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Background
Placental invasion (PI) is a phenomenon that placental villi directly invade the myome-
trium due to abnormal hyperplasia of decidua [1]. According to the degree of implanta-
tion, it can be divided into three types: placenta accrete (PA), placenta increta (PC), and 
placenta percreta (PP) [2]. It is called PA if the placental villi are directly attached to 
the myometrium and require manual placental dissection during delivery, and when the 
placental villi penetrate deep into the uterine myometrium, it is called PC. In the most 
severe case, if the placental villi can reach the serous layer, or even penetrate the serosa 
layer, to the bladder or rectum, it is called PP. It may cause different degrees of dam-
age to pregnant women according to the severity of placenta implantation. The harm 

Abstract 

Background: To predict placental invasion (PI) and determine the subtype according 
to the degree of implantation, and to help physicians develop appropriate therapeutic 
measures, a prenatal prediction and typing of placental invasion method using MRI 
deep and radiomic features were proposed.

Methods: The placental tissue of abdominal magnetic resonance (MR) image was 
segmented to form the regions of interest (ROI) using U-net. The radiomic features 
were subsequently extracted from ROI. Simultaneously, a deep dynamic convolution 
neural network (DDCNN) with codec structure was established, which was trained by 
an autoencoder model to extract the deep features from ROI. Finally, combining the 
radiomic features and deep features, a classifier based on the multi-layer perceptron 
model was designed. The classifier was trained to predict prenatal placental invasion as 
well as determine the invasion subtype.

Results: The experimental results show that the average accuracy, sensitivity, and 
specificity of the proposed method are 0.877, 0.857, and 0.954 respectively, and the 
area under the ROC curve (AUC) is 0.904, which outperforms the traditional radiomic 
based auxiliary diagnostic methods.

Conclusions: This work not only labeled the placental tissue of MR image in pregnant 
women automatically but also realized the objective evaluation of placental invasion, 
thus providing a new approach for the prenatal diagnosis of placental invasion.

Keywords: Placental invasion, Radiomics, Deep learning, MRI, Assistant diagnosis

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ 
licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies 
to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Xuan et al. BioMed Eng OnLine           (2021) 20:56  
https://doi.org/10.1186/s12938-021-00893-5 BioMedical Engineering

OnLine

*Correspondence:   
xyjw1969@126.com 
†Rongrong Xuan and Tao Li 
contributed equally to this 
work
2 Faculty of Electrical 
Engineering and Computer 
Science, Ningbo University, 
Ningbo 315211, Zhejiang, 
China
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-6844-4324
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-021-00893-5&domain=pdf


Page 2 of 18Xuan et al. BioMed Eng OnLine           (2021) 20:56 

of the occurrence of PI is mild to difficult to peel the placenta during delivery, severe 
to postpartum hemorrhage, amniotic fluid embolism, diffuse intravascular coagulation 
(DIC), and even seriously endanger the life of pregnant women. There are many high-
risk factors for PI, including the history of cesarean section, placenta previa, multiple 
abortions and curettage, hysteromyomectomy, and other uterine-related operations, 
and the advanced age of pregnant women, etc [3, 4]. Among these factors, the history of 
cesarean section is the main risk factor for placental implantation.

In recent years, with the increase of cesarean section and abortion operations, the 
incidence of PI has been increasing year by year [5]. Due to the clinical symptoms of 
placental invasion are not obvious and lack of specificity before delivery, it is very dif-
ficult to diagnose by clinical manifestations. At present, the color Doppler ultrasound 
(US) and magnetic resonance imaging (MRI) are commonly used in clinical diag-
nosis and classification of prenatal placenta implantation. Among them, ultrasound 
examination has many advantages, such as low price, wide application, harmless to 
the mother and child, etc. It is the preferred imaging method for the diagnosis of pla-
cental implantation. However, the detection rate of PI by ultrasound will be reduced 
or even difficult to detect when the placenta is located at the fundus or posterior wall 
of the uterus, or there are interfering factors such as intestinal gas. Moreover, the 
ultrasound examination is of limited value in assessing the degree of placental inva-
sion [6]. MRI examination of the placenta is not interfered by maternal body size, 
intestinal gas, or placental position, and has a large field of view and high soft tissue 
resolution. It can be an important complementary imaging method when ultrasound 
diagnosis of placental implantation is uncertain or limited in evaluation, especially 
when evaluating the degree of placental implantation and its infiltration to the organs 
around the uterus [6, 7].  At present, the diagnosis of placental invasion with MRI 
mainly depends on the visual interpretation of clinicians. This method not only relies 
on the experience of clinicians, but also easily interfered by various subjective and 
objective factors, and its efficiency is not high. For the computer-aided diagnosis of 
PI methods based on radiomics, professional radiologists should label ROI manu-
ally, then high-throughput features should be extracted based on ROI, and identified 
PI by traditional machine learning finally. Sun et al. [8] analyzed 9 pregnant women 
with pathologically confirmed placental invasion and 56 patients with simple placenta 
previa using the radiomics approach. They initially extracted texture features from 
the patient’s original MRI images and Laplace Gaussian (LOG) filtered MRI images. 
Then, the proposed texture features are predicted using an automatic machine learn-
ing algorithm. Finally, the intra-placental texture features were shown to be highly 
efficient in predicting placental invasion after 24 weeks of gestation. Similarly, Romeo 
et al. [9] explored whether MRI texture features could help to assess the presence of 
PI in patients with placenta previa. They first manually located ROI on sagittal or cor-
onal T2 weighted images. Then, texture features in the ROI region are extracted by 
radiomics. Finally, the machine learning model is established to train and test with 
the extracted features. Among all machine learning algorithms, the k-nearest neigh-
bor algorithm had the highest accuracy of 98.1%. The experimental results suggest 
that machine learning analysis using MRI-derived texture features is a feasible tool for 
identifying placental tissue abnormalities in patients with placenta previa. Although 
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the method of radiomics is widely used, it also has some shortcomings. Such methods 
are difficult to obtain high-quality annotation data and the extracted features lack the 
ability to express higher-order semantic information, resulting in high missed diagno-
sis and misdiagnosis when faced with complex cases [10].

Recently, deep learning methods have been widely used in medical image analysis, 
such as segmentation and disease computer-aided diagnosis [11–17]. In particular, 
the related technology represented by U-net has achieved excellent performance in 
medical segmentation [18]. The U-net consists of a contracting path and an expansive 
path. In the contracting path, the image features of different levels are extracted by 
repeated convolution and pooling. And in the expansive path, through the up-sam-
pling and convolution operation symmetrical to the contracting path, and combin-
ing the shallow positioning information and the deep classification information of the 
objects using jump connection, the U-net can fully acquire multi-level features of the 
image and simultaneously achieves accurate object positioning. Experiments show 
that U-net based methods have been successful in many medical image segmentation 
tasks [19–22].

On the other hand, due to the advantages of the local receptive field, weight sharing, 
and temporal & spatial sub-sampling, the deep convolution neural network (CNN) can 
realize the invariance of displacement, scale, and deformation to some extent, and can 
mine the semantic information contained in the images. Therefore, based on the deep 
features extracted by CNN, deep learning has been widely used in medical image aided 
diagnosis. At present, in medical image processing, deep learning and radiomics are also 
showing a trend of mutual integration and collaborative development. A common kind 
of method is the feature-level fusion, which combines the deep features and radiomics 
features into a new feature vector for the subsequent disease classification and predic-
tion [15, 23]. This scheme has been applied to tasks such as detection and classification 
of lung nodules [24, 25], image attribute analysis of tumors [26], and prediction of can-
cer survival rates [27]. In July 2019, Zhu et al. [28] used the MRI of 181 patients with 
meningioma to establish a deep radiomics model to classify meningioma in a non-inva-
sive manner. The results show that the deep learning combined radiomics model has 
outstanding quantification ability in the non-invasive individualized meningioma grade 
prediction. Although the model of combining deep learning and radiomics is playing an 
increasingly important role in medical imaging diagnosis, there is still a lack of relevant 
research in the auxiliary diagnosis of placental invasion.

Based on the above analysis, deep learning and radiomics were combined to carry 
out the prenatal diagnosis of placental invasion based on MRI in this paper. Firstly, 
we train the U-net to segment the placental region of the magnetic resonance (MR) 
image and extract the radiomics features. Then, we construct a deep dynamic con-
volution neural network via self-encoder learning to extract the deep features of the 
placenta tissues to characterize the status of placental invasion. Finally, a multi-layer 
perceptron network is constructed and trained to realize the prenatal diagnosis of 
placental invasion and determine the subtypes of placental invasion.

The main contributions of this work are as follows: 

(1) A new method for the detection of placental invasion based on MRI is proposed.
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(2) The placental tissue of pregnant women was marked automatically by deep seg-
mentation instead of manual, which provides the regions of interest (ROI) for sub-
sequent diagnosis of placental invasion.

(3) The influence of different degrees of placental boundary dilation on the prediction 
accuracy of placental invasion was quantitatively analyzed.

(4) A deep dynamic convolution neural network (DDCNN) with codec structure was 
established to better characterize the semantic information of different placental 
implant types.

(5) The prenatal diagnosis and accurate typing of placental invasion were realized by 
fusing the deep and radiomic features.

This paper is organized as follows. In this section, we introduce the definition and related 
work of placental implantation and briefly describe the characteristics of the methods in 
this paper. In the next four sections, we first present the experimental configuration and 
evaluation metrics in the “Results” section and analyze the experimental results. It is fol-
lowed by a “Conclusion” section where we conclude and discuss future work. After that, 
we discuss the methods in this paper and summarize their advantages and disadvantages 
in the “Discussion” chapter. Finally, we provide a detailed description of the dataset and 
methods in the “Methods” section.

Results
All the experiments were conducted on an AMD Ryzen 7 3800X @ 3.89 GHz with 
32-GB RAM. Unless otherwise specified, for all deep learning models, we initialized the 
weights with random values, set the batch size to 8, set the learning rate to 0.001, and 
trained 200 epochs on 11G NVIDIA RTX 2080Ti GPU, SGD as the optimizer.

The automatic segmentation of placental tissues in MR images is realized by the 
trained U-net. The performance of the segmentation method was evaluated quantita-
tively using the four widely used evaluation metrics, i.e, segmentation Accuracy (ACC), 
Precision (PRE), Recall (REC), and F1 score (F1). These evaluation metrics were calcu-
lated as follows:

where TP(True Positive) was the number of placenta pixels that were correctly identified 
as placenta and FP(False Positive) was the number of background pixels that were incor-
rectly identified as placenta. FN(False Negative) was the number of placenta pixels that 

(1)ACC =
TP+ TN

TP+ TN+ FP+ FN

(2)PRE =
TP

TP+ FP

(3)REC =
TP

TP+ FN

(4)F1 =
2 ∗ PRE ∗ REC

PRE+ REC
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were incorrectly identified as background and TN(True Negative) was the number of 
background pixels that were correctly identified as background.

To evaluate the performance of various methods for predicting and typing placental 
invasion, the three evaluation metrics, i.e, Average Accuracy (AACC), Average Sensitiv-
ity (ASEN), and Average specificity (ASPE) were calculated as follows:

where i = 0,. . . , 3 indicate the type of no placental invasion, placenta accreta, placenta 
increta, and placenta percreta respectively. TPi is the number of patients that belong to 
the ith type of placental invasion and were classified exactly as ith type by the classifier. 
FPi is the number of patients that do not belong to the ith type of placental invasion but 
were classified as ith type by the classifier. The definitions of TNi and FNi follow this 
pattern.

Automatic segmentation of placenta

We selected 490 T2-sequence MR images with placenta marked by the radiologists 
as training samples, including 165 transverse, 182 sagittal, and 143 coronal images to 
train U-net. And the trained U-net was used to segment the placenta automatically 
on abdominal T2WI MR images. The segmentation results of placental tissue of some 
test images were shown in Fig. 1. Where Fig. 1a–c were the segmentation results of the 
transverse, sagittal, and coronal planes respectively.

In the figure, the red border is the boundary of placental tissue delineated by radi-
ologists, and the green border is the boundary of placental tissue automatically seg-
mented by the trained U-net. It can be seen that U-net segmentation results of the 
transverse and sagittal planes are consistent with the radiologists’ segmentation 
results. While for the coronal plane, the inconsistency of the segmentation results 

(5)AACC =
1

4
∗

3∑

i=0

TPi + TNi

TPi + TNi + FPi + FNi

(6)ASEN =
1
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∗
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∗
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Fig. 1 Comparison between u-net automatic segmentation and expert segmentation
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between the U-net and radiologists are more obvious than that of the transverse and 
sagittal planes. In general, the segmentation errors of U-Net are all within the con-
trollable range and have little impact on subsequent tasks.

To evaluate the performance of the ROI extraction network, we calculated the 
quantitative indicators of the segmentation results of the test images and gave a sta-
tistical box plot as shown in Fig. 2.

The digits in Fig.  2 represent the median of the corresponding metrics. It can be 
seen that the accuracy and recall of segmentation are both 0.940, the precision is 
0.954, and the F1 score is 0.945. Besides, we calculated the inference speed of U-net, 
whose average computation time of single-image is 29.640ms. The above results show 
that the model has high segmentation accuracy and can replace radiologists to seg-
ment the placental tissue region of the MR image to a certain extent.

The influence of different pixels extended from the placental region on the accuracy 

of predicting placental invasion

Normally, the placenta and uterine myometrium are separated by the basal decidua. If 
the basal decidua is lost due to various reasons, the placental villi will adhere directly 
to the uterine myometrium in the absence of basal decidua which will lead to pla-
cental invasion, and the depth of the invasion of placental villi into the myometrium 
will determine the severity of placental implantation. Therefore, we extend differ-
ent pixels from the placental region to form ROIs for subsequent placental invasion 
diagnosis. To optimize the extension size, we extended the placental region of the 
T2WI MRI image to the surrounding area with 10, 20, 40, 60 pixels to form ROIs and 
extracted the radiomic features and deep features from the ROIs. The classification 
model described in prenatal prediction and typing of placental invasion was used to 
predict the type of placental invasion, and the performance of different size boundary 

Fig. 2 Box plot of accuracy, precision, recall, and F1 score of the placenta segmentation model
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expansion was evaluated from the aspects of AACC, ASEN, and ASPE. The experi-
mental results are shown in Table 1.

It can be seen from the table that the model trained by the samples with the 40 pixels 
extension from the placental region performed better in various quantitative indicators 
than other extension models, the AACC, ASEN, and ASPE are 0.877, 0.857, and 0.954 
respectively. The results show that the extension of the placental tissue region to form 
ROIs is favorable to detect placental invasion, and the border extension with 40 pixels 
is relatively good. The following experiments for the computer-assisted diagnosis of pla-
cental invasion are all based on the ROIs formed after the 40 pixels extension of the pla-
cental region.

The diagnostic ability of the proposed approach

To objectively evaluate the clinical application potential of the proposed method in the 
assisted diagnosis of placental invasion, we tested the model with the test set. The confu-
sion matrix of the diagnosis results for the test set is shown below.

It can be seen from Table 2 that the model has a strong ability to distinguish between 
non-placental invasion (normal placenta) and placenta percreta, which is consistent with 
the signs of placental invasion in MR images. The image features of non-placental inva-
sion and placental percreta are more obvious than those of placental accreta and increta. 
Due to the clinical manifestations of the difference between placenta accreta and pla-
centa increta are ambiguous, the model has certain room for improvement in the ability 
to distinguish placental increta and placenta accreta. On the other hand, a large number 
of studies have also confirmed there is little difference between placental accreta and 
increta, and it is difficult to completely distinguish them by imaging alone. For this diffi-
culty, other clinical information of patients can be considered in the next step to further 
improve the discriminatory ability of the model.

Table 1 Performance analysis of the model in different extended pixels

Extended Pixels AACC ASEN ASPE

0 0.834 0.786 0.937

10 0.847 0.798 0.942

20 0.859 0.840 0.947

40 0.877 0.857 0.954

60 0.865 0.848 0.949

Table 2 Confusion matrix of the diagnosis results of the proposed method for typing of placental 
invasion

True label Typing as

No invasion Accreta Increta Percreta

No invasion 62 0 1 0

Accreta 4 21 7 0

Increta 3 4 50 0

Percreta 0 0 1 10
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Comparisons with other approaches

Various approaches can be used for the diagnosis of placental invasion. Each approach 
has its respective accuracy level. Here, the proposed approach was compared with 
traditional methods based on machine learning (ML) and deep learning (DL). The 
comparison of traditional machine learning methods includes random forest (RF), 
decision tree (DT), and logistic regression (LR), which use only radiomics features 
for placental invasion identification and typing. For the random forest, univariate fea-
ture selection was used to screen the radiomics features, and the 20 highest-scoring 
features were selected to train the random forest. All machine learning models are 
built on Scikit-learn (version 0.23, download link: https:// scikit- learn. org/ stable/ 
index. html). The approaches based on deep learning combine deep features with 
radiomic features to type placental invasion. Specifically, the proposed approach uses 
the dynamic convolutional neural network to extract deep features, while the com-
parison method uses a standard convolutional neural network (CNN) to extract deep 
features. We also compare with current deep learning methods, including ResNet50 
(RN) [29] and SENet (SEN) [30].

The performance of different approaches was evaluated in terms of AUC (area 
under ROC curve), AACC, ASEN, and ASPE. The results are shown in Table 3.

As can be seen from the table, compared with other traditional machine learning 
approaches, the random forest has better performance, with an average accuracy of 
0.767, an average sensitivity of 0.709, and an average specificity of 0.919. The average 
accuracy, sensitivity, and specificity of the traditional deep learning approach were 
0.840, 0.805, and 0.937, respectively, which improved the performance of traditional 
machine learning approaches. The average accuracy, sensitivity, and specificity of the 
proposed approach reached 0.877, 0.857, and 0.954, respectively, and all the evalu-
ation metrics were the best. From the perspective of AUC, the proposed approach 
is 0.904, which is superior to all other approaches, followed by ResNet50 and SENet 
with 0.879 and 0.874, respectively. The AUC of the standard convolution neural net-
work is 0.870, while the approaches based on traditional machine learning models are 
relatively poor. This indicates that it is beneficial to introduce deep features into the 
computer-assisted diagnosis of placental invasion and that the dynamic convolutional 
neural network proposed in this paper can more effectively mine the health seman-
tic information contained in MR images, so as to improve the ability to distinguish 
pathological subtypes of placental invasion.

Table 3 Comparison of different approaches for typing placental invasion

Methods AUC AACC ASEN ASPE Time/ms

ML

 LR 0.768 0.706 0.677 0.901 0.003

 DT 0.780 0.742 0.693 0.911 0.004

 RF 0.796 0.767 0.709 0.919 0.037

DL

 RN 0.879 0.847 0.816 0.943 17.845

 SEN 0.874 0.834 0.801 0.938 8.472

 CNN 0.870 0.840 0.805 0.937 13.306

 Ours 0.904 0.877 0.857 0.954 16.140

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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To evaluate the computational efficiency of different methods, the total reasoning time 
is calculated for 163 MRI images in the test set. Then the mean time for placental inva-
sion staging on a single MRI image was calculated for each method. As shown in the last 
column of Table 3, the average computation time of various methods is listed. It can be 
seen that overall the inference time of the machine learning methods is faster compared 
to the deep learning methods. For machine learning methods, the fastest is LR with a 
single sample inference time of 0.003ms, and the slowest is RF with 0.037ms. For the 
deep learning methods, ResNet50 took the longest time to detect a single MRI image, 
17.845ms, followed by this paper’s method and CNN, 16.140 and 13.306ms, respectively. 
Note that, except for ResNet and SENet, the other methods mentioned above rely on the 
results of U-Net segmentation, so the inference time calculation of U-Net should also be 
taken into account during practical use. Besides, machine learning methods do not need 
to use GPU for computing, while deep learning methods must use GPU for acceleration 
to obtain faster speedups. Overall, the method proposed in this paper has higher perfor-
mance and acceptable efficiency for placental invasion detection compared to compet-
ing methods.

Discussion
Placental invasion is a common emergency in obstetrics, which is mainly caused by 
patients with traumatic endometrial defects and primary decidual hypoplasia. The 
patients may have a severe postpartum hemorrhage, postpartum placenta retention, 
uterine perforation, and secondary infection may occur, which seriously endanger the 
life of pregnant women and fetuses. According to the severity of placental villi invading 
the myometrium, placenta accreta can be divided into placenta accreta, placenta increta, 
and placenta percreta. Accurate prediction of the degree of placental invasion helps to 
provide more effective treatment for patients.

At present, MRI has been widely used in the diagnosis and subtyping of placental inva-
sion (PI), and the effectiveness of MRI in the diagnosis of PI has been verified by an 
enormous amount of research [7, 31]. Although some researchers have carried out a 
computer-aided diagnosis of placental invasion, most of the existing work requires radi-
ologists to manually segment the placental region in advance, which not only relies on 
expert experience and is inefficient. In this paper, a U-net model that can automatically 
achieve the segmentation of placental tissue is trained, which provides a scalable medi-
cal image segmentation method with high segmentation accuracy, and can provide a 
reliable ROI for the detection and typing of placental invasion.

To the best of our knowledge, most of the current studies on placental invasion are 
limited to the use of radiomic features [8, 9, 32–34]. Although the radiomic features have 
good interpretation, their low-level characteristics make it difficult to mine deep health 
semantic information of images. In this paper, deep learning is introduced to extract the 
deep features of ROI and combined with radiomic features to improve the accuracy of 
placental invasion prediction. On the other hand, in general, the deeper the degree of 
placental invasion, the more serious of placental villi invasion into the myometrium, that 
is to say, the prediction of placenta accreta is more dependent on the characteristics of 
the placental boundary area. In this paper, we extend different pixels from the placental 
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region to form ROIs, and the optimal extension size is determined by experiments. The 
results show that the proposed method greatly improves the prediction performance.

Although the model in this paper has some advantages in the staging of placental 
invasion, it still has shortcomings. Firstly, since the model in this paper integrates mul-
tiple depth models, it requires more hardware resources and training time compared to 
machine learning methods. Besides, due to the segmentation model U-net used in this 
paper, its performance relies on a large number of segmentation labels, so it still requires 
radiologists to annotate the ROI regions when training the segmentation model. In sum-
mary, future work will focus on optimizing the model efficiency, getting a better trade-
off between efficiency and accuracy, and improving the generalization ability of the 
model to extend the method of this paper to other medical image processing tasks.

Conclusion
With the increasing of cesarean section and other intrauterine operations, the incidence 
of placental invasion has become a common and frequently occurring disease in obstet-
rics. Different types of placental invasion cause different degrees of injury to pregnant 
women, and the placental invasion often has no clinical symptoms or symptoms lack of 
specificity before delivery, so it is difficult to diagnose through clinical manifestations. 
At present, the placental invasion diagnosis usually requires professional radiologists to 
mark the ROI first, which is hard and tedious work, and the segmentation standard is 
difficult to unify. To solve these problems, this paper adopts deep learning to automati-
cally segment placental region to form ROI based on MR image, then placental invasion 
was diagnosed and typed according to the degree of implantation by combining radi-
omic and deep features of ROI. The results show that the proposed approach has the 
potential to predict different degrees of placental invasion and can be used as an auxil-
iary tool for the clinical diagnosis of placental invasion.

Methods
To fuse the deep and radiomic features of MRI images, and establish an automatic pre-
natal prediction and typing model for placental invasion, this research mainly includes 
data collection, ROI extraction, deep and radiomics features extraction, and classifica-
tion network training. The process flow diagram is shown in Fig. 3.

In the figure, firstly, the U-net is trained using the ROI data marked by the radiolo-
gists to make it have the ability to segment the placental tissue from the original MRI 
image. Then, the trained U-net is used to realize the automatic extraction of placental 
tissue, and ROI expansion is performed to determine the relative better ROIso as to the 
deep features and radiomics features can be extracted. Finally, a multilayer perceptron 
network is established by combining radiomics and deep features to realize the prenatal 
diagnosis of placental invasion.

Data collection

It is fundamental to collect necessary MR images and related clinical materials for the 
prenatal evaluation of placental invasion. The MR images and clinical materials were 
collected from the Affiliated Hospital of Medical College of Ningbo University and 
Ningbo women’s and children’s hospital, the time span of the collected materials was 
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from January 2017 to November 2020. All included cases were suspected of placental 
invasion by ultrasonography or clinical examination. Meanwhile, the surgical (deliv-
ery) and postoperative pathological data of relevant patients were obtained.

All MRI examinations were performed by radiologists with more than 5-year of 
work experience using 1.5 Tesla units to perform 8 or 16-channel array sensitivity-
coded abdominal coil scans. The imaging equipment of the Affiliated Hospital of 
Medical College of Ningbo University is Ge signa twinspeed 1.5T superconducting 
dual gradient magnetic resonance scanner with 8-channel body phased array coil. The 
imaging equipment of Ningbo Women’s and Children’s Hospital is Philips Achieva 
Noval Dual 1.5T superconducting dual gradient magnetic resonance scanner, using a 
16-channel body phased array coil. Before MR examination, the patients were asked 
to fill the bladder with moderate water and respiratory training. When scanning, the 
supine position is adopted, and the head is advanced. All sequences are scanned in 
three directions: transverse, sagittal, and coronal. The scanned images are stored in 
the hospital’s Picture Archiving and Communication System (PACS) in the Digital 
Imaging and Communications in Medicine (DICOM) format.

The inclusion criteria were as follows:
(1) Patients who underwent MRI examination after 30 weeks of gestation with 

T2 weighted image (T2WI) sequence; (2) Patients with definite placental invasion 
or pathological records after cesarean section; (3) Patients with good image quality 
and meeting the diagnostic requirements. The exclusion criteria were as follows: (1) 
Patients without T2WI MRI data; (2) Patients without clinical or surgical pathology 
confirmation; (3) Patients with severe image artifacts due to fetal movement or poor 
cooperation of pregnant women.

According to the above criteria, we collected 352 patients’ data from the Affiliated 
Hospital of Medical College of Ningbo University and Ningbo women’s and children’s 
Hospital. There were 147 cases without placental invasion and 205 cases with placen-
tal invasion. Among 205 cases of placental invasion, 66 cases were placenta accreta, 
117 cases were placenta increta and 22 cases were placenta percreta. We divide it into 
the train set and test set. There were 189 cases in the train set and 163 cases in the 
test set. In the train set, 84 cases without placental invasion, 34 cases with placenta 
accrete, 60 cases with placenta increta, and 11 cases with placenta percreta. The test 

Fig. 3 The process flow diagram of this study
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set included 63 cases without placental invasion, 32 cases with placenta accrete, 57 
cases with placenta increta, and 11 cases with placenta percreta.

Considering that the main signs of placental invasion in MR imaging are as follows: 
the placental signal was uneven (low or slightly high, mixed high signal shadows were 
seen in the placenta) on T2WI images, the local irregular thinning or disappearance of 
moderate or slightly high signal myometrium on T2WI images, the placenta or (and) 
uterine localized abnormal protrusion reflected by T2WI images, and low signal strip 
shadow in the placenta in T2WI images, etc. [32]. Therefore, T2WI is the main reference 
imaging sequence for clinical diagnosis of placenta accrete. In this study, T2 sequences 
of transverse, coronal, and sagittal were selected to study the auxiliary diagnosis of pla-
cental invasion.

ROI extraction

Extraction of ROI is the basis of computer-aided diagnosis of placental invasion. Based 
on U-net, we established the model of placental tissue segmentation, thus extracting 
the ROI automatically. Firstly, some MR images were selected, and two radiologists 
with more than 5-year working experience annotated the region and of placental tis-
sue and outlined the boundary of placental. The annotation software was ITK-SNAP 
(version 3.6.0, download website: http:// www. itksn ap. org/). To ensure annotating pla-
cental region accuracy, the two radiologists annotated each image separately and took 
the intersection of the labeled areas. If the annotating regions of the two radiologists 
diverge significantly, another radiologist with more than 10-year of working experience 
was invited to evaluate the labeling results, and the final results were given after nego-
tiation among them. Figure 4 shows the placental tissue boundary of T2WI labeled by 
the radiologist. Figures (a), (b), and (c) show the transverse, sagittal, and coronal planes 
respectively.

In this study, 490 T2WI images were selected annotated the placental region as the 
ground truth training U-net. Recently, U-net has been successfully applied in image seg-
mentation, especially in medical image segmentation. By end-to-end training from very 
few images, U-net can obtain accurate target boundary location in image segmentation. 
The U-net consists of two paths: down-sampling and up-sampling. The down-sampling 
encodes image semantic information through the level by level convolution and pooling 
while the up-sampling decodes the spatial and multi-scale information by step-by-step 
de-convolution to acquire multi-level features of the image and simultaneously achieves 

Fig. 4 Examples of the T2WI MRI images and labels used in the present study

http://www.itksnap.org/
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target segmentation. To make up for the loss of the spatial and boundary information 
in the encoding stage, the feature maps of the encoder and decoder were fused by con-
catenating correspondingly using the skip connection. By fusion low-level spatial infor-
mation and high-level semantic information, the decoder of the U-net can obtain more 
high-resolution information when up-sampling to recover the details of the original 
image more perfectly, and then improve the segmentation accuracy.

Although U-net can segment the placental area accurately, for subsequent placental 
invasion typing, placental tissue alone cannot fully characterize the relationship between 
placenta and neighboring tissues and organs. This is because placental invasion is not 
only related to the characteristics within the placental region, but also the characteristics 
of the boundary between the placenta and the uterine myometrium [33]. In addition, 
according to relevant reports, placental tissue infiltration of the bladder and other tis-
sues and organs adjacent to the placenta is also a specific sign for the diagnosis of pen-
etrating placental invasion [35]. To evaluate the discriminative power of peri-placenta 
pixels on placental invasion property, 10, 20, 40, and 60 pixels were extended from the 
placental region segmented by U-Net to form ROIs for subsequent placental invasion 
diagnosis. The reasonable extension was determined through the follow-up placental 
invasion diagnosis experiments. Based on ROI, the deep and radiomic features were 
extracted to construct the evaluation model of placental invasion typing. Figure 5 shows 
an example of the placental tissue segmented by U-Net and the ROIs formed by extend-
ing the boundary with different sizes.

Extraction of radiomics features

After segmenting the ROI, we use PyRadiomics (version 3.0, download address: https:// 
github. com/ Radio mics/ pyrad iomics) [36] to extract radiomic features to train the aux-
iliary diagnosis model of placental invasion. The extracted features can be divided into 
three categories: (1) Intensity-based features; (2) Shape-based features; (3) Texture-
based features. Among them, the intensity-based feature transforms ROI into a single 
histogram (which describes the distribution of pixel intensity) and derives some basic 
features (such as energy, entropy, kurtosis, and skewness) from it. Shape-based features 
describe the geometric structure of ROI, which is useful in a sense because the shape of 
placental tissue is highly correlated with placental invasion [32, 37]. Texture based fea-
tures are the most informative features, especially for the issue of tissue heterogeneity, 

Fig. 5 The ROIs formed with the different radial extension on T2WI MRI sagittal plane. The placental tissue is 
denoted as red, the colored circles denote different radial extensions of the placental tissue

https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
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because texture-based features can capture the spatial relationship between adjacent 
pixels [8, 9, 34]. In this paper, we use the Gray-level co-occurrence matrix (GLCM), 
Gray-level run length matrix (GLRLM), and Gray-level size zone matrix (GLSZM), 
etc. to calculate various texture features. We extracted 100 image features, including 18 
intensity-based features, 9 shape-based features, and 73 texture-based features.

Extraction of deep features

Radiomic features can describe the gray distribution, shape, texture, and other charac-
teristics of placental tissue in MR images, but it is difficult to accurately describe the 
overall structural relationship between lesions and surrounding tissues, which is of great 
significance for the diagnosis of placental invasion and evaluation of the degree of pla-
centa implantation. In recent years, image features extracted by deep convolution neural 
network (DCNN) have been proved to be effective in improving the accuracy of image 
classification, segmentation, or retrieval [38]. We transformed the prenatal prediction 
and typing of placental invasion into a classification problem. Therefore, according to 
the characteristics of placental invasion in MR images, a deep dynamic convolution 
neural network (DDCNN) is designed to extract the deep features. The structure of 
DDCNN is shown in Fig. 6. As can be seen from Fig. 6, the backbone of DDCNN is a 
multi-layer automatic coding network, which is composed of the encoder and decoder 
with a symmetrical structure [39]. During network training, we intercept the original 
MR image with the smallest bounding rectangle of the extracted ROI and use it as the 
input of DDCNN. In the encoding stage, the input MR image undergoes a 5-stage Group 
Model A convolution and pooling operation, and the input MR image is mapped into a 
feature vector that can represent the semantic information of the placenta. In the decod-
ing stage, the feature vector output by the encoder undergoes a 5-stage Group Model B 
upsampling and deconvolution operation and restores the original input image as much 
as possible as the training target. After the DDCNN training is completed, we remove 
the decoder, fix the encoder parameters, and input the smallest external rectangle region 
containing the ROI of the MR image, then we can project it into a low-order feature 
space through the encoder, and realize the extraction of depth features. With this struc-
ture, DDCNN can extract the depth features of MR images through unsupervised train-
ing, thus solving the problems of traditional CNN in extracting the depth features of MR 

Fig. 6 The structure of DDCNN
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images, such as the difficulty of extracting supervised samples and the network easily 
falling into overfitting.

The Group Model A and Group Model B of the DDCNN are shown in Fig. 7. Each level 
of the Group Model is mainly composed of a dynamic convolutional layer [40], RELU 
activation layer [41], BN layer [42], and the max-pooling layer or up-sampling layer.

It can be seen from Fig.  7 that in the Group Model, the traditional convolution 
operation is replaced by dynamic convolution. The method to achieve dynamic con-
volution is to replace the traditional fixed convolution kernel with a dynamic con-
volution kernel that is adaptively adjusted with the input image. Specifically, it uses 
the mechanism of multiple convolution kernels and introduces a lightweight squeeze 
and excitation module [30] to build an attention model. Through model training, the 
respective weights of multiple convolution kernels are obtained, and the dynamic 
convolution kernel obtained by weighting and superimposing each convolution ker-
nel participates in the convolution operation. Suppose the multiple convolution ker-
nels introduced in a certain layer of convolution are conv1, conv2, . . . , covnN  , and their 
respective weights are w1,w2, . . . ,wN  . The squeeze and excitation introduced in the 
model is shown in the attention module in Fig. 7. The input images are processed by 
average pooling, full connection, relu, and finally mapped to the output w1,w2, . . . ,wN 
by softmax [40]. Where:

where N denotes the number of convolution kernels.
After the weights of each convolution kernel are obtained, the dynamic convolution ker-

nel involved in feature extraction can be constructed through weighted superposition [40]:

where convi denotes the ith convolutional kernel, wi represents the weight of the cor-
responding ith convolution generated by the attention module, N indicates the number 
of convolutional kernels, and conv is the synthesized convolutional kernel, which means 
the final convolutional kernel involved in the operation in Group Model A.

With this structure, the convolution kernel will be adjusted adaptively with the 
input image during convolution operation, which can better adapt to the structural 
heterogeneity of placenta tissue of different patients and different types of placental 

(8)w1 + w2 + . . .+ wN = 1

(9)conv =

N∑

i=1

wi ∗ convi

Fig. 7 The structure of the Group module
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invasion, so that the extracted deep features can effectively describe the pathological 
information contained in placental tissue.

Prenatal prediction and typing of placental invasion

Based on the above-mentioned features, we train a classifier using the multi-layer per-
ceptron model to divide the patients into four types: no placental invasion, placenta 
accreta, placenta increta, and placenta percreta according to the T2WI images, so as to 
realize the prenatal prediction and typing of placental invasion. The constructed clas-
sifier is shown in Fig. 8. As shown in Fig. 8, the input of the classifier is the radiomic 
feature extracted from the ROI and the deep features extracted by the DDCNN encoder. 
To maintain the balance between the two types of features, their dimensions are all set 
to 100. When training the classifier, the results confirmed by clinical or surgical pathol-
ogy are used as supervision information. The classifier consists of four layers, in which 
the number of neurons in each layer is 200, 100, 20, and 4 respectively. The activation 
function of the middle layers is Relu, and the output of the last layer of the classifier is a 
4-dimensional feature vector, which is activated by softmax which is often used in multi-
classification problems.

The softmax [40] first enhances the difference between input values by nonlinear 
exponential operation with base exp, and then the output of multiple neurons is mapped 
to the values in the (0,1) interval and normalized to a probability distribution, so as to 
perform multi-classification, as shown in formula (10).

where yj is the output of the classifier, Si is the probability value of patients correspond-
ing to four types of no placental invasion, placenta accreta, placenta increta, and pla-
centa percreta, and the type with the highest probability is taken as the final prediction 
result.
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