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Abstract 

Background:  The evaluation of refraction is indispensable in ophthalmic clinics, 
generally requiring a refractor or retinoscopy under cycloplegia. Retinal fundus photo-
graphs (RFPs) supply a wealth of information related to the human eye and might pro-
vide a promising approach that is more convenient and objective. Here, we aimed to 
develop and validate a fusion model-based deep learning system (FMDLS) to identify 
ocular refraction via RFPs and compare with the cycloplegic refraction. In this popu-
lation-based comparative study, we retrospectively collected 11,973 RFPs from May 
1, 2020 to November 20, 2021. The performance of the regression models for sphere 
and cylinder was evaluated using mean absolute error (MAE). The accuracy, sensitivity, 
specificity, area under the receiver operating characteristic curve, and F1-score were 
used to evaluate the classification model of the cylinder axis.

Results:  Overall, 7873 RFPs were retained for analysis. For sphere and cylinder, the 
MAE values between the FMDLS and cycloplegic refraction were 0.50 D and 0.31 D, 
representing an increase of 29.41% and 26.67%, respectively, when compared with the 
single models. The correlation coefficients (r) were 0.949 and 0.807, respectively. For 
axis analysis, the accuracy, specificity, sensitivity, and area under the curve value of the 
classification model were 0.89, 0.941, 0.882, and 0.814, respectively, and the F1-score 
was 0.88.

Conclusions:  The FMDLS successfully identified the ocular refraction in sphere, cylin-
der, and axis, and showed good agreement with the cycloplegic refraction. The RFPs 
can provide not only comprehensive fundus information but also the refractive state of 
the eye, highlighting their potential clinical value.
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Background
Refractive errors are the most common ocular disorders and the second leading 
cause of blindness [1–3]. Recently, the distribution of refractive errors worldwide has 
shifted towards myopia. Myopia has become an epidemic-like public health issue due 
to its soaring incidence and prevalence, and potentially long-term associations with 
sight-threatening ocular complications [4]. Hence, precise measurement and assess-
ment of refraction are essential for evaluating the degree of ametropia and provid-
ing appropriate eye care. Clinical subjective refraction under cycloplegia is a routine 
technique for determining refractive errors. However, the procedure is laborious, 
time consuming, and can sometimes result in blurred vision, photophobia, and the 
perception of glare due to pupil dilation [5, 6]. ​Additionally, it is inconvenient and 
can be challenging for disabled or paediatric patients, especially in resource-limited 
settings. Even with the advent of autorefractors, the results of refraction measure-
ment remain unsatisfactory because of the accommodation [7]. In addition to overes-
timating the prevalence and severity of myopia, these devices could affect preventive 
and corrective strategies for myopia. Despite the  traditional subjective refraction as 
the gold standard, such  procedures are commonly  marred by long measurements 
with low repeatability. Thus, the future trend is to overcome the traditional manual 
method and provide faster measurements with lower variability. Unfortunately, data 
concerning refraction and its association with retinal fundus photographs (RFPs) are 
lacking. Therefore, a more effective method should be developed to improve detec-
tion, documentation, and prediction of refraction.

Fundus photography can objectively reflect retinal morphology and is commonly 
applied in clinical practice. Changes in myopia cause distortion of the retinal image 
and deterioration of visual quality. The typical features of retinal morphology in 
myopes are parapapillary atrophy, tessellation, and changes in macular regions or 
arterial trajectories. These changes are more pronounced in patients with high and 
pathological myopia [8–12]. In addition to these visible structures, fundus image 
intensities represent the amount of reflected light, which provide information on the 
complete state of the eye. Whether this information informs on ocular refraction and 
explains image distortions caused by astigmatism remains elusive.

Artificial intelligence (AI) has been extensively applied in the classification and pre-
diction of medical data [13–15]. Most of these studies were retrospective in nature. 
However, external validation and algorithm testing in the prospective trials are indis-
pensable for clinical transformation. In this direction, some clinical trials have devel-
oped reliable machine learning or deep learning (DL) tools, including AI-assisted 
decision-making for refractive surgery [16], DL-based prediction of breast cancer 
chemotherapy [17], and computer-aided diagnosis of gastric cancer risk [18]. The 
broader capacity of AI was applied to extract regions of interest (ROI) that physi-
cians typically cannot recognize from images alone, thereby providing greater clinical 
insights and findings [19], such as the identification of Alzheimer’s disease and moni-
toring of cardiovascular diseases from fundus images [20, 21]. Furthermore, several 
studies had reported the performance of AI in determining refractive errors based 
on various types of data [22–26]. However, owing to differences in training data and 
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target values, most models output spherical equivalent (SE), which is not suitable for 
clinical practice. More importantly, these studies did not determine the cylinder axis.

Therefore, here, we developed a novel fusion model-based deep learning system 
(FMDLS) to effectively and accurately identify ocular refraction from RFPs and com-
pared it to the cycloplegic refraction in sphere, cylinder, and axis.

Results
Baseline characteristics

Overall, 11,973 images (6086 patients) were collected, 7873 images (3954 patients) of 
which were processed and retained. A total of 7086 images were eventually randomly 
selected to construct the regression model (RM) and classification model (CM) for 
sphere and cylinder, respectively, whereas the remaining 787 images were used for test-
ing. Among the total images, 2028 were used for the CM of the cylinder axis as the 
uneven axial distribution in the crowd. Patients’ age ranged from 6 to 40 years, with a 
mean (standard deviation, SD) of 18.5 (7.3) years. The mean sphere was − 3.82 D (2.05 
D) (range: − 0.25 to − 8.00 D) and the mean cylinder was − 0.82 D (0.61 D) (range: 0 to 
− 2.75 D). We categorized the data to ensure that images acquired from the same patient 
were not split across the training and validation sets (Table 1).

Performance of the FMDLS in test set

According to the results of the confusion matrix, we compared the performance of 
FMDLS with and without age as the eigenvector. The performance of each model (RM 
and CM) and the FMDLS for the test set are listed in Table 2. For sphere and cylinder, 

Table 1  Summary of the training, validation, and test sets

M male, F female, SD standard deviation, RM regression model, CM classification model, A axis, W with-the-rule, A against-
the-rule, O oblique, SE spherical equivalent, LogMAR logarithm of the minimum angle of resolution, K keratometry
a Only classification model

Training set Validation set Test set

No. of patients 2769 791 394

Sex, (M/F) 1548/1221 351/440 173/221

Age (y), mean (SD) 18.35 (6.50) 18.72 (7.34) 18.94 (7.22)

RM (No. of images) 5511 1575 787

CM (No. of images) 5511 1575 787

A-CMa (No. of images) 1420 406 202

Sphere, mean (SD) − 3.77 (2.04) − 3.95 (2.05) − 3.95 (2.09)

Cylinder, mean (SD) − 0.82 (0.61) − 0.81 (0.60) − 0.83 (0.63)

Axis (W/A/O) 2920/1543/1048 882/504/189 519/204/64

SE, mean (SD) − 4.18 (2.11) − 4.36 (2.12) − 4.17 (2.12)

High myopia 36.9% 39.6% 36.2%

Moderate myopia 28.7% 29.1% 28.7%

Mild myopia 34.4% 31.3% 35.1%

Intraocular pressure (mmHg) 16.1 (2.01) 15.9 (2.16) 16.4 (1.78)

Uncorrected distance visual acuity 
(LogMAR)

0.68 (0.25) 0.69 (0.21) 0.69 (0.22)

Centre corneal thickness 551.57 (30.93) 555.17 (22.18) 547. 28 (22.61)

K1 42.41 (1.25) 42.35 (1.33) 42.41 (1.31)

K2 43.75 (1.41) 43.99 (1.36) 43.96 (1.43)
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the mean absolute error (MAE) of the RMs were 0.66 D and 0.38 D, respectively. The 
area under the curve (AUC) values of the CMs were 0.863 [95% confidence interval 
(CI) 0.839–0.887] and 0.834 (95% CI 0.808–0.860), respectively, with the AUC values of 
0.8–0.9 indicating excellent performance [27]. The accuracy, specificity, sensitivity, and 
F1-score are shown in Table 2. For the FMDLS, the MAEs of sphere and cylinder were 
0.50 D and 0.31 D, representing 29.41% and 26.67% increases, respectively, with respect 
to those for the RM. The overall distributions of the FMDLS and actual values were 
almost in a good agreement with those shown in the scatter diagram in Fig.  1A. The 
Pearson’s correlation coefficient (r) values were 0.949 (95% CI 0.942–0.956) and 0.807 

Table 2  Performance of single models and the FMDLS

RM regression model, CM classification model, FMDLS fusion model-based deep learning system, MAE mean absolute error, 
AUC​ area under the curve
a Model without age as an eigenvector
b Model with age as an eigenvector

RM CM FMDLS

MAE Accuracy 
(95% CI)

Specificity 
(95% CI)

Sensitivity 
(95% CI)

AUC (95% 
CI)

F1-score MAE r Performance 
improvement

Spherea 0.86 0.790 
(0.751–0.842)

0.991 
(0.974–0.998)

0.795 
(0.745–0.839)

0.798 
(0.748–0.842)

0.775 0.63 0.815 27.10%

Sphereb 0.66 0.850 
(0.825–0.875)

0.996 
(0.99–0.998)

0.859 
(0.835–0.883)

0.863 
(0.839–0.887)

0.828 0.50 0.949 29.41%

Cylinder 0.38 0.860 
(0.836–0.884)

0.989 
(0.982–0.996)

0.861 
(0.837–0.885)

0.834 
(0.808–0.860)

0.863 0.31 0.807 26.67%

Axis – 0.890 
(0.816–0.964)

0.941 
(0.849–0.981)

0.882 
(0.776–0.944)

0.814 
(0.708–0.902)

0.880 – – –

Fig. 1  Relationship of the FMDLS and actual values. A (upper left and bottom left): the overall distribution of 
the FMDLS and actual values; the Y-axis represents the FMDLS values and X-axis represents the actual values. 
Upper is sphere. Bottom is cylinder. B (middle and right pictures): the Bland–Altman plot of the FMDLS and 
actual values in the test set; the Y-axis represents the difference between the values, and the X-axis represents 
the average of the two values. Pictures a and b are the performance of FMDLS in the sphere and cylinder, 
respectively; c is mild myopia; d is moderate myopia; and e represents high myopia
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(95% CI 0.781–0.830), respectively. Figure 1B shows the Bland–Altman plot comparing 
the FMDLS and actual values in the test set. For the classification of the cylinder axis, 
the AUC value was 0.814 (95% CI 0.708–0.902).

Model visualization

To better visualize how the FMDLS was able to detect the cylinder axis from the RFPs 
directly, the attention maps were superimposed on the convolutional visualization layer 
generated to understand the contributions of the ROIs (Fig.  2). The retinal vascular 
regions were highlighted in these maps, and as a fundamental feature appeared in all 
images. Additionally, the macular areas, as another ROI, existed only in the with-the-
rule (WTR) group and the oblique group. These observations were found in nearly all 
images.

Discussion
In this study, we developed and applied a novel FMDLS to identify the ocular refrac-
tion and compared it to the clinical gold standard. To our knowledge, this was the first 
FMDLS simultaneously analysing both sphere, cylinder (mean difference: 0.5 D and 
0.31 D, respectively) and cylinder axis (AUC value: 0.814). The results derived from 
this system showed a strong correlation with clinical cycloplegic refraction (r = 0.949 
and r = 0.807, P < 0.0001). Importantly, the study proved that the FMDLS was promis-
ing when considering all metrics (including sphere, cylinder, and axis). We further 
evaluated the performance of the different subgroups of refraction and found that the 
FMDLS could identify different refraction through common clinical retinal images with 
a consistent performance. It was proven that the FMDLS had the potential of owning a 

Fig. 2  Attention maps of the eyes with three categories of astigmatism detected using FMDLS. a Original 
image and visualization of the right eye; b original image and visualization of the left eye
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beneficial effect on refractive assessment due to its ability to represent the state of the 
human eye objectively and comprehensively.

As cycloplegic refraction was inconvenient and limited in large-scale screening pro-
cedures [28], non-cycloplegic refractive tests had been employed more frequently in 
emerging studies to determine ametropia. Simultaneously, AI-based methods to pre-
dict refractive errors via ocular images had been promising new hotspots of research 
[25]. In particular, the consensus among these approaches was to allow algorithms 
to learn predictive features directly from a large number of labelled images without 
explicitly specifying rules or features [29]. However, the output of these algorithms 
only included the SE (SE = sphere + 1/2 cylinder) and could not reflect the complete 
status of patients [24, 30]. The system in the current study had overcome this shortage 
and obtained the considerable results. Several studies had identified and segmented 
the retinal visible structures of the myopes based on AI algorithms, including the 
optical disc, fovea, and tessellations [31, 32]. In fact, shifting myopia degrees could 
lead to these structural changes, making it possible for automatic myopia identifi-
cation and detection, as DL algorithms could easily detect structural changes from 
fundus images. Moreover, these images also contain valuable and inconspicuous 
information, such as the light that reflected from the retina, lens, and cornea. The 
comprehensive information available from the data might be leveraged by the new 
FMDLS. Notably, the current FMDLS was more objective and practical and reached 
better predictive performance than cycloplegic refraction, making it appropriate for 
clinical usage.

Furthermore, we extracted the ROIs during model training and obtained the sphere 
and cylinder based on data from the entire retina, embracing the optical disc tilt, 
atrophy, and fovea morphology. Vascular regions were especially highlighted as a pre-
viously unnoticed feature. Further analysis of the cylinder axis using attention maps 
revealed informative features and locations. Interestingly, consistent focus on the 
vessels in the attention maps could indicate the axial results, and this had not been 
reported in previous studies. Different categories of astigmatism were also identified 
in different regions on the maps. The WTR astigmatism was usually focused on areas 
parallel to the retinal blood vessels, whereas against-the-rule (ATR) astigmatism was 
focused on areas perpendicular to the vessels. Almost all areas of the optic disc could 
be observed across the three categories, although the macular region could not be 
observed in cases of ATR astigmatism. Oblique astigmatism did not seem to follow 
a specific distribution in the attention map and was mainly focused on the macular 
area.

Astigmatism was mainly from the differential amplification of major corneal merid-
ians, but astigmatism assessment based on cornea alone was inaccurate [23]. When light 
passed through different meridians, the differences in refractive power could induce 
blurred images, causing retinal image distortion along the axis [6, 33]. The attention 
maps in the study highlighted this possibility and indicated a correlation between the 
ROI and anatomy. A previous study reported that astigmatism could induce changes in 
the thickness of the retinal nerve fibre and optic nerve head parameters during opti-
cal coherence tomography [34]. Chameen et al. [10] found that the distributions of the 
disc tilt axis and corneal curvature were similar, and astigmatism exhibited a strong 



Page 7 of 13Zou et al. BioMedical Engineering OnLine           (2022) 21:87 	

relationship with retinal anatomy and suggested the same embryological origin. The 
findings of the current studies laid a foundation for understanding how the model iden-
tified this information. Although they did not establish causation, these maps might 
explain the image distortion caused by astigmatism and could help generate unbiased 
hypotheses for further study of the cylinder axis [35].

Measuring refraction without accommodation had been the standard for detecting 
myopia [36]. To achieve this, cycloplegic agents needed to be administered, espe-
cially in paediatric patients with a wide range of accommodations. The prevalence 
and severity of myopia were overestimated when cycloplegic agents were withheld 
[28]. Despite differences in the use of cycloplegic agents, measurement methods, age 
ranges of participants, and refractive status among studies, the reported mean dif-
ference between non-cycloplegic and cycloplegic refractive errors ranged from 0.62 
D to 1.23 D, with inter-method differences significantly decreasing with age [37]. 
Compared with cycloplegic refraction, the ocular refraction analysed using our sys-
tem performed with clinically acceptable accuracy and largely corrected the over-
estimation of myopic shift. More particularly, it was helpful for evaluating different 
degrees of astigmatism.

Our system achieved a medical application of AI; the results demonstrated that personal-
ized modelling with a convolutional neural network (CNN) and CNN-based transfer learning 
was an improved estimation approach that could be used across diverse patient subgroups. 
Age was used as a contributing feature to improve performance. The system was developed 
using the clinical gold standard as the target to separately identify refractive errors in sphere, 
cylinder, and axis, and the feature extractors using the XGBoost algorithm reduced model 
variance, increased its robustness, and prevented overfitting of the class-unbalanced popula-
tion data. We introduced a voting mechanism for validation, which allowed us to combine 
the single models while increasing accuracy and reducing bias. Indeed, RFPs were collected 
from patients at different time points; hence, the lighting and background of the images were 
not uniform, indicating the richness and diversity of our datasets. Also, it should be cleared 
that the algorithm mainly focuses on the landmarks in fundus images to predict the refrac-
tion. Naturally, testing on invisible fundus images with disease artefacts or lens artefacts may 
result in increased error compared to the ground truth. As fundus photography is used world-
wide, and portable and affordable cameras are becoming more common and popular, this sys-
tem is expected to have greater advantages for large-scale surveys. In short [38], the present 
approach enables integrated observation of retinal conditions and simultaneous assessment of 
refractive errors.

This study had several limitations. First, the imbalance of high myopia and astig-
matism in the dataset might have affected the overall performance, although we 
included the relative outliers and minority classes with larger weights in the training 
set to address this problem. Second, data were collected from the same type of fun-
dus camera, and the homogeneity of images was much higher than in other studies 
and situations. The absence of images from other sources limits the generalizability 
of the system. Finally, we excluded patients diagnosed with other ocular diseases, 
and changes in the fundus were only due to refractive errors. Future studies should 
utilize a larger multi-centre dataset and additional clinical results to determine the 
clinical applicability.
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Conclusions
In this study, we developed an FMDLS as a novel retinoscopy method to identify the 
ocular refraction, and the results were generally consistent with cycloplegic refrac-
tion measurement. This system was capable of assessing ocular refraction reliably and 
directly, avoiding time-consuming cycloplegic process. Importantly, the attention maps 
generated from the system might provide new perspectives to explain the image distor-
tion caused by myopic astigmatism and help determine imaging biomarkers for diagnos-
ing refractive errors. These findings also highlight the potential values of AI-based model 
to provide detailed information on both retinal changes and refraction states simultane-
ously. In the future, combining FMDLS with smartphones might further enable patients 
to self-monitor refraction changes and might have potentially significant implications 
for eye care worldwide, especially in areas with limited healthcare resources.

Methods
Ethics statement

This study was registered in the Chinese Clinical Trial Register (ChiCTR2100049885), 
approved by the Ethics Committee of Tianjin Eye Hospital, and conducted in accord-
ance with the tenets of the Declaration of Helsinki. The ethical committee waived the 
requirement for informed consent owing to the retrospective study design and the use of 
anonymized RFPs. This study followed the Standards for Reporting of Diagnostic Accu-
racy Study-AI (STARD-AI) reporting guidelines [39].

Data collection

The dataset was retrospectively collected from medical records at Tianjin Eye Hospital 
of Nankai University from May 1, 2020, to November 20, 2021, and analysed in Decem-
ber 2021. Relevant demographic information included sex and age; ocular parameters 
included uncorrected visual acuity, intraocular pressure (Topcon Inc., Tokyo, Japan), 
corneal morphology from Pentacam HR (Oculus Inc., Wetzlar, Germany), and fundus 
images captured by CR-2 AF non-mydriatic retinal camera (Canon Inc., Tokyo, Japan). 
We collected images with refractive errors alone and excluded patients with any other 
ocular diseases, such as corneal diseases, cataract, glaucoma, retinal disease, and a his-
tory of intraocular surgery. The values and parameters of both eyes were used in the 
main statistical analyses. Clinical subjective refraction was measured after cyclople-
gia, with sphere ranging from 0.75 D to − 10.00 D and cylinder ranging from 0 D to 
− 6.00 D. According to the SE refraction, the subgroups were identified as mild myopia 
(− 3.0 D ≤ SE ≤ − 0.50 D), moderate myopia (− 5.00 D < SE < − 3.00 D), and high myo-
pia (SE ≤ − 5.00 D) [40]. All measurements were performed by three optometrists with 
more than 10 years of experience, and there were no significant differences in the con-
sistency of assessments. Overall, 11,973 images taken in 6086 patients at different time 
points were collected without pupil dilation. All images were acquired with a 45° field-
of-view centred on the fovea.

The images were filtered according to the following criteria. (1) Images with complete 
fundus information were retained, including anatomical structures, such as optic disc, 
macula, and vessels. (2) Images with extremely low resolution, significant artefacts, or 
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blurring were discarded. (3) Size and resolution were normalized for all images with 
the same magnification ratio and form. Furthermore, each image was labelled with 
the corresponding cycloplegic refraction, and the refractive status of each image was 
determined using the sphere, cylinder, and axis. The cleaned images were retained and 
divided into the training, validation, and test sets at a ratio of 7:2:1. The process of data 
collection is shown in Additional file 1.

Data pre‑processing and augmentation

To retain as much practical information as possible in all images, the Hough transform 
was used to locate the optimal image boundary, determine the centre and radius of the 
standard circle, and construct the largest inscribed circle and square. Contrast-limited 
adaptive histogram equalization was used to extract the red and green channels from an 
image to highlight the vascular structure and enhance contrast. We removed the propor-
tion of invalid pixels to maintain the fundus as the largest inscribed circle within the area 
(Fig. 3A, b), followed by the largest inscribed square (Fig. 3A, f ). Finally, the image was 
converted to a resolution of 512 × 512 pixels.

Data augmentation was performed during pre-processing: (1) random rotation was 
performed between − 30° and + 30° based on the original angle; (2) the sharpness was 
randomly adjusted to 0.5×, 1×, or 2× the original image; (3) the contrast was auto-
matically set with a probability of p = 0.5; (4) the histogram of the image was randomly 
equalized with a probability of p = 0.5 (Fig. 3A, b–e). Data augmentation methods are 
presented in Additional file 2.

Fig. 3  Diagram of the system construction. A Image pre-processing and augmentation; a original RFPs; b 
the largest inscribed circle and rotation; c rotation and sharpness; d contrast-limited adaptive histogram 
equalization was used to improve colour and spatial contrast between the structures and the background 
retina for RFPs; e histogram equalization processing; f the largest inscribed square. B Confusion matrix 
between target values and eigenvectors. The colours in the figure indicate the strength of the correlation. C 
Architecture of the FMDLS proposed in this study. (Upper picture) the pipeline for sphere and cylinder, a and 
b were networks for two different models, c was the classification model; (Bottom picture) the pipeline for 
axis, a and b were two different classification models
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Construction of the FMDLS

Before constructing the system, the recorded parameters were filtered to determine 
which could be used as the eigenvectors (Fig. 3B). We further applied discrete variables 
scattered in the space with units of 0.25 D as labels, and sphere and cylinder as the target 
to ensure the output were clinically appropriate. Two different algorithms were adopted 
to construct the RM and CM. The specially designed voting mechanism was applied in 
the bagging stage to enhance the accuracy and overall generalizability of the models.

Considering the severe imbalance in the distribution of the axis caused by the popula-
tion, we divided the data into the following three categories based on the type of astig-
matism: WTR, ATR, and oblique (Fig. 3C).

Regression models

The training data were utilized to construct the RMs for sphere and cylinder. The mean 
and SD of the red, green, and blue channels of the images were calculated and normal-
ized based on the results. We then input the normalized matrix into the pre-trained neu-
ral network. As age was easy to obtain and had an obvious correlation with sphere, we 
attempted to normalize age into an independent eigenvector as the input of the extreme 
gradient boosting (XGBoost) algorithm (Fig. 3C, c) to train and adjust the parameters. 
The MAE was selected as the loss function of XGBoost during the stage. The normaliza-
tion method remained unchanged during the training and testing phases. Residual Net-
work (ResNet-34) was used as the backbone network, revising the output dimension of 
the final fully connected layer to one. Without loading pre-training parameters, we used 
the MAE as the loss function and trained from scratch.

Classification models

The sphere and cylinder were regarded as discrete variables, and 0.25 D was used as the 
minimum distance of the variable interval when constructing the CMs. The data con-
forming to the population distribution were selected to alleviate extreme imbalances in 
categories and avoid the influence of outliers on the construction of the CMs. ResNet-34 
(Fig. 3C, a) and Dense Convolutional Network (DenseNet-121) (Fig. 3C, b) were applied 
to classify the sphere and cylinder, wherein the fully connected layer units were modified 
to 45 and 18, separately. These models used pre-trained model weights and were fine-
tuned during training. Focal loss was used as a loss function to train relative outliers and 
minority classes with larger weights to alleviate the category imbalance [41]. For cylinder 
axis, three categories (WTR, ATR, and oblique) were divided based on the clinical data, 
and categorical differences were reduced by down-sampling.

Fusion model

A specially designed voting mechanism was applied to build the fusion model during the 
bagging stage.

(

MRreg −

∑

GTreg

nreg

)

∗wreg +

(

MRcls −

∑

GTcls
ncls

)

∗wcls

2
+

∑

GTall

nall
.



Page 11 of 13Zou et al. BioMedical Engineering OnLine           (2022) 21:87 	

In the equation, MR denoted the model prediction value, GT the ground-truth value, 
n the number of samples, and w the weight of a specific model. Subscripts represented 
regression (reg), classification (cls), and all collected datasets (all). The fusion model was 
obtained via calculating the voting distance and the crowd centre. The left part of the 
equation, the voting distance was generated by averaging the distances of each model, 
which were calculated by subtracting the centres of training samples from the model 
predictions. The right part of the equation, the actual centres were calculated by all the 
samples. Finally, the new FMDLS was constructed using these algorithms.

Comparison and evaluation of the FMDLS versus cycloplegic refraction

The performance of the RMs was calculated using the MAE between the prediction and 
the actual values. The MAE measured the forecast accuracy by averaging the absolute 
values of the residuals; it provided the average value of the error and expressed in the 
same units as the original response variable. We also calculated other metrics (accuracy, 
sensitivity, specificity, AUC value with its 95% confidence interval [CI], and F1-score) to 
assess the performance of the CM.

Statistical analysis

All analyses were performed using MedCalc, version 19.6.3 (MedCalc Software, Ostend, 
Belgium; http://​www.​medca​lc.​org). Continuous demographic variables are expressed as 
mean ± SD, and normality was assessed using the Kolmogorov–Smirnov test. The Pear-
son’s correlation coefficient (r) was used to show the strength of correlations. Bland–Alt-
man plots were used to analyse the agreement between the FMDLS and actual values in 
different groups. The agreement was quantified by measuring whether 95% of the data 
points were within 2 SDs of the mean difference. Zero difference between the FMDLS 
and actual values indicated an ideal agreement [42].
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