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Abstract 

Background:  The rapid development of artificial intelligence technology has 
improved the capability of automatic breast cancer diagnosis, compared to traditional 
machine learning methods. Convolutional Neural Network (CNN) can automatically 
select high efficiency features, which helps to improve the level of computer-aided 
diagnosis (CAD). It can improve the performance of distinguishing benign and malig-
nant breast ultrasound (BUS) tumor images, making rapid breast tumor screening 
possible.

Results:  The classification model was evaluated with a different dataset of 100 BUS 
tumor images (50 benign cases and 50 malignant cases), which was not used in net-
work training. Evaluation indicators include accuracy, sensitivity, specificity, and area 
under curve (AUC) value. The results in the Fus2Net model had an accuracy of 92%, the 
sensitivity reached 95.65%, the specificity reached 88.89%, and the AUC value reached 
0.97 for classifying BUS tumor images.

Conclusions:  The experiment compared the existing CNN-categorized architecture, 
and the Fus2Net architecture we customed has more advantages in a comprehen-
sive performance. The obtained results demonstrated that the Fus2Net classification 
method we proposed can better assist radiologists in the diagnosis of benign and 
malignant BUS tumor images.

Methods:  The existing public datasets are small and the amount of data suffer from 
the balance issue. In this paper, we provide a relatively larger dataset with a total of 
1052 ultrasound images, including 696 benign images and 356 malignant images, 
which were collected from a local hospital. We proposed a novel CNN named Fus2Net 
for the benign and malignant classification of BUS tumor images and it contains two 
self-designed feature extraction modules. To evaluate how the classifier generalizes 
on the experimental dataset, we employed the training set (646 benign cases and 306 
malignant cases) for tenfold cross-validation. Meanwhile, to solve the balance of the 
dataset, the training data were augmented before being fed into the Fus2Net. In the 
experiment, we used hyperparameter fine-tuning and regularization technology to 
make the Fus2Net convergence.
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Background
The most common malignant tumor occurring in Chinese women is breast cancer 
and its incidence rate is increasing annually. Numerous studies have confirmed that 
breast cancer screening is the most effective way to improve the early diagnosis rate 
and survival rate of breast cancer patients. Early breast cancer is a curable disease, 
and early treatment is the best way of raising the survival rate of breast cancer [1]. 
Developed countries have implemented breast cancer screening guidelines early, and 
the 5-year survival rate of breast cancer has been increased to 89%. With the devel-
opment of China’s society and economy, there is an urgent need to increase the level 
of breast cancer prevention in women. Compared with Western women, Chinese 
women have denser breasts. In addition, the peak age of breast cancer in Chinese 
women is between 40-50 years, which is earlier than women in Western countries 
[2]. Large-scale and rapid screening of benign and malignant breasts based on the 
computer-aided diagnosis (CAD) system has attracted more attention from research-
ers in recent years.

At present, normal breast cancer examination methods include mammography, ultra-
sonography, magnetic resonance imaging, positron emission tomography, and biopsy 
[3]. Among them, ultrasonography has the characteristics of cost-effective, radiation-
free, and small side effects, and is widely used in the early screening of breast cancer. 
Since the acoustic properties of normal tissues and cancer tissues are very similar, it is 
difficult for an experienced radiologist to distinguish between them. Therefore, CAD 
systems based on machine learning methods have been applied to ultrasound diagnosis.

Researchers have applied a variety of algorithms for feature selection to locate and 
classify breast lesions in recent years. The authors studied three backpropagation artifi-
cial neural network algorithms based on gradient descent and evaluated its performance 
in distinguishing the breast ultrasound (BUS) tumors as benign and malignant [4]. 
Results for classification of the 57 extracted texture and shape features giving the high-
est classification accuracy of 84.6%. Another literature [5] proposed a watershed method 
for semi-automatic tumor segmentation. After extracting a set of 855 features includ-
ing shape or texture from each tumor area, a Bayesian Automatic Relevance Detection 
(ARD) was used to reduce the feature and dimensionality. The evaluation using eightfold 
cross-validation on a dataset of 104 BUS tumor images, an accuracy with 97.12% was 
achieved. Chen et al. [6] proposed a bi-clustering mining method to acquire high-level 
features. A total of 238 tumors instances (including 115 benign cases and 123 malignant 
cases) were classified with two hidden layers neural networks and obtained the accuracy, 
sensitivity, specificity with 96.1, 96.7, 95.7%, respectively. Although the above research 
achieved some satisfactory results, the datasets were either too small or from different 
ultrasonic machines, making it difficult to implement generalization. In a few attempts 
to locate and classify tumors [7, 8], the overall performance of automatically locating 
regions of interest and classifying breast lesions employing different Convolutional Neu-
ral Network (CNN) architecture has been improved, comparing with traditional classifi-
cation algorithms [9].
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Deep Learning (DL) performs better than traditional machine learning algorithms 
in object classification [10]. In recent years, DL methods using Convolutional Neural 
Networks (CNNs) have achieved significant advantages in the field of medical image 
analysis [11]. Some researchers have used the well-known CNN architecture to classify 
benign and malignant BUS tumor images [12]. Due to the limited public BUS dataset, 
the Transfer Learning (TL) method using the pre-trained classification model is fea-
sible [13, 14]. TL methods use the well-known CNN classification model as a feature 
extractor for automatic feature selection of images. After the output bottleneck layer, a 
multi-layer neural network is added to classify features, which is called a customed clas-
sifier. To deal with BUS images, it is also effective to build a CNN for specific classifica-
tion tasks [15–17]. Generally, researchers will augment the collected toy datasets. Data 
augmentation can achieve more complex representations of data, reduce the difference 
between the training set and test set, and allow CNNs to better learn the data distribu-
tion on the whole dataset [18–20]. Shallow convolutional layers can extract low-dimen-
sional abstract features, such as edges and spots, etc. Deeper convolutional layers extract 
higher dimensional abstract features, which is crucial for specific classification tasks. To 
improve the classification performance of the model, CNNs need to take into account 
the characteristics of different dimensions at the same time. Using a pre-trained model 
based on natural image training, the TL method often needs to fine-tune for specific 
tasks. Equally, the conventional stacked convolutional layer has such an issue in multi-
scale expression capabilities.

In this paper, a novel CNN named Fus2Net for specific classification tasks was pro-
posed. Different from conventional CNNs that are executed layer-wisely, we have 
exploited the multi-scale expression potential of CNN at a more granular level. In addi-
tion, the low-dimensional and high-dimensional feature maps are fused before being 
input to the fully connected layer, combining the characteristics of different levels.

Results
The Fus2Net was implemented through the Keras module of TensorFlow2.0 and was 
trained on the Windows 10 professional system using Nvidia 1080Ti 16GB with CUDA 
3584 cores, GPU. Other relevant hardware information includes: Intel(R) Core (TM) 
i7-8700k CPU 3.70GHz, 16.0GB RAM, Anaconda Jupyter notebook IDE and Python 
computer programming language.

Considering the impact of the image format on the classification network, we used 
the original three-channel RGB format BUS image and the single-channel BUS grayscale 
image to conduct a comparative experiment. Table  1 shows the classification perfor-
mance metrics of single-channel and three-channel BUS images. The results show that 
three-channel images have advantages over single-channel images in terms of classifica-
tion performance.

Table 1  The performance metrics of single-channel and three-channel BUS tumor images

The bold value in the table indicates this method (in row) outforms others regarding this specific metric (in column)

Accuracy Sensitivity Specificity Precision AUC​

One channel 81.31% 78.51% 85.42% 84.57% 0.86

Three channels 85.08% 82.01% 88.34% 86.93% 0.89
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We verify the performance of different optimizers on BUS tumor images without 
preprocessing as our candidates. Fig.  1 summarizes the classification performance 
metrics of Fus2Net using Adam, RMSprop and SGD optimizers in tenfold cross-val-
idation. The results demonstrate that among the three common optimization algo-
rithms, by calculating the mean values of the three optimizers in accuracy, specificity, 
sensitivity and AUC value, Adam optimizer is 5% higher than RMSprop and SGD, 
which indicates the advantages of Adam optimizer in BUS tumor image classifica-
tion. In general, the Adam optimization algorithm is superior to RMSprop and SGD 
in BUS tumor image classification.

After determining the input format of the BUS tumor image and the optimizer of 
training the Fus2Net, data augmentation was used to slow down overfitting and raise the 
generalization ability of classification model, and regularization technique was used to 
avoid overfitting. We perform tenfold cross-validation on the training data and calculate 
the mean to compare the performance metrics of Fus2Net after applying image augmen-
tation and regularization techniques, as shown in Table 2. The results demonstrate that 

Fig. 1  Performance metrics of the Fus2Net using Adam, RMSprop and SGD optimizers in accuracy, sensitivity, 
specificity, AUC​

Table 2  The performance metrics after using image augmentation, L2 regularization, and dropout

The bold value in the table indicates this method (in row) outforms others regarding this specific metric (in column)

Accuracy Sensitivity Specificity Precision AUC​

Image augmentation 88.81% 92.05% 82.58% 85.37% 0.91

Image augmentation and L2 
regularization and dropout

93.25% 94.19% 88.57% 91.94% 0.97
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the image augmentation and regularization technology improve the performance met-
rics of Fus2Net.

To evaluate the application of the Fus2Net classification model in real scenarios, we 
tested 100 BUS tumor images that did not participate in the training. Meanwhile, we 
compared the existing classification methods of BUS tumor images based on deep learn-
ing. Table 3 shows the test results of our proposed Fus2Net and existing methods on 100 
BUS tumor images. Fig. 2 presents the ROC curve of the BUS tumor image classification 
method. Experiments demonstrate that, compared with the existing CNN methods, our 
proposed Fus2Net has advantages in classification and evaluation metrics such as accu-
racy, sensitivity, specificity, and AUC value.

Discussion
The Fus2Net we designed to acquire a fine recognition performance in the automatic 
classification of benign and malignant BUS tumor images. The classification architecture 
of Fus2Net is shown in Fig.  7. Augmented training data simulate actual clinical ultra-
sound images and improve the robustness of the Fus2Net. Using 100 BUS tumor images 
without participating in training, we tested Fus2Net and four existing CNN-based 
classification methods of BUS tumor images. Experiments show that the Fus2Net per-
forms better in performance metrics. Among all the methods, Fus2Net performs best 
in accuracy, AUC, and sensitivity. Only the fine-tuning ML method is slightly higher 

Fig. 2  The ROC curve, and the AUC value of our proposed Fus2Net, and four existing CNN-based methods

Table 3  The performance metrics of the Fus2Net and other four methods

The bold value in the table indicates this method (in row) outforms others regarding this specific metric (in column)

Accuracy Sensitivity Specificity Precision AUC​

GLN M0+M80 [16] 85% 88.89% 81.82% 80% 0.90

Fine-tuning ML [12] 88% 85.19% 91.30% 92% 0.95

Multiview CNN [13] 78% 83.33% 74.14% 70% 0.86

GoogleNet [11] 82% 80.77% 83.33% 84% 0.89

Fus2Net 92% 95.65% 88.89% 88% 0.97
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than our method in specificity. In terms of overall performance, the performance of the 
fine-tuning ML method is closest to our method, and the worst performance is the Mul-
tiview CNN method. In terms of accuracy, Fus2Net reached 0.92, the highest among 
all methods. In terms of sensitivity, Fus2Net reached 95.65%, which is higher than the 
fine-tuning ML method, indicating that the CNN we designed has a higher classification 
accuracy for malignant tumors. In terms of specificity, Fus2Net reached 88.89%, which 
is 3% lower than the fine-tuning ML method, indicating that the CNN we designed has 
lower classification accuracy for benign tumors. In terms of the most critical indicator 
AUC value, Fus2Net reached 0.96, higher than the other four CNN-based classification 
methods.

We attempt to analyze the BUS tumor images misclassified by Fus2Net. Misclassified 
images have tumor boundaries that exceed the size of the image, which makes Fus2Net 
unable to perform convolution calculations on complete tumors, as shown in the red 
dotted mark in Fig. 3 The convolution kernel needs to perform convolution calculations 
on the complete object so that the bottleneck layer can better represent the image cat-
egory. In addition, in the process of image acquisition, if standardized acquisition can 
be carried out, it is of great significance for the automatic classification of benign and 
malignant BUS tumor images. In the next stage, we will continue to communicate with 
partner hospitals to collect higher quality BUS tumor images and further improve the 
level of automated auxiliary diagnosis.

The fusion of feature extraction modules is the core innovation of Fus2Net. In terms 
of architecture, the properties of the convolution kernel inside a single feature extraction 
module are equally important. The Block 1 module has three branches, and the number 
and size of the convolution kernels of each branch are obtained through fine-tuning of 
the architecture, to extract features of the BUS tumor images more efficiently. The 1 x 1 
convolution kernel can achieve feature dimensionality reduction, reduce the number of 
parameters, and improve the representation capabilities of the generated feature maps. 
The 1 x 7 and 7 x 1 convolution kernels deepen the depth of Fus2Net and increase its 

Fig. 3  Samples misclassified by Fus2Net. Among them,benign images: 1, 2, 3; malignant images: 4, 5, 6
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nonlinearity. The two branches in Block 1 use the maximum pooling and average pool-
ing operations, respectively. The introduction of the pooling layer not only reduces the 
parameters, prevents Fus2Net from overfitting, but also improves the generalization 
ability of the classification model. The first half of the Block 2 module is similar to the 
Block 1 module, and the second half introduces a scale residual unit. The scale residual 
is used to eliminate the influence of network depth on the performance of Fus2Net and 
strengthen the feature expression in the hidden layer. In addition, the addition operation 
in Block 2 combines low-dimensional and high-dimensional feature maps to improve 
the multi-scale expression ability of the Fus2Net.

In BUS tumor image processing, we have augmented the original image. Image aug-
mentation makes the images participating in the training more robust, and the gener-
ated classification model is more general, which significantly improves the classification 
performance of the model on the test set. The traditional ultrasound image enhance-
ment method is based on pixels for a single image. Different from that, the augmenta-
tion operations such as shift, flip, and shear make the data richer without changing the 
pixel difference of the original image. For DL technology, image augmentation has more 
advantages than single image enhancement.

The experiments showed that a large amount of training data is still a powerful tool for 
DL technology. In future research, we can seek more experimental data, and continue to 
optimize the model by considering transfer learning. According to the existing research 
results, transfer learning has better performance for small-scale datasets. Moreover, 
the model used in transfer learning is based on open dataset training. In the following 
research, we can use the multi-modality images of different organs to train the model 
and then perform the transfer training for BUS tumor images to achieve better results. 
The main reason is that there are big differences between medical data and public data-
sets of natural scenes. The model trained with other data belonging to medical images 
can reduce the differences between classes. On this basis, the use of TL technology may 
have a better result.

Conclusions
In this study, we proposed the Fus2Net to distinguish benign and malignant BUS tumor 
images. The experiment is based on the training data to perform tenfold cross-validation 
to select the optimizer, verify the effect of regularization, and adjust the hyperparame-
ters for Fus2Net. The classification results of Fus2Net on 100 BUS tumors without train-
ing showed that the accuracy was 0.92, the sensitivity was 95.65%, the specificity was 
88.89%, and the AUC was 0.97. The Fus2Net classification framework we proposed has 
a better auxiliary effect for radiologists to distinguish benign and malignant BUS tumors 
and is superior to existing methods.

Methods
In this paper, we proposed Fus2Net architecture for distinguishing benign and malig-
nant tumors in BUS images. Training a CNN model requires large-scale data [21]. How-
ever, the experimental data collected are limited. Due to this reason, we applied image 
enhancement technology to augment the dataset, which proved to be effective for CNN 
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training [22]. During CNN training, different regularization techniques are used to 
reduce overfitting and hyperparameter adjustments to improve the classification perfor-
mance of the Fus2Net model.

The proposed classification process for BUS tumor images in this study comprises: 
data collection, image preprocessing, creating and training the CNN, comparison of 
different optimizers and loss functions, hyperparameter adjustment and architecture 
fine-tuning, comparison of different CNN classification methods and results in the eval-
uation. Fig. 4 shows a block diagram of these steps.

Clinical dataset

The dataset used in the experiment was collected from the local hospital. The entire 
dataset comprised 1052 images, which include 696 benign solid cysts and 356 malig-
nant solid cysts. They are captured from different devices, such as GE LOGIQ E9 and 
PHILIPS EPIQ5. The patient information in all images is hidden. Each image is labeled 
as benign or malignant through biopsy and serves as the ground truth for training data. 
The single-data format is a three-channel PNG file with a depth resolution of 24 bits and 
a resolution of 775 x 580 pixels.We reserved 100 cases (50 benign and 50 malignant) for 
model evaluation, and 952 cases were used as training set to fit the classification model.

For our retrospective study, the informed consent for data usage was approved by the 
Medical Ethics Committee of the First Hospital of China Medical University.

Data preprocessing

The preprocessing stages before the images are input to Fus2Net are listed as follows: 
balance of benign and malignant data, image resize, data augmentation, and image 
standardization.

Training Fus2Net used 646 benign images and 306 malignant images. To balance the 
number of benign and malignant images, we randomly selected 170 malignant images to 
flip horizontally and vertically. In the end, the number of malignant images increased to 
646, and the benign and malignant data were balanced.

Fig. 4  Flowchart of our proposed method
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Different from multi-layer neural networks, the input of CNNs is a pixel matrix of the 
two-dimensional image. The size of the image determines the training time of the CNN 
and the memory required for processing. Generally, the well-known CNNs architecture 
chooses images with a size of 224 x 224 or 320 x 320 pixels. Our experiment is con-
ducted on a GPU with stronger computing power while retaining as much image infor-
mation as possible. We use bilinear interpolation to resize the images to 299 x 299 pixels.

To avoid Fus2Net from overfitting during training, we performed image data augmen-
tation processing on the balanced and resized images [18]. The augmentation methods 
used involve rotation, lighting, shift, etc. Augmented examples of a single image in the 
experiment are presented in Fig. 5.

The different distribution of training data will reduce the training speed of CNN and 
bring difficulties to model convergence. Before the training images are input into Fus-
2Net, we performed zero-mean normalization processing on them. After that, the image 
features and the relationship between the features will not change with the standardiza-
tion. Image standardization can make CNN easier to learn. Equation 1 is the definition 
of image zero-mean standardization:

where x is the original image, x∗ is the resulting image, µ is the mean value of the image, 
and σ is the standard deviation of the image.

The preprocessing of the data enhances the representation of the image and also 
improves the generalization of the CNN model. Fig. 6 shows the original image and the 
final image resulting from data preprocessing.

(1)x∗ =
x − µ

σ
,

Fig. 5  Samples of image augmentation on the benign and malignant

a
b

Fig. 6  The effect of the original image after preprocessing on a sample: a original image, b resulted image 
through image preprocessing
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Fus2Net framework

The Fus2Net framework proposed in this paper is shown in Fig. 7. The feature extraction 
part is composed of three convolutional types: three basic convolutional layers, Block 
1 module and Block 2 module. Each convolution type has filters of different sizes and 
numbers. There are mainly four sizes of filters used: 1 x 1, 3 x 3, 1 x 7, 7 x 1, and the 
strides size is 1 x 1 or 2 x 2. After the convolutional layer, the bottleneck feature is output 
as the input of the customized classifier, and the classification prediction probability is 
obtained under the action of the activation function. The customization layer is com-
posed of two fully connected layers. The final fully connected layer has only two neu-
rons, which directly classifies the features of the dense layer.

The basic convolution layer uses the 3 x 3 size convolution kernel. It occupies a domi-
nant position in all CNN models and can improve the performance of the neural net-
work to a certain extent [23, 24]. In addition, the first convolutional layer uses a stride 
size of 2 x 2, and the other two convolutional layers use the same stride size of 1 x 1 
acquiescently. After each convolutional layer, a Rectified Linear Unit (ReLU) is used, 
which avoids the issue of vanishing gradient [25].

Block 1 includes three modules, which increase the multi-scale representation capabil-
ity of Fus2Net [26]. Each module has two branches, and the size and number of filters 
on each branch are different. The two branches of Module 1 use the 3 x 3 convolutional 
layer and the maximum pooling layer, respectively. The two branches of Module 2 use 
six convolutional layers that contain all types. Module 3 is similar to Module 1 and 
replaces the maximum pooling layer with the average pooling layer. The feature maps of 
all branches in Block 1 are concatenated and output. Fig. 8 presents the complete archi-
tecture of Block 1.

Block 2 module is consisted of four branches. Convolutional layers are used in the 
three branches, and feature maps are concatenated. Then the feature map passes through 
a 1 x 1 convolutional layer and scale residual unit [27]. For the fourth branch, we add the 
adjusted input features and the features of the scaled residual unit. Fig. 9 is the structure 
of Block 2.

Table 4 summarizes the parameters of the main layers of the Fus2Net.

Fig. 7  The classification architecture of the Fus2Net
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Fus2Net training and hyperparameter tuning

To speed up the training and convergence speed of Fus2Net, we perform batch normali-
zation (BN) on the convolutional layer using the ReLU activation function [28]. After the 
first fully connected layer, dropout with a probability of 0.5 [29] and L2 regularization 
with a regularization factor of 0.05 [30] are used.

As the optimizer of the backpropagation algorithm in Fus2Net, we tried to use three 
optimization algorithms: Adam [31], RMSprop [32], and SGD [33]. During training, all 
optimizers used default parameters. The loss function used binary logistic regression 
with cross-entropy loss. The data were input into Fus2Net in batch mode, and the batch 
size was set to 16. To select the model with the best performance, we perform tenfold 
cross-validation on the training data. As a criterion for stopping training, 53 epochs 
were performed for each fold. The cross-validation method adopts the form of hierarchi-
cal grouping so that the proportion of each category in each group is as same as the pro-
portion of each category in the overall data. Compared with dividing ten groups directly, 
this method overcomes the imbalance of batch data.

Fig. 8  Three architectures of Block 1: Module 1, Module2, Module 3

Fig. 9  The detailed structure of the Block 2
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Performance metric

In this study, accuracy, sensitivity, specificity, and AUC values were used as per-
formance evaluation metrics. Accuracy is the probability of being correctly identi-
fied in all cases. The sensitivity indicates that the missed diagnosis rate is low, that 
is, the probability that a malignant tumor is diagnosed as malignant, and a patient 
whose breast tumor is malignant has not been spared. The specificity indicates that 
the misdiagnosis rate is low, that is, the probability that a benign tumor is diagnosed 

Table 4  The detailed parameters of the Fus2Net

Layer’ s name Input size Output size Filter size Strides

1 Input_Layer (299, 299, 3) (299, 299, 3) None None

2 Conv2d_1 (299, 299, 3) (149, 149, 32) (3, 3) (2, 2)

3 Conv2d_2 (149, 149, 3) (147, 147, 32) (3, 3) (1, 1)

4 Conv2d_3 (147, 147, 3) (147, 147, 64) (3, 3) (1, 1)

Block 1 module 1

5 Max_pooling2d (147, 147, 64) (73, 73, 64) (3, 3) (2, 2)

6 Conv2d_4 (147, 147, 64) (73, 73, 96) (3, 3) (2, 2)

7 Concatenate_1 (73, 73, 64) (73, 73, 160) None None

(73, 73, 96)

Block 1 module 2

8 Conv2d_5 (73, 73, 160) (73, 73, 64) (1, 1) (1, 1)

9 Conv2d_6 (73, 73, 64) (71, 71, 96) (3, 3) (1, 1)

10 Conv2d_7 (73, 73, 160) (73, 73, 64) (1, 1) (1, 1)

11 Conv2d_8 (73, 73, 64) (73, 73, 64) (7, 1) (1, 1)

12 Conv2d_9 (73, 73, 64) (73, 73, 64) (1, 7) (1, 1)

13 Conv2d_10 (73, 73, 64) (71, 71, 96) (3, 3) (1, 1)

14 Concatenate_2 (71, 71, 96) (71, 71, 192) None None

(71, 71, 96)

Block 1 module 2

15 Average_pooling2d (71, 71, 192) (35, 35, 192) (3, 3) (2, 2)

16 Conv2d_11 (71, 71, 192) (35, 35, 192) (3, 3) (2, 2)

17 Concatenate_3 (35, 35, 192) (35, 35, 384) None None

(35, 35, 192)

Block 2

18 Conv2d_12 (35, 35, 384) (35, 35, 32) (1, 1) (1, 1)

19 Conv2d_13 (35, 35, 384) (35, 35, 32) (1, 1) (1, 1)

20 Conv2d_14 (35, 35, 32) (35, 35, 32) (3, 3) (1, 1)

21 Conv2d_15 (35, 35, 384) (35, 35, 32) (1, 1) (1, 1)

22 Conv2d_16 (35, 35, 32) (35, 35, 48) (3, 3) (1, 1)

23 Conv2d_17 (35, 35, 48) (35, 35, 64) (3, 3) (1, 1)

24 Concatenate_4 (35, 35, 32) (35, 35, 128) None None

(35, 35, 32)

(35, 35, 64)

25 Conv2d_18 (35, 35, 128) (35, 35, 384) (1, 1) (1, 1)

26 Add (35, 35, 384) (35, 35, 384) None None

(35, 35, 384)

BN + ReLU

27 Average_pooling2d (35, 35, 384) (4, 4, 384) None (1, 1)

Dropout

Softmax
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as benign, and a patient whose breast tumor is benign has not been spared. AUC, 
the area under the receiver operating characteristic (ROC) curve, is a common met-
ric used to evaluate the pros and cons of a binary classification model. Generally, the 
higher the AUC value, the better the effect of the model:

In these equations, TP, TN, FP, and FN represent true positive, true negative, false posi-
tive, and false negative, respectively. y_scores is the probability of the predicted category, 
y_true is the true label of the category, and roc_auc_score is the calculation method of 
AUC value.
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