SOM-based
exposure metric with those of single pollutant measures
(Fig. 6) found general agreement between the results; how-
ever, the broader interpretation provided by the SOM
findings can be informative for future studies of air pollu-
tion mixtures. In summary, we found our approach pro-
vides novel, yet simplified, results that can be used to better
understand day-level multipollutant combinations and their
associations with adverse health.
A key feature of this work was our demonstration of

how an unsupervised learning tool (SOM) can be used
to identify category boundaries in multipollutant data
sets for epidemiologic investigation. We chose to decon-
struct our data in such a manner because we wanted to
examine contrasts in our data that emerged from pat-
terns founded on observed environmental conditions. By
centering our exposure characterization on such pat-
terns we were able to examine contrasts in the data that
emphasized distinctions in day-level concentrations
amongst several pollutants not distinctions in sources or
variation in health outcomes. We chose this strategy for
our exposure characterization because we wanted the
opportunity to investigate both the typical modes of be-
havior expected in air pollution (e.g., primary, second-
ary) and features of the system that vary in an irregular
manner (e.g., SO2, NO3, etc.). To achieve this, we tai-
lored our approach by selecting a somewhat generous
number of categories (most epidemiologic studies use
categories ranging from about 2 to 5 (Royston, Altman
et al. 2006)) as we were more concerned with missing a
potentially important feature in our data than statistical
power. In doing so, we provided our investigation the
opportunity to look at more than just the global features
present in the data; the generalized nature of more
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traditional unsupervised approaches has been noted as a
limitation elsewhere [2].
The primary advantage of categorizing our multivari-

ate data is simplicity. In using categories we were able to
reduce complex relationships observed within our data
into a set of representative profiles that greatly simplified
our statistical analysis and produced intuitive findings
that are relatively straight-forward and can be easily
understood by policy makers and non-specialists in the
field. Such findings give us a meaningful look at multi-
pollutant air quality and facilitate complex health inves-
tigations by allowing joint estimation of risk for several
pollutants.
Such simplicity does come at a cost (as with all multi-

variate reductions), however, as multivariate reduction
can be seen as a form of data smoothing that results in
both information and power being lost in the procedure
[19]. Consequently, our findings are likely conservative
and any ‘true’ associations are likely stronger than those
we have reported. Nevertheless, as an exploratory tool
(the intended purpose of unsupervised learning) such
analyses can provide a benchmark to compare findings
from more complex approaches and provide opportunity
to raise new questions regarding the resulting value of
multipollutant categorization for epidemiologic research.
Although few, other studies have noted successes for
using categorization in this setting [9, 12, 20], and our
current approach adds to this literature.
As with any study design, there are opportunities for im-

provement. To begin with, we only considered a single lag
in our investigation, and although asthma morbidity has
generally noted a short-term response to air pollution
[13], it is likely that we may have missed important fea-
tures at other lags in our data. This raises a complex issue
for multipollutant research because it is unclear how lag
structures for several pollutants can be accounted for in
the development of a multipollutant exposure metric.
Distributed lag models have shown promise for single pol-
lutants; however, methods aimed at identifying sequences
of events could also be informative in this setting. Another
potential limitation for this work is possible confounding
of our results due to clear associations between several of
our multipollutant day types, time of year, and local
weather conditions. These findings highlight that it may
be more difficult to separate confounders from multipollu-
tant metrics than single pollutant metrics as the linkages
between weather and the identified features in the air
quality process are likely to be stronger than single pollu-
tant associations. Here, we aggressively controlled for con-
founding through the structure of our Poisson generalized
linear model [13]; however, we suggest that confounder-
based categorizations are a possibility that should be
explored. Another concern for our work is that we did not
incorporate the uncertainty associated with our categories
into our health study. Certain categorical profiles may be
closer to ‘true’ conditions than others and thus it is pos-
sible that this error was propagated into our estimated
health associations. Any classification procedure will re-
turn information on class quality and thus adaptations
need to be made to our approach to account for this un-
certainty. Source apportionment may offer opportunity for
examples (e.g., positive matrix factorization) as well as ap-
proaches designed to account for exposure measurement
error [21, 22]. Another limitation is that we treated each
pollutant equally in this analysis and thus if associations
were stronger for certain pollutants our analysis may have
suppressed such relationships. We note that the nonspeci-
ficity of pollutants impacting asthma morbidity suggests
this is not a major issue in our study; however, variable
weighting or selection strategies could offer opportunity
for improvement [23]. Finally, we only examined a single
health outcome and thus other outcomes should be exam-
ined; while asthma exacerbation is robustly associated
with ambient air pollution, this particular health outcome
may be primarily driven by total pollutant load and, as
such, may be less sensitive to pollutant composition than
other health endpoints.
The natural extension of an unsupervised study is to use

what has been learned in the exploratory phase to aid in
the development a supervised approach that would allow
development of categories more strongly associated with
the outcome of interest. For example, one might suggest
that ideal multipollutant categories in this setting would
reflect cutpoints in the data that captured homogeneous
risk within categories and heterogeneous risk between
categories. With such an objective, one could formulate
category boundaries that maximized resulting risk esti-
mates or minimized P-values. However, we caution that
fully supervised approaches may not be ideal given the
potential for bias. For example, driving category formation
with risk estimates alone would inevitably result in bias
away from the null and boundaries drawn with P-values
may result in a downwardly biased P-value [16]. Given
such potential implications, and findings from other
researchers [23–25], we anticipate that that this will con-
tinue to be an exciting area of future research.
The ever-present nature of ambient air pollution means

that we are all exposed. As such, even small increases in
risk (such as the ones estimated in this study) suggest that
large numbers of people are impacted. It is clear that more
research focused on improving our definitions of harmful
exposures is needed to improve our understanding of air
pollution health effects, and subsequently, improve strat-
egies to protect public health.

Conclusion
There is abundant interest in health effects of air pollution
mixtures and additional research on this topic can facilitate
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improved understanding of a wide range of air pollution
topics from optimal air quality management to the eti-
ology of disease. Our analysis supports that classification
can be used to develop exposure metrics that support
future studies of ambient air pollution mixtures and popu-
lation health.

Additional file

Additional file 1: Appendix.

Abbreviations
SOM: Self-organizing map; PCA: Principal Component Analysis;
MDT: Multipollutant Day Type; RR: Rate Ratio.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JP introduced the idea of self-organizing maps for multipollutant research,
performed all analyses, and drafted the manuscript. LW participated in the
conceptual approach and revising the manuscript. JM provided the air quality
descriptions and revisions of the manuscript. SS participated in the conceptual
approach and revisions of the manuscript. MS participated in revisions of the
manuscript. HC participated in revisions of manuscript. PT participated in the
conceptual approach and revisions of the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This publication was made possible, in part, by US Environmental
Protection Agency grant R834799. USEPA does not endorse the purchase
of any commercial products or services mentioned in the publication.
Research reported in this publication was supported by the National
Institute of Environmental Health Sciences of the National Institutes of
Health under Award Number K99/R00ES023475. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of the USEPA or NIH. We thank Anda Olsen for her comments on
the writing, and the research team at the Southeastern Center for Air
Pollution Epidemiology (SCAPE: http://www.scape.gatech.edu/) for their
comments and reviews of this paper.

Funding sources
This publication was made possible, in part, by US Environmental Protection
Agency grant R834799. USEPA does not endorse the purchase of any
commercial products or services mentioned in the publication. Research
reported in this publication was supported by the National Institute of
Environmental Health Sciences of the National Institutes of Health under
Award Number K99/R00ES023475. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the
USEPA or NIH.

Author details
1Department of Public Health Sciences, College of Medicine, Medical
University of South Carolina, 135 Cannon Street, Charleston, SC 29422,
United States. 2Department of Biostatistics and Bioinformatics, Rollins School
of Public Health, Emory University, Atlanta, GA, United States. 3Department of
Environmental Health, Rollins School of Public Health, Emory University,
Atlanta, GA, United States. 4School of Civil and Environmental Engineering,
Georgia Institute of Technology, Atlanta, GA, United States.

Received: 11 February 2015 Accepted: 1 June 2015

References
1. Carlin, Danielle J., Cynthia V. Rider, Rick Woychik, and Linda S. Birnbaum.

"Unraveling the health effects of environmental mixtures: an NIEHS priority."
Environmental health perspectives 121, no. 1 (2013): a6.
2. Dominici F, Peng RD, Barr CD, Bell ML. Protecting human health from air
pollution: shifting from a single-pollutant to a multipollutant approach.
Epidemiology. 2010;21(2):187–94.

3. Hidy GM, Pennell WT. Multipollutant air quality management. J Air Waste
Manag Assoc. 2010;60(6):645–74.

4. Mauderly JL, Burnett RT, Castillejos M, Özkaynak H, Samet JM, Stieb DM,
et al. Is the air pollution health research community prepared to support
a multipollutant air quality management framework? Inhal Toxicol.
2010;22(S1):1–19.

5. Vedal S, Kaufman JD. What does multi-pollutant air pollution research mean?
Am J Respir Crit Care Med. 2011;183(1):4–6.

6. Tolbert PE, Klein M, Peel JL, Sarnat SE, Sarnat JA. Multipollutant modeling
issues in a study of ambient air quality and emergency department visits in
Atlanta. J Expo Sci Environ Epidemiol. 2007;17 Suppl 2:S29–35.

7. Oakes M, Baxter L, Long TC. Evaluating the application of multipollutant
exposure metrics in air pollution health studies. Environ Int. 2014;69:90–9.

8. Austin E, Coull B, Thomas D, Koutrakis P. A framework for identifying distinct
multipollutant profiles in air pollution data. Environ Int. 2012;45:112–21.

9. Gass K, Klein M, Chang HH, Flanders WD, Strickland MJ. Classification and
regression trees for epidemiologic research: an air pollution example.
Environ Heal. 2014;13(1):17.

10. Pearce JL, Waller LA, Chang HH, Klein M, Mulholland JA, Sarnat JA, et al.
Using self-organizing maps to develop ambient air quality classifications: a
time series example. Environ Heal. 2014;13(1):56.

11. Winquist A, Kirrane E, Klein M, Strickland M, Darrow LA, Sarnat SE, et al. Joint
effects of ambient Air pollutants on pediatric asthma emergency
department visits in Atlanta, 1998–2004. Epidemiology. 2014;25(5):666–73.

12. Zanobetti A, Austin E, Coull BA, Schwartz J, Koutrakis P. Health effects of
multi-pollutant profiles. Environ Int. 2014;71:13–9.

13. Strickland MJ, Darrow LA, Klein M, Flanders WD, Sarnat JA, Waller LA, et al.
Short-term associations between ambient air pollutants and pediatric
asthma emergency department visits. Am J Respir Crit Care Med.
2010;182(3):307–16.

14. Kohonen T. Self-organizing maps. 3rd ed. Information sciences, vol. 30. Berlin:
Springer; 2001.

15. Kaufman, L and Rousseeuw, PJ, Finding groups in data: an introduction to
cluster analysis. Vol. 344. 2009: John Wiley & Sons 16: Hoboken, New Jersey.

16. Rothman, KJ, Greenland, S, and Lash, TL, Modern epidemiology. 2008:
Lippincott Williams & Wilkins 16: Philadelphia, PA.

17. Kim E, Hopke PK, Edgerton ES. Source identification of Atlanta aerosol by
positive matrix factorization. J Air Waste Manage Assoc. 2003;53(6):731–9.

18. Tucker P, Gilliland J. The effect of season and weather on physical activity: a
systematic review. Public Health. 2007;121(12):909–22.

19. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in
multiple regression: a bad idea. Stat Med. 2006;25(1):127–41.

20. Molitor J, Su JG, Molitor N-T, Rubio VG, Richardson S, Hastie D, et al. Identifying
vulnerable populations through an examination of the association between
multipollutant profiles and poverty. Environ Sci Technol. 2011;45(18):7754–60.

21. Hopke PK, Ito K, Mar T, Christensen WF, Eatough DJ, Henry RC, et al. PM
source apportionment and health effects: 1. Intercomparison of source
apportionment results. J Exposure Sci Environ Epidemiol. 2005;16(3):275–86.

22. Chang, HH, Peng, RD, and Dominici, F, Estimating the acute health effects
of coarse particulate matter accounting for exposure measurement error.
Biostatistics, 2011: p. kxr002 doi:10.1093/biostatistics/kxr002.

23. Sun Z, Tao Y, Li S, Ferguson KK, Meeker JD, Park SK, et al. Statistical strategies
for constructing health risk models with multiple pollutants and their
interactions: possible choices and comparisons. Environ Health. 2013;12:85.

24. Pachon JE, Balachandran S, Hu Y, Mulholland JA, Darrow LA, Sarnat JA, et al.
Development of outcome-based, multipollutant mobile source indicators. J Air
Waste Manage Assoc. 2012;62(4):431–42.

25. Roberts, S and Martin, MA, Using supervised principal components analysis
to assess multiple pollutant effects. Environmental Health Perspectives,
2006;114(12): 1877–1882.

http://www.ehjournal.net/content/supplementary/s12940-015-0041-8-s1.docx
http://www.scape.gatech.edu/
http://dx.doi.org/10.1093/biostatistics/kxr002

	Abstract
	Background
	Objective
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Developing multipollutant day types
	Selecting the number of multipollutant day types
	Health outcome data
	Epidemiologic modeling

	Results
	Selecting the number of multipollutant day types
	Multipollutant day types
	Associations with pediatric asthma emergency department visits
	Sensitivity analysis
	Single pollutant results

	Discussion
	Conclusion
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Funding sources
	Author details
	References



