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Abstract 

Background and objective:  Mechanical ventilation (MV) is the primary form of care 
for respiratory failure patients. MV settings are based on general clinical guidelines, 
intuition, and experience. This approach is not patient-specific and patients may thus 
experience suboptimal, potentially harmful MV care. This study presents the Stochastic 
integrated VENT (SiVENT) protocol which combines model-based approaches of the 
VENT protocol from previous works, with stochastic modelling to take the variation of 
patient respiratory elastance over time into consideration.

Methods:  A stochastic model of Ers is integrated into the VENT protocol from previous 
works to develop the SiVENT protocol, to account for both intra- and inter-patient vari-
ability. A cohort of 20 virtual MV patients based on retrospective patient data are used 
to validate the performance of this method for volume-controlled (VC) ventilation. A 
performance evaluation was conducted where the SiVENT and VENT protocols were 
implemented in 1080 instances each to compare the two protocols and evaluate the 
difference in reduction of possible MV settings achieved by each.

Results:  From an initial number of 189,000 possible MV setting combinations, the 
VENT protocol reduced this number to a median of 10,612, achieving a reduction of 
94.4% across the cohort. With the integration of the stochastic model component, 
the SiVENT protocol reduced this number from 189,000 to a median of 9329, achiev-
ing a reduction of 95.1% across the cohort. The SiVENT protocol reduces the number 
of possible combinations provided to the user by more than 1000 combinations as 
compared to the VENT protocol.

Conclusions:  Adding a stochastic model component into a model-based approach to 
selecting MV settings improves the ability of a decision support system to recommend 
patient-specific MV settings. It specifically considers inter- and intra-patient variability 
in respiratory elastance and eliminates potentially harmful settings based on clini-
cally recommended pressure thresholds. Clinical input and local protocols can further 
reduce the number of safe setting combinations. The results for the SiVENT protocol 
justify further investigation of its prediction accuracy and clinical validation trials.
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Background
Mechanical ventilation (MV) is the primary form of care given to patients with respira-
tory failure to maintain adequate blood oxygenation and removal of carbon dioxide [1]. 
Early mechanical ventilators such as the iron lung [2] used negative-pressure ventila-
tion, which used pressure gradients to move air into the patient’s lungs by creating a sub-
atmospheric pressure around the patient chest, which required patients to be placed in 
metal tanks. However, negative-pressure ventilation was cumbersome, restricted both 
patient motion and the view needed for clinicians to observe patient condition, and 
required a large amount of space for a single unit. Consequently, virtually all modern 
ventilators use positive-pressure ventilation, where positive airway pressure is delivered 
to patient lungs either invasively via intubation or non-invasively via sealed masks cov-
ering the face. They are also able to support patient breathing through a large range of 
pressure and volume control modes [3]. While positive-pressure ventilation removes the 
obstacles faced by negative-pressure, it also introduces risks, such as barotrauma and 
volutrauma [4, 5], especially at suboptimal ventilation settings. Hence, safely select-
ing effective MV settings remains a challenge. Provided with an overwhelming num-
ber of possible combinations of settings, clinicians choose based on general guidelines, 
personal experience, and intuition [6–9], leading to significant variation in care and 
outcomes.

While the current standard of care is based on years of research and landmark tri-
als [4, 5, 10–13], current guidelines are general and follow a ‘one-size-fits-all’ approach, 
which cannot account for inter- or intra-patient variability [14–16]. Non-patient-specific 
guidelines benefit some patients, but also yield suboptimal care for others [17]. Conse-
quently, patient response ultimately guides changes in care, leading to a trial-and-error 
approach [18], meaning patients may experience suboptimal MV settings. Thus, subop-
timal MV is not uncommon and can cause ventilator-induced lung injury, increasing the 
risk of negative outcomes [19, 20].

The next step in improving care is individualised treatment based on patient-specific 
response. While many tools, such as computed tomography (CT) scans [21], lung ultra-
sound [22] and electrical impedance tomography [23], exist to detect and measure lung 
recruitability, they are rarely employed due to lack of resources or time, difficulty, and 
added clinical burden [24]. However, model-based methods provide non-invasive and 
non-intrusive alternatives, by using readily available breath data from patients to identify 
patient-specific parameters [16, 24, 25]. In the context of respiratory mechanics, these 
patient-specific parameters are known as respiratory elastance (Ers) and respiratory 
resistance (Rrs), which represents the elastic properties of the respiratory system and 
the resistance to air flow of the respiratory system, respectively. Elastance is the rate at 
which pressure results in volume recruited, while resistance is related to the pressure 
required to overcome resistance to flow. The two components result in the total pres-
sure required to deliver a given volume in a given time to a patient. Clinically, Ers is more 
familiar in its reciprocal, respiratory compliance. Many studies have recommended MV 
settings based on Ers or a surrogate [26–34].

Hence there is a potential role for computerised automatic systems for continuous 
monitoring and selection of MV settings to improve individualised patient care and 
reduce clinical burden. There are several successful works in this area, including but not 
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limited to PRICO (Acutronic, Hirzel, Switzerland) [35] and CLiO2 (Vyaire Medical, Met-
tawa, USA) [36]. These are examples of automated oxygen control [37] that automate 
FiO2 input settings for neonatal patients using differential feedback and rule-based con-
trol based on current SpO2 information, to keep SpO2 levels within target ranges. Other 
works include but are not limited to IntelliVENT-ASV (Hamilton Medical, Bonaduz, 
Switzerland) [38], and Beacon Caresystem (Mermaid Care A/S, Nørresundby, Denmark) 
[39, 40]. These latter two examples combine clinical rules together with physiological 
models to provide recommendations for other MV settings such as tidal volume, res-
piratory rate, and minute ventilation. However, given recent discoveries regarding the 
importance of respiratory elastance and driving pressure and its implications on patient 
outcome [31], there is potential to further improve these decision support systems based 
on other physiological models.

However, Ers varies with both time and patient condition, as well as changes in MV 
settings [41]. As such, capturing the variability of Ers over time may prove essential to 
enable the selection of safe patient-specific MV settings at any given time, where safe is 
defined as when key parameters are within literature recommended safety thresholds. 
Clinically, stochastic modelling has demonstrated its clinical utility and impact in man-
aging variability in glycemic control in the intensive care unit (ICU) [42, 43].

In previous works [44], a preliminary stochastic model of Ers was over time was devel-
oped. The result was a stochastic model of Ers with promising cross-validation results 
of 92.59% and 68.56% of forecasted Ers within the 5–95% and 25–75% prediction range, 
respectively. In a separate work [45, 46], a decision support system protocol known as 
the ‘VENT’ protocol was developed, which utilises a physiological lung model together 
with well-established clinical rules to provide a narrowed range of recommended MV 
settings for clinicians. The previous VENT protocol showed potential in reducing an 
overwhelming number of possible MV settings to a safe narrowed range of settings that 
were all deemed safe according to literature recommendations of pressure and volume 
outcomes. However, the VENT protocol assumes that patient-specific Ers remains con-
stant for an approximate period of time and cannot take the variation of Ers over time 
into consideration. Hence, this paper aims to assimilate the two works to form the sto-
chastic integrated VENT (SiVENT) protocol.

This research integrates stochastic modelling with model-based methods to assist cli-
nicians in selecting safe patient-specific MV settings, directly accounting for inter- and 
intra-patient variability. It also assesses if stochastic modelling adds benefit to model-
based care approaches. A well-validated respiratory model is used with patient data and 
incorporated with a stochastic model of Ers to simulate combinations of ventilation set-
tings, which are tested in a performance evaluation study to assess the MV decision sup-
port protocol.

Results
Table 1 shows the performance evaluation results for all 20 patients. Patients 10–13 have 
been omitted due to having less than 3 h of patient data within a single day of ventila-
tion [44]. The initial number of available MV settings in VC ventilation is 189,000. With 
implementation over the course of 3 h, the VENT and SiVENT protocols have reduced 
this initial number of settings to a median of 10,612 and 9329 setting combinations, 



Page 4 of 21Lee et al. BioMedical Engineering OnLine           (2022) 21:13 

Table 1  Performance evaluation results comparison between VENT and SiVENT protocol

Patient 
no.

Weight 
(kg)

Ers,N [IQR] 
(cmH2O/L)

Rrs,N [IQR] 
(cmH2O.s/L)

PEEPN 
[IQR] 
(cmH2O)

No. of settings after 
protocol [IQR]

Percentage 
reduction in settings 
[IQR] (%)

VENT SiVENT VENT SiVENT

1 52.0 26.0 
[25.1–28.9]

7.2 [7.0–7.8] 3 [2–3] 11,179 
[11,179–
11,179]

11,179 
[11,179–
11,179]

94.1 
[94.1–
94.1]

94.1 
[94.1–94.1]

2 70.2 72.8 
[72.4–73.6]

2.2 [2.1–2.2] 7 [7–7] 10,999 
[10,999–
10,999]

0 [0–0] 94.2 
[94.2–
94.2]

100 
[100–100]

3 65.0 47.1 
[43.7–49.8]

19.3 
[13.8–25.6]

13 
[13–13]

4306 
[2960–
6012]

4203 
[2749–
5811]

97.7 
[96.8–
98.4]

97.8 
[96.9–98.5]

4 81.0 25.7 
[25.5–26.5]

12.1 
[11.9–13.6]

10 
[10–10]

8947 
[7959–
9140]

8554 
[7763–
8753]

95.3 
[95.2–
95.8]

95.5 
[95.4–95.9]

5 38.0 38.7 
[38.5–39.9]

4.5 [4.3–5.3] 7 [7–7] 11,238 
[11,238–
11,238]

11,238 
[11,238–
11,238]

94.1 
[94.1–
94.1]

94.1 
[94.1–94.1]

6 70.2 8.1 
[7.5–10.2]

18.0 
[17.0–18.6]

7 [7–7] 7302 
[6910–
7694]

7109 
[6716–
7502]

96.1 
[95.9–
96.3]

96.2 
[96.0–96.4]

7 44.2 33.6 
[30.7–35.6]

9.1 [8.8–9.4] 9 [9–9] 11,222 
[11,222–
11,222]

11,222 
[11,222–
11,222]

94.1 
[94.1–
94.1]

94.1 
[94.1–94.1]

8 79.4 33.4 
[32.1–35.6]

13.2 
[12.8–13.8]

10 
[10–10]

7587 
[7188–
7985]

7388 
[6990–
7788]

96.0 
[95.8–
96.2]

96.1 
[95.9–96.3]

9 53.7 29.3 
[27.3–32.0]

4.2 [3.6–7.7] 8 [8–8] 11,156 
[11,156–
11,156]

11,156 
[11,156–
11,156]

94.1 
[94.1–
94.1]

94.1 
[94.1–94.1]

14 54.0 13.0 
[12.5–13.9]

8.2 [7.3–8.5] 10 
[10–10]

11,148 
[11,148–
11,148]

11,148 
[11,148–
11,148]

94.1 
[94.1–
94.1]

94.1 
[94.1–94.1]

15 75.0 40.8 
[39.5–43.0]

6.6 [6.2–9.1] 11 
[11–11]

10,993 
[10,034–
10,993]

10,993 
[9643–
10,993]

94.2 
[94.2–
94.7]

94.2 
[94.2–94.9]

16 65.0 36.5 
[36.1–38.9]

10.2 
[8.1–11.9]

12 
[12–12]

9620 
[8364–
11,056]

9235 
[8171–
10,865]

94.9 
[94.2–
95.6]

95.1 
[94.3–95.7]

17 80.0 37.8 
[35.7–38.5]

10.3 
[9.1–13.0]

7 [7–8] 10,128 
[8177–
10,899]

9741 
[7980–
10,515]

94.6 
[94.2–
95.7]

94.8 
[94.4–95.8]

18 97.3 38.0 
[37.0–39.4]

12.3 
[11.4–13.3]

12 
[12–12]

6490 
[5875–
7102]

6081 
[5464–
6490]

96.6 
[96.2–
96.9]

96.8 
[96.6–97.1]

19 56.0 28.5 
[27.6–28.8]

10.0 
[9.8–10.2]

10 
[10–10]

11,154 
[10,966–
11,154]

10,966 
[10,777–
11,154]

94.1 
[94.1–
94.2]

94.2 
[94.1–94.3]

20 72.0 47.1 
[46.9–47.7]

12.1 
[11.9–12.5]

10 
[10–10]

8092 
[7498–
8092]

7597 
[7102–
7896]

95.7 
[95.7–
96.0]

96.0 
[95.8–96.2]

21 50.0 58.3 
[56.8–61.4]

17.9 
[13.4–18.2]

10 
[10–10]

5652 
[5458–
7791]

5458 
[5458–
7791]

97.0 
[95.9–
97.1]

97.1 
[95.9–97.1]

22 91.9 32.7 
[32.0–33.4]

7.2 [6.9–8.4] 12 
[12–12]

10,744 
[9779–
10,744]

10,260 
[9390–
10,550]

94.3 
[94.3–
94.8]

94.6 
[94.4–95.0]
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respectively, achieving a median percentage reduction of setting combinations of 94.4% 
and 95.1%, respectively. Table 2 shows a breakdown of recommendations provided by 
each protocol at every 10-min interval based on Ers,N and Rrs,N for Patient 3. Figure  1 
illustrates how the number of MV setting combinations is reduced in each stage of the 
protocol for Patient 3, interval 1 for the VENT protocol. Figure 2 shows the same for the 
SiVENT protocol, but with the addition of blue and red lines representing the forecast 
pressure waveforms for the 5th percentile and 95th percentiles, respectively.   

Table 1  (continued)

Patient 
no.

Weight 
(kg)

Ers,N [IQR] 
(cmH2O/L)

Rrs,N [IQR] 
(cmH2O.s/L)

PEEPN 
[IQR] 
(cmH2O)

No. of settings after 
protocol [IQR]

Percentage 
reduction in settings 
[IQR] (%)

VENT SiVENT VENT SiVENT

23 60.0 20.0 
[19.1–22.5]

15.1 
[14.9–15.5]

14 
[14–14]

6463 
[6270–
6463]

6270 
[6076–
6270]

96.6 
[96.6–
96.7]

96.7 
[96.7–96.8]

24 62.0 12.7 
[12.5–13.0]

5.3 [5.2–6.5] 9 [9–9] 11,097 
[11,097–
11,097]

11,097 
[11,097–
11,097]

94.1 
[94.1–
94.1]

94.1 
[94.1–94.1]

Median 
[IQR]

65 [53.9–
77.2]

33.8 
[25.6–40.1]

9.8 [6.9–13.3] 10 [8–11] 10,612 
[7587–
11,148]

9329 
[6754–
11,148]

94.4 
[94.1–
96.0]

95.1 
[94.1–96.4]

Table 2  Patient 3 interval breakdown for performance evaluation results comparison between 
VENT and SiVENT protocol

Interval breakdown for patient 3

Interval, N Ers,N 
(cmH2O/L)

Rrs,N 
(cmH2O.s/L)

PEEPN 
(cmH2O)

No. of settings after 
protocol

Percentage reduction 
in settings (%)

VENT SiVENT VENT SiVENT

1 43.5 26.2 13 2749 2536 98.5 98.7

2 43.7 26.6 13 2749 2536 98.5 98.7

3 44.1 26.8 13 2749 2536 98.5 98.7

4 43.5 25.6 13 2960 2749 98.4 98.5

5 46.7 23.8 13 2960 2960 98.4 98.4

6 43.8 26.8 13 2749 2536 98.5 98.7

7 51.0 20.7 13 3585 3378 98.1 98.2

8 53.9 20.1 13 3585 3378 98.1 98.2

9 42.2 21.1 2 6404 6208 96.6 96.7

10 48.7 14.3 13 5610 5610 97.0 97.0

11 50.1 14.2 13 5610 5412 97.0 97.1

12 49.7 13.8 13 6012 5811 96.8 96.9

13 49.8 13.2 13 6211 6211 96.7 96.7

14 53.3 13.8 13 5811 5613 96.9 97.0

15 47.5 13.0 13 6409 6211 96.6 96.7

16 43.7 13.6 13 6210 6012 96.7 96.8

17 49.5 18.3 13 4203 4203 97.8 97.8

18 44.9 18.5 13 4408 4203 97.7 97.8

Median 
[IQR]

47.1 
[43.7–49.8]

19.3 
[13.8–25.6]

13 [13–13] 4306 
[2960–6012]

4203 
[2749–5811]

97.7 
[96.8–98.4]

97.8 
[96.9–98.5]
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Discussion
The parameter of interest is Ers, a patient-specific parameter reflecting the elastic 
properties of the respiratory system. A high Ers value indicates a stiffer, less compliant 
lung, requiring higher pressures and work to inflate the lungs. As such, some methods 
of selecting safe MV settings rely on the monitoring Ers to understand the progres-
sion of patient condition. For example, one method of setting PEEP relies on using the 
static pressure–volume curve, where PEEP is set at the point of linear compliance [47] 
and was associated with improved survival [48, 49]. Another example of setting PEEP 
is shown in the work of Chiew et al., 2015 [29] where they demonstrated a proof-of-
concept of using patient-specific Ers to titrate optimal PEEP by setting PEEP to the 
point of minimum Ers which describes the point of minimum stiffness and therefore 
maximum recruitablity. More recently, Goligher et al. [31] showed low tidal ventila-
tion strategies resulted in significantly different mortality benefits based on patient-
specific elastance, similar to Ers, indicating a clear potential to optimise MV setting 
selection based on Ers. However, patient-specific Ers varies with time [41]. Hence, 

Pa�ent 3, Interval 1, VENT protocol

2,749 combina�ons4,967 combina�ons189,000 combina�ons

A�er N-stageA�er E-stageA�er V-stage

Fig. 1  Reduction of MV setting combinations for Patient 3, interval 1 in each stage of the VENT protocol [45, 
46], where the V-stage refers to the ‘Virtually Ventilate’ stage, E-stage refers to the ‘Eliminate/Estimate’ stage 
and the N-stage refers to the ‘Narrowing Objectives’ stage
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stochastic modelling offers a way to capture the variability of Ers over time, while fol-
lowing a minimum driving pressure protocol similar to the approach in Goligher et al. 
[31].

A stochastic model accounting for inter- and intra-patient variability is incorporated 
into the VENT protocol to form the SiVENT protocol. The largest technical effect of this 
integration on the model-based protocol used is a doubling of computation, as each pos-
sible setting combination is forward simulated twice to forecast pressure waveforms for 
the 5th and 95th percentile Ers,N+1 values from the stochastic model, as illustrated in the 
blue and red lines in Fig. 2. In comparison, the VENT protocol without the stochastic 
model generates only one forecast outcome pressure, as shown in Fig. 1.

Clinically, more setting combinations are eliminated in the SiVENT protocol as the 
range of forecast pressure outcomes must be within clinically accepted safety thresholds. 
In this way, the stochastic model-integrated protocol takes the variation of Ers over time 

Fig. 2  Reduction of MV setting combinations for Patient 3, interval 1 in each stage of the SiVENT protocol, 
where the V-stage refers to the ‘Virtually Ventilate’ stage, E-stage refers to the ‘Eliminate/Estimate’ stage and 
the N-stage refers to the ‘Narrowing Objectives’ stage
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into consideration when recommending MV settings, thus reducing the total number 
of possibilities by 12% in the median case. Hence, the SiVENT protocol recommends a 
smaller number of MV setting combinations, all of which meet clinically accepted guide-
lines for safety and clinically specified goals, in this case to minimise driving pressure, 
∆P.

However, Patients 1, 5, 7, 14 and 24 experience no difference in number of recommen-
dations provided by VENT or SiVENT. This outcome indicates the SiVENT protocol has 
determined the variation of Ers for these patients will not be large enough to cause any of 
the MV combination settings to potentially exceed threshold values. In contrast, Patient 
2 shows the SiVENT protocol eliminated all 10,999 possible setting combinations found 
by the VENT protocol, showing how accounting for the variation of Ers over time could 
make all possible settings unsuitable according to clinically accepted guidelines. This 
outcome typically occurs with much higher values of Ers where the 5–95 percentile range 
of Ers,N+1 is wider in Fig.  3, indicating larger variation. Patient 2 had the highest Ers,N 
values, which were 25% higher than the second highest patient. In such a case, further 
clinical decisions need to be considered. This result also highlights how these protocols 
are simply decision support systems based on model-based approaches and will not be 
able to replace, but only aid the clinician in the ICU setting.

The stochastic model component improves the E-stage of the VENT protocol by elimi-
nating more setting combinations based on the variation of Ers. It does not play any role 
in removing more setting combinations in subsequent stages. As such, it is also observed 
the remaining number of recommendations by SiVENT have an inter-quartile range 
of 6754 to 11,148, which is still an immense number of combinations for clinicians to 
choose from. However, the N-stage in this study uses only one narrowing objective of 
minimising ∆P. Further criteria in this stage would be clinically typical, mitigating this 
issue.

In particular, with only one criterion in the N-stage, both the VENT and SiVENT pro-
tocols aggressively reduce the number of recommendations from the E-stage by more 
than half in almost all patients. This result is highlighted in Figs. 1 and 2 when all combi-
nation settings with tidal volumes above 4 mL/kg are eliminated due to the objective of 
minimising ∆P. Hence, the large number of recommendations at the end of the protocol 
can be further reduced by adding more narrowing objectives, such as setting a target 
range for minute ventilation and/or respiratory rate, a tighter range of tidal volumes, set-
ting a lower threshold for pressure outcomes, minimising plateau pressure, or any other 
clinically set target.

When looking at the interval breakdown in Table 2, there is rarely significant variation 
in Ers,N over the course of a single interval. More significant changes occur over longer 
intervals, such as over 1 h from 43.5 cmH2O/L in interval 1, to 51.0 cmH2O/L in interval 
7. As a result, recommendations by either protocol can stay fairly constant in the case 
studied here, such as observed throughout intervals 1 to 4 or intervals 10 to 13 in Patient 
3. If the Ers,N does not vary much for a patient, the number of recommendations either 
protocol will provide will not vary in the number of combinations either. This aspect can 
be seen in Patients 1, 5, 7, 14 and 24 in Table 1. This issue would be mitigated by longer, 
potentially clinically more realistic intervals, where 10  min demonstrates the concept 
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and would be suitable for closed-loop control, but a longer interval of 1 h would be clini-
cally more realistic for manual ventilator control by clinical staff.

The interval breakdown in Table  2 also highlights the issues with extracting patient 
settings from patient breath data. In interval 9 of Patient 3, a PEEP setting of 2 cmH2O 
is extracted from the 10 min worth of breath data, while in all other intervals, it is calcu-
lated to be 13 cmH2O. In reality, it is likely the clinician did not change the PEEP setting 
so drastically from 13 cmH2O to 2 cmH2O and then back to 13 cmH2O again in the span 
of 20 min. What is more likely is that during interval 9, the patient experienced excessive 
patient effort and asynchrony affecting their respiratory waveforms, making it difficult 
to extract the proper PEEP setting. This error highlights the limitation arising in short 
intervals from asynchronies, which would impact closed-loop control approaches with-
out added filtering or asynchrony reconstruction (e.g. [50, 51]).

The results indicate a potential for clinical bedside use in future works once validation 
is more complete. Ideally, the SiVENT protocol is made into a mobile application to be 
used in a portable electronic device, i.e. a tablet or desktop and is then integrated with a 
data acquisition system (e.g. [52, 53]) to monitor and collect pressure–flow data. Initial 

Fig. 3  Stochastic model of Ers developed by Lee et al. [44] A Stochastic model of Ers in 3-D view. B Top view of 
A, showing a more readable 2-D format of the stochastic model. The bold dotted lines illustrate how this can 
be used as a look-up table to forecast a potential range of Ers,N+1 given Ers,N
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settings at the beginning of ventilation would first be selected by the clinician. Once at 
least one interval has passed, patient-specific Ers and Rrs can be identified and clinicians 
can start utilising the SiVENT protocol as a decision support system. First, patient-
specific details such as patient weight, current PEEP settings, and Ers and Rrs would be 
required to be inputted into the application. With this information as input, the SiVENT 
protocol will simulate through all possible setting combinations. Once the simulation 
is completed, the application will provide a narrowed selection of safe recommended 
MV settings, in which a clinician can inspect to provide more insight before choosing a 
final setting from the list of recommendations. Clinicians should also be able to specify 
narrowing objectives based on their clinical goals to further narrow down MV settings. 
Once chosen and implemented, this process can be repeated for every subsequent inter-
val. In this manner, the SiVENT protocol serves its purpose as an open-loop decision 
support system to provide further insight into the effects of other possible settings.

Only VC ventilation was considered in this study. However, the method is readily 
extensible to pressure control (PC) ventilation data. The main difference would be cri-
teria on tidal volumes and peak flows to limit volutrauma-based VILI [54]. Thus, the 
approach presented is generalisable, and would remain equally clinically relevant, which 
is a central focus of the SiVENT and VENT approaches use of clinically well-accepted 
guidelines.

The single-compartment model is well-validated clinically [55, 56]. Furthermore, as 
prior works by the author have utilised this model in the development of the stochastic 
model of Ers [44] and the VENT protocol [45, 46], the same model is used in this study 
to allow a more direct comparison between the VENT and SiVENT protocol, enabling 
a better understanding of the impact the stochastic model alone has on the decision 
support system protocol. Further study could repeat this approach with more descrip-
tive models better capturing lung mechanics, such as those that incorporate basis func-
tions or nonlinear mechanics [30, 34, 57], or including patient-specific effort for assisted 
breathing modes [58]. However, as noted, the approach is generalisable as long as a 
deterministic, physiologically relevant model incorporating patient-specific elastance is 
employed.

One limitation of this study involves the sample size used to evaluate the performance 
of the VENT and SiVENT protocols. The protocols are implemented every 10 min on 
each patient, resulting in the protocols being implemented 18 instances (3 h) for each 
patient, such as shown in Table 2. Hence, this study implements the protocols in 1,080 
instances. While retrospective data from 20 separate patients were used in this study, the 
protocols were only conducted on only 3 h worth of breath data from each patient, add-
ing to a total of 60 h of breath data being used to evaluate the protocols in this cohort. It 
is still unclear if this sample size is large enough to show statistically significant results in 
improving patient care. However, future works point towards performing more in-depth 
in silico studies in longer trial lengths than just 3 h per patient, to determine what the 
percentage of time pressure and volume outcomes stay within safety thresholds. Finally, 
this study utilises simulation to demonstrate the concept. To prove clinical efficacy in an 
ICU setting requires clinical validation trials to ensure the recommendations provided 
by the SiVENT protocol would be agreeable to professional clinicians, such as those 
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done to develop the Beacon Caresystem (Mermaid Care A/S, Nørresundby, Denmark) 
[39, 40]. The proof-of-concept results presented justify such initial clinical studies.

The fact that there exists an overwhelming number of possible MV settings makes 
it difficult to establish safe and optimal settings on a patient-specific level. For exam-
ple, several landmark studies have established safe ranges of pressure and volume set-
tings because the large number of possible combinations results in such a large possible 
range of resultant parameters. For example, the ARDSNet landmark trial [10] estab-
lished lower tidal volumes resulted in lower mortality rates. The higher mortality rates 
before this significant landmark trial are indeed the fatalities caused by the large com-
binations available in MV settings. Since then, the possible recommended MV settings 
have been decreased as the recommended range of tidal volume has been reduced to 
a narrower range of 4 to 8 mL/kg. The same can be said for other parameters, such as 
plateau pressures, where before it was established plateau pressures above 30 cmH2O [7] 
increased barotrauma and ventilator-induced lung injury, the fatalities are expected to 
have been higher without knowledge of this safety threshold. Hence, by discovering new 
safety thresholds on a patient-specific basis, the long-term goal of this research aims fur-
ther reduce fatalities. However, assessing this impact is difficult except by this form of 
extended comparison.

Conclusions
A stochastic model-based approach to provide patient-specific MV setting recommen-
dations is presented and its impact is assessed in proof-of-concept simulation studies 
based on clinical data from 20 ICU patients. It uses patient-specific Ers to recommend 
personalised patient-specific MV settings based on clinically accepted guidelines and 
clinical specifications. The integration of a stochastic model into the VENT protocol 
from previous works does not add any extra clinical burden to users. With the addi-
tion of the stochastic model, the SiVENT protocol can now provide insights into intra-
patient Ers variability by taking the variation of Ers into consideration. Both the proposed 
VENT and SiVENT protocols require only readily available patient respiratory pressure 
and flow data and are thus non-invasive and can be performed over any clinically realis-
tic interval.

The results from the performance evaluation show the SiVENT protocol provides a 
smaller number of recommended MV settings as compared to the VENT protocol, mak-
ing it more conservative and safer given it accounts for the potential change of Ers in 
the next time interval. All recommended MV settings provided by SiVENT are consid-
ered safe based on the current standard in clinical guidelines. Further reductions could 
be obtained by adding further typical clinical performance requirements. The overall 
approach is generalisable and readily adapted to any clinical settings and preferences, 
and can evolve over time as greater knowledge on safe ventilator setting ranges emerges 
or changes with new clinical studies. The results presented are proof-of-concept, but 
justify initial clinical studies to assess the impact on clinical workload and patient safety.
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Methods
Stochastic model of respiratory elastance

Firstly, the stochastic model requires the use of a physiological lung model to identify 
patient-specific parameters that describe patient condition. While there are a variety 
of physiological models that can describe lung mechanics in a complex and detailed 
manner, it is important that the model in question used is easily identifiable, which is 
of singular importance so it can be used with readily available clinical data. The sin-
gle-compartment linear lung model is a clinically well-validated physiological model 
used to describe pulmonary respiratory mechanics [55, 56] and serves as the basis for 
all other models. The single-compartment model is described below in Eq. 1:

where Paw represents the airway pressure (cmH2O), t is time, V represents the volume 
of air delivered to the lungs (L) and V̇ is the flow of air (L/s). The respiratory elastance 
(cmH2O/L) and respiratory resistance (cmH2O.s/L) are represented by Ers and Rrs, 
respectively. Paw is non-zero when V and V̇ are zero, and thus, P0 is added as offset pres-
sure. This offset pressure is required during MV to keep the lungs from collapsing com-
pletely, and thus represents the PEEP applied by a mechanical ventilator if there is little 
or no intrinsic PEEP [59], yielding:

Ers is a patient-specific time-varying parameter which is affected by MV settings 
and evolves with patient condition [41]. Thus, personalised care based on elastance 
must account for this variability. Stochastic modelling offers a way to capture the vari-
ability of Ers over time, grouping undefined, diverse variation into a stochastic variable 
to better describe a dynamic system, increasingly used as a tool to describe complex 
biological dynamics [60, 61]. It has also found clinical use capturing the evolution of 
patient-specific insulin sensitivity in a clinical standard of care ICU glycemic control 
approach [62–66]. This research utilises a stochastic model of Ers developed by Lee 
et al. [44] and is shown in Fig. 3.

The stochastic model was developed using kernel density estimation [67, 68] and 
makes use of Bayes Theorem, in which conditional probability is defined:

In the context of Ers, where A = Ers,N+1 and B = Ers,N, the conditional probability 
function shown in Eq. 3 can be written as:

where N is a defined time interval. Thus, Ers,N and Ers,N+1 represent the Ers of the current 
interval and the subsequent interval. The probability of Ers,N+1 given Ers,N can then be 
calculated using kernel density estimation:

(1)Paw(t) = ErsV (t)+ RrsV̇ (t)+ P0,

(2)Paw(t) = ErsV (t)+ RrsV̇ (t)+ PEEP.

(3)P(A|B) =
P(A,B)

P(B)
.

(4)P
(

Ers,N+1 = x|Ers,N = y
)

=
P
(

Ers,N+1 = x,Ers,N = y
)

P
(

Ers,N = x
) ,
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where

Equation  5 represents the two-dimensional kernel density estimation for condi-
tional probability, where the variation of Ers depends on its prior state. xi and yi are 
the coordinates of a (Ers,N+1, Ers,N) data pair. Each φ

(

x; xi, σ
2
xi

)

 and φ
(

y; yi, σ
2
yi

)

 is a nor-

mal probability distribution function centred at a corresponding xi and yi. Equation 6 
and Eq. 7 are used to ensure that the probability distributions are properly normal-
ised, where pxi and pyi represent the area under each normal distribution between 
zero and infinity and are therefore chosen to be non-negative. A full explanation of 
how to use this equation to form a stochastic model is found in previous works [44]. 
Once the stochastic model of P(Ers,N+1|Ers,N) is generated, its percentiles lines can be 
plotted (Fig.  3) and used as a simple look-up table to forecast potential a range of 
Ers,N+1 given Ers,N, with full details in [44]. Given a stochastic model for patient-spe-
cific, model-identified respiratory system elastance, it is possible to predict its range 
of potential changes over time.

Decision support system protocol design

The designed protocol is named the Stochastic integrated VENT protocol (SiVENT). It 
is an extension of the VENT protocol in [45, 46]. The SiVENT protocol is divided into 3 
phases.

Phase 1: identification of patient‑specific information

The first phase identifies patient-specific Ers and Rrs using integral-based parameter identi-
fication [69]. Patient weight can be collected from medical information on predicted body 
weight [70]. Identification is achieved using linear regression, per [69, 71]:

Substituting Eq. 8 into Eq. 2:

(5)P
(

Ers,N+1 = x|Ers,N = y
)

=

∑n
i−1

(

φ

(

x;xi ,σ
2
xi

)

pxi

)(

φ

(

y;yi ,σ
2
yi

)

pyi

)

∑n
j=1

φ

(

x;xj ,σ 2
xj

)

pxj

,

(6)pxi =

∞
∫

0

φ

(

x; xi, σ
2
xi

)

,

(7)pyi =

∞
∫

0

φ

(

y; yi, σ
2
yi

)

.

(8)V̇ (t) =
dV

dt
.

(9)P(t) = ErsV (t)+ Rrs
dV

dt
+ PEEP,
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Equation 10 is arranged into a system of linear equations to form Eq. 11 which can 
then be solved to find Ers and Rrs. This is done by integrating both sides of Eq. 10 between 
the limits of ti and t0. The symbol ti is the initial data point of each fitting window, where 
i = 1, 2,  3,…N. Meanwhile, t0 refers to the very beginning of a breath, at which point 
present the first values of pressure and flow. Each linear equation in Eq. 11 is a different 
the cumulative integral of a unique fitting interval. Equation 11 now resembles the form 
of a matrix, which can be solved using MATLAB’s ‘lsqnonneg’ to identify non-negative 
values of Ers and Rrs.

Pressure–volume breath data are used to identify Ers and Rrs values, and hence before 
identification can be done, it is important for the breath data to be processed and filtered 
using established criteria to remove data that do not qualify as a ‘true breath’. To mitigate 
small fluctuations in data, the following criteria are used to define a breath. These crite-
ria can also be found in previous works [44]:

•	 Start of inspiration is defined as the first overall increase in flow (flow rate > 0.1 L/s) 
and pressure (pressure > (PEEP + 2 cmH2O)). Data are checked over the next 8 data 
points (0.16 s) to ensure constant positive flow.

•	 Start of expiration is defined as the first overall decrease in flow (flow rate < − 0.1 
L/s). Data are checked over the next 8 data points to ensure constant negative flow.

•	 Peak Inspiratory volume reaches a significant value (peak inspiratory volume > 40 mL 
which is ~ 10% of typical tidal volume).

•	 Peak inspiratory pressure (PIP) is in the inspiratory phase and is of significant value 
(PIP > (PEEP + 1 cmH2O), where typical PIP is ~ PEEP + 10–14 cmH2O).

•	 Expiration is detected within 4.125  s of calculated onset of inspiration as defined 
above, matching the expected respiratory rate in this cohort.

As these criteria to remove fluctuations are generally lenient, additional criteria are 
added to further remove noise and asynchronous breathing cycles. Patients sometimes 
exhibit asynchronous events or patient effort during breathing. These asynchronous 
breaths do not accurately reflect the underlying patient-specific pulmonary mechanics 
as the pressure and flow waveforms are distorted [50, 51] and therefore are eliminated. 
These further criteria used to identify a ‘true breath’ are listed below:

(10)

ti
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t0
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∫

t0

Vdt + Rrs
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•	 Median model-fit error for a breathing cycle > 15%.
•	 Model-based estimated Ers ≤ 0.
•	 Model-based estimated Ers outside 5th and 95th percentile of collected patient-spe-

cific data for that patient.

Model-fit for the first criterion is calculated using the median absolute percentage 
error (APE) between the model’s estimated airway inspiration pressure (Psim) and meas-
ured airway inspiration pressure (Pmea) shown in Eq. 12. Note, Psim is calculated using 
the identified model-based Ers. If Pmea deviates from Psim too much, its APE will exceed 
the threshold, indicating too much noise or asynchrony. These breaths are thus not 
included in this study:

Phase 2: stochastic forecasting of Ers

Once, patient-specific parameters of Ers and Rrs of the current interval, N, have been 
identified, the next phase will use the identified Ers,N to forecast the potential range of 
Ers in the subsequent future interval, Ers,N+1. This is done by feeding the current Ers,N into 
the previously developed stochastic model of Ers [44]. The output of the stochastic model 
will be a forecasted range of future Ers,N+1 as illustrated in Fig. 4. This protocol will make 
use of the forecasted 5–95th percentile prediction range of Ers,N+1 for use in the next 
phase of this protocol. More in-depth information regarding the stochastic model can be 
found in prior work [44].

Phase 3: VENT protocol

The predicted 5th and 95th Ers values are used as inputs for the model-based VENT pro-
tocol [45, 46]. The VENT protocol consists of 4 stages: (1) virtual ventilation (V); (2) 
eliminate/estimate (E); (3) narrowing objectives (N); and (4) tabulation of data (T).

(12)APE = median

(∣

∣

∣

∣

Psimi − Pmeai

Psimi

∣

∣

∣

∣

)

× 100.

Fig. 4  Obtaining the 5th and 95th percentile of Ers,N+1 using the stochastic model of Ers
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In the V-stage, all possible combinations of MV settings are forward simulated to 
forecast pressure outcomes. During volume control (VC) ventilation, adjustable param-
eter settings set by the clinician include PEEP (cmH2O), tidal volume, VT (mL/kg), peak 
inspiratory flow rate, VṀAX (L/min), type of waveform (square or ramp), plateau time, 
TPLAT (s), respiratory rate, RR (breaths/min) and I:E ratio [7, 8]. These settings form the 
volume, V, and flow, V̇, input waveform profiles along with PEEP in Eq. 2. Together with 
the patient-specific Rrs identified in Phase 1 and the forecast values of Ers,N+1 in Phase 
2, the pressure output profile can be simulated using Eq. 2. This process is illustrated by 
example in Fig. 5. Once forecast pressure profiles are obtained, important VC ventilation 
outcomes such as peak airway pressure and plateau pressure for each variant of Ers,N+1 
are recorded. This process is repeated for every possible combination of VC ventilation 
MV setting listed in Table  3. The result is a large collection of  forecast data for every 
combination of possible MV settings. 

In the E-stage, the collection of settings in the previous step is eliminated based on 
literature recommendations and clinical guidelines using the forecast pressure profiles. 
This filtering process eliminates setting combinations deemed unsafe based on well-
accepted clinical guidelines. The recommended ranges of parameter settings are sum-
marised in Table 4.

After eliminating harmful MV settings in the E-stage, the remaining settings can be 
further reduced by establishing clinically defined objectives in the N-stage. These objec-
tives are set by clinicians based on individual and ICU objectives. Examples of narrow-
ing objectives are minimising or maximising MV parameters, such as driving pressure, 
∆P (cmH2O), minute ventilation (L/min) or I:E ratio. As an example, clinicians can set 

Fig. 5  Visual illustration of forward simulation of pressure output waveform in VC ventilation provided a 
pre-determined combination of input settings and forecasted values of Ers,N+1
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the narrowing objective to reduce driving pressure, ∆P, which is associated with reduced 
mortality [13, 31]. Hence, further MV setting combinations are eliminated based on 
these added narrowing objectives.

In the final T-stage, the remaining MV setting combinations are displayed in a table, 
where harmful combinations have been removed to meet the narrowing objectives set. 
An example is shown in Table 5. Note the forecast outcome displays the range forward 

Table 3  Resolution and range of VC ventilation parameter settings and total possible combinations

Setting Resolution:range Adjusted 
no. of 
combinations

Respiratory rate (breath/min) 1:6–35 30

Tidal volume (mL) 1:4–8 5

Peak inspiratory flow (L/min) 5:5–150 30

Plateau time (s) 0.1:0–2 21

Waveform Square/ramp 2

Total number of possible mv setting combinations per patient = 1.89 × 105

Table 4  Recommended parameter ranges based on literature

Outcome Range References

Respiratory rate, RR (breaths/min) 6–35 ARDSNet trial [10]

Tidal volume, VT (mL/kg) 4–8 ARDSNet trial [10], State-of-the-Art review for Mechanical 
Ventilation in ARDS [72], Official Society of Critical Care Medicine 
Practice Guideline [7]

Positive end-expiratory pressure, 
PEEP (cmH2O)

Specified 
by clini-
cian

ALVEOLI trial [4], LOVS trial [11], EXPRESS trial [12], Hogson stair-
case recruitment trial [73], Individualised PEEP trial [28], EPVent 
trial [74]

Peak pressure, PMAX (cmH2O) < 40 The basics of respiratory mechanics [75]

Plateau pressure, PPLAT (cmH2O) < 30 State-of-the-Art review for Mechanical Ventilation in ARDS [72], 
Official Society of Critical Care Medicine Practice Guideline [7]

I:E ratio 1:1–1:3 ARDSNet trial [10], ALVEOLI trial [4], LOVS trial [11], EXPRESS trial 
[12]

Table 5  Example of tabulation of data at the end of SiVENT protocol, showing remaining MV setting 
combinations recommended by protocol

No. Input settings 5th to 95th percentile forecasted 
outcome

RR 
(breaths/
min)

Waveform VT (mL/
kg)

V̇MAX (L/
min)

TPLAT (s) PMAX 
(cmH2O)

PPLAT 
(cmH2O)

∆P 
(cmH2O)

I:E ratio

1 6 RAMP 4 10 0.1 12.1–13.6 11.9–13.4 4.4–5.9 1:1.8

2 6 RAMP 4 10 0.2 12.1–13.6 11.9–13.4 4.4–5.9 1:1.3

3 6 RAMP 4 10 0.3 12.1–13.6 11.9–13.4 4.4–5.9 1:1.1

4 6 RAMP 4 10 0.4 12.1–13.6 11.9–13.4 4.4–5.9 1:1.0

– – – – – – – – – –

– – – – – – – – – –

4666 35 SQUARE 4 60 0.5 36.6–40.0 11.9–13.4 4.4–5.9 1:1.3

4667 35 SQUARE 4 60 0.6 36.6–40.0 11.9–13.4 4.4–5.9 1:1.0
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simulated pressure outcomes using the 5th to 95th percentile of Ers,N+1 in the SiVENT 
protocol. The VENT protocol would display only a single value of forecast pressure out-
comes for Ers,N, unable to account for intra-patient variability.

Patient data and processing

This study uses retrospective airway pressure–flow data from 20 MV patients [76]. Ven-
tilator data were recorded using CURESoft [77] connected to a Puritan Bennet PB980 
ventilator (Covidien, Boulder, CO, USA). The study was approved by the IIUM research 
ethics committee (Ethics Approval Number IREC666). Patient-specific Ers and Rrs are 
identified from the airway pressure–flow data [71, 78]. Further information on these 
patients and patient data processing can be found in [44]. All computation was done 
using MATLAB ver. R2020a (Natick, MA, USA).

Model‑based protocol performance evaluation

A case study is implemented to evaluate the performance of SiVENT and the potential 
benefit stochastic modelling adds to a model-based approach to MV care. The stochastic 
model free protocol omits step 2 of the SiVENT protocol, removing the stochastic fore-
casting component. The procedure for performance evaluation is defined:

1)	 Extract patient weight and identify patient-specific interval data, Ers,N and Rrs,N.
2)	 Extract clinically implemented interval PEEP, PEEPN.
3)	 Input patient profile (data obtained from steps 1 and 2) into VENT protocol and 

record the number of MV setting recommendations and percentage reduction from 
initial number of combinations.

4)	 Repeat step 3 for every interval up to 3 h of patient data.
5.	 Repeat steps 1 to 4 for each patient.
6.	 Repeat steps 1 to 5, replacing the VENT protocol with the SiVENT protocol in step 

3.

The interval data refer to the median value of all data points within an interval, N 
where, N is set to N = 10 min in this study, but stochastic models can be developed for 
any clinically relevant interval. The narrowing objective implemented in this perfor-
mance evaluation is to minimise driving pressure, ∆P.
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