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Abstract 

Background:  Glaucoma is one of the causes that leads to irreversible vision loss. 
Automatic glaucoma detection based on fundus images has been widely studied in 
recent years. However, existing methods mainly depend on a considerable amount of 
labeled data to train the model, which is a serious constraint for real-world glaucoma 
detection.

Methods:  In this paper, we introduce a transfer learning technique that leverages the 
fundus feature learned from similar ophthalmic data to facilitate diagnosing glaucoma. 
Specifically, a Transfer Induced Attention Network (TIA-Net) for automatic glaucoma 
detection is proposed, which extracts the discriminative features that fully character-
ize the glaucoma-related deep patterns under limited supervision. By integrating the 
channel-wise attention and maximum mean discrepancy, our proposed method can 
achieve a smooth transition between general and specific features, thus enhancing the 
feature transferability.

Results:  To delimit the boundary between general and specific features precisely, 
we first investigate how many layers should be transferred during training with the 
source dataset network. Next, we compare our proposed model to previously men-
tioned methods and analyze their performance. Finally, with the advantages of the 
model design, we provide a transparent and interpretable transferring visualization by 
highlighting the key specific features in each fundus image. We evaluate the effective-
ness of TIA-Net on two real clinical datasets and achieve an accuracy of 85.7%/76.6%, 
sensitivity of 84.9%/75.3%, specificity of 86.9%/77.2%, and AUC of 0.929 and 0.835, far 
better than other state-of-the-art methods.

Conclusion:  Different from previous studies applied classic CNN models to transfer 
features from the non-medical dataset, we leverage knowledge from the similar oph-
thalmic dataset and propose an attention-based deep transfer learning model for the 
glaucoma diagnosis task. Extensive experiments on two real clinical datasets show that 
our TIA-Net outperforms other state-of-the-art methods, and meanwhile, it has certain 
medical value and significance for the early diagnosis of other medical tasks.

Keywords:  Automatic glaucoma diagnosis, Transfer learning, Deep learning, Attention 
mechanism
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Background
Glaucoma is a kind of chronic disease that damages optic nerve of the eye. Due to 
the difficulty of examination and treatment, patients with glaucoma often suffer from 
visual impairment or even irreversible blindness. According to research [1], there are 
44.7 million people diagnosed with glaucoma worldwide in 2010, and this figure is pre-
dicted to increase by about 50% within a decade. The blindness incidence of this disease 
is nearly one-third, second only to cataract [1, 2]. In China, because of the low medi-
cal and domestic economic level, the rate of glaucoma treatment is less than one-tenth 
[3]. Therefore, early screening is essential to prevent further deterioration in glaucoma 
patients.

In the medical field, fundus photography is a popular method implemented for early 
screening of glaucoma. Ophthalmologists clinically detect glaucoma according to cer-
tain symptoms, including high intraocular pressure, optic nerve damage, large cup-to-
disc ratio, and vision loss [4, 5], which are widely used as diagnostic criteria. However, 
manual glaucoma assessment is expensive and time-consuming for patients as the pro-
fessional knowledge of ophthalmology is needed for the whole process. Consequently, 
there are many studies involved in how to automatically identify glaucoma with com-
puter vision algorithms. The mainstream of these studies are divided into two categories: 
heuristic methods and deep learning methods.

Heuristic methods mainly utilized the domain expertise to extract features manually 
[6], including energy-based features [7], local configuration pattern features [8], higher 
order spectra features [9], and cup-to-disc ratio features [10], etc. However, predefined 
features need to be extracted artificially, which is a laborious heuristic (requiring profes-
sional knowledge) meanwhile largely dependent on experience and luck. Furthermore, 
these features may oversimplify the problem and be ad hoc, for even experts may omit 
some important hidden patterns. Therefore, deep learning, which is able to automati-
cally extract hidden features from complicated input images, has developed rapidly in 
the medical field in recent years [11–14]. Deep learning methods have achieved better 
performance than heuristic methods, and show feasibility of automatic glaucoma diag-
nosis. However, these methods extract features based on large labeled data, which is a 
serious constraint in the medical field. Transfer learning aims to generalize deep learn-
ing methods to limited supervision scenario by sharing transferable features learned 
across multiple datasets [15]. And this technology has been explored and showed supe-
riority in various medical tasks [6, 16, 17]. However, these studies ignore the dataset bias 
and feature gap, which disturbs the model generalization ability.

In fact, an intuitive idea of transfer process is to find similar general features from effi-
cient source data, and then gradually learn the task-specific features. Thus, this paper 
proposes an automatic glaucoma detection method from the following aspects:

General feature

The previous studies mainly rely on non-medical datasets to extract general features for 
medical tasks [6, 18]. However, different image types across domains enlarge dataset 
bias, thus reducing the transferability of general features. Therefore, we should ensure 
image consistency, so that general features are safely transferable to the specific task.
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Specific feature

When deep features transition from general to specific along the network, redundant 
regions in the fundus image (such as the edge regions of the eyeball or other glaucoma-
unrelated pathological areas) may mislead specific features to focus on the useless infor-
mation [19]. In this work, what we consider is how to enhance the ability of specific 
features to extract key pathology areas, which is expected to achieve superior transfer 
performance.

For addressing the above problems, we present a transfer induced attention network 
(TIA-Net) to reduce the dataset bias and enhance the feature transferability, as shown 
in Fig. 1. Specifically, we first select similar ophthalmic fundus images rather than from 
non-medical data to extract general features, thus reducing data differences. Then, the 
channel-wise attention and maximum mean discrepancy are adopted to make specific 
features focused on the key pathological areas rather than other redundant information. 
By this way, the feature gap between general and specific can be bridged by our pro-
posed method. Finally, we conducted extensive experiments on two real clinical data-
sets and the results show that our proposed method outperforms other state-of-the-art 
methods. In general, the contributions of this work can be summarized into two points: 
(1) We propose a transfer induced attention deep learning network (TIA-Net) for auto-
matic glaucoma diagnosis. A similar ophthalmic dataset is selected as source dataset, 
such that the transferability of general features can be improved. Meanwhile, the chan-
nel-wise attention and maximum mean discrepancy are applied to TIA-Net, which are 
exploited to refine the general-to-specific feature representations. (2) For evaluation of 
glaucoma detection, we conducted extensive experiments on two real clinical datasets, 
and the results prove that the proposed method can effectively capture the discrimina-
tive features that better characterize the glaucoma-related hidden patterns under limited 
supervision.

The rest of the paper is organized as follows. A brief review of the state-of-the-art 
methods is given on automatic glaucoma detection in the rest of this section. Then, we 
show and analyze the experimental results in the section “Results” and “Discussion”. In 

Fig. 1  Architecture of our TIA-Net for glaucoma detection
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the section “Conclusion”, we conclude our work and present some future topics. Finally, 
the section Methods introduces the data used and our proposed model.

Related works
Heuristic method

Studies on automatic glaucoma detection based on retinal fundus images can basically 
be divided into two categories: heuristic methods and deep learning methods. Early 
studies usually use heuristic methods to complete this task that mainly utilized the pro-
fessional expertise to extract predefined features (shown in Fig. 2a). Nayak J et al. [20] 
used geometric characteristics (e.g., cup-to-disc ratio, ratio of the distance between 
optic disc center, and so on) and artificial neural network classifier to predict glaucoma. 
In [21], Yadav et  al. selected texture features of the area around optic cup to improve 
the detection model performance. In [22], the independent HOS-based features that 
appended to texture features were served to build SVM model; and the results show its 
superiority. The work in [23] applied wavelet transformation of fundus images as fea-
tures and the discriminant analysis promoted with three main algorithms (including 
support vector machine, random forest, and naïve Bayes) as the classifiers. Besides, there 
are many studies that designed various other features such as energy-based features [7], 
local configuration pattern features [8], fast Fourier transform features [24], entropy-
based features [25], and gabor transformation features [26].

Although many of heuristic methods show the effectiveness of automatic glaucoma 
diagnosis, predefined feature sets require a considerate amount of engineering skill 
and domain expertise, which is time-consuming and laborious. Besides, these manu-
ally designing features might be affected by personal subjective factors, for even doctor, 
experts may omit some important hidden patterns.

Deep learning method

Deep learning methods, which are able to automatically learn complicated hidden 
patterns from high-dimensional data (shown in Fig.  2b), have achieved superiority 
in many studies [27, 28]. Hence, another category of glaucoma detection methods is 

Fig. 2  Different automatic glaucoma detection frameworks. a Heuristic methods, b deep learning methods, 
and c transfer learning methods
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based on deep learning [11, 13, 14, 19, 29, 30]. Some studies developed deep learn-
ing models based on the automatic segmentation of glaucoma-related areas [13, 
14]. Zilly et al. [13] and Shankaranarayana et al. [14] proposed to segment optic cup 
and disc from retinal images using entropy sampling and ensemble learning, and 
fully convolutional and adversarial networks, respectively. Although these studies 
extracted some medical features (e.g., cup-to-disc ratio) related to glaucoma, they 
ignored other useful hidden features on the fundus images. On the other hand, some 
other studies obtained sufficient rules of glaucoma discrimination directly through 
deep learning methods [11, 29, 30]. Chen et al. [11] first preprocessed original fun-
dus images and then trained a CNN structure for glaucoma detection. To get better 
results, Shibata et al. [29] further proposed a deeper CNN model based on ResNet. 
A multi-stream CNN that combined the global image and the local disc area has 
been proposed in [30].

However, due to the limited training data, their works are difficult to have high 
sensitivity and specificity. Recently, Li et al. [19] established a large database of glau-
coma-labeled fundus images and developed an attention-based CNN model, improv-
ing the performance in glaucoma detection. However, in real applications, especially 
for those medical tasks, it is difficult or even impossible to collect sufficient manu-
ally labeled samples.

Transfer learning method

Recently, transfer learning mechanism has been successfully applied in deep-learn-
ing-based computer vision tasks [16, 17, 31, 32]. Different from traditional machine 
learning procedure, the motivation of transfer learning is to improve the model per-
formance under the limited target dataset samples by leveraging the knowledge (fea-
tures) from source dataset (shown in Fig. 2c) [15]. Since deep learning networks are 
able to learn transferable features across multiple datasets [33], it is helpful to trans-
fer knowledge to exploit the full potential of advances in deep learning on available 
limited datasets, especially in the medical field. However, there are only a few works 
considering the application of transfer learning in the CNN model for using fundus 
images to detect ophthalmic diseases. Orlando et  al. [6] shared the CNN weights 
learned from the ImageNet dataset to train the glaucoma detection model. Christo-
pher et al. [18] further combined transfer learning with several deep learning models 
to prove its applicability of clinical diagnosis.

These studies have preliminarily explored the effectiveness of transfer learning in 
the field of automatic glaucoma diagnosis, but they mainly have two limitations: (1) 
Relying on less-transferable general features which are extracted from the non-med-
ical dataset (e.g., ImageNet dataset). (2) Ignoring the feature gap between general 
and specific. Therefore, it is reasonable to develop a new transfer learning architec-
ture for fundus image recognition. In this paper, we select similar ophthalmic fundus 
images to extract general features, and apply the channel-wise attention and maxi-
mum mean discrepancy to make a smooth transition of general-to-specific features. 
Both are jointly employed to enhance the transferability of general and specific fea-
tures, which is expected to enhance the performance of glaucoma detection.
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Results
Set of experiments

In our experiment, a tenfold cross-validation is used to evaluate all the methods. Dur-
ing processing, we remove patients’ personal medical information and meanwhile retain 
the original information as much as possible, since privacy protection for patients is the 
focus of public attention [34]. After that, we employ data augmentation to reduce over-
fitting on image data using label-preserving transformations. We then resize all fundus 
images uniformly to 256 ∗ 256 pixels, since the experimental images have different sizes. 
To test the generalization ability, we further validate the performance of our proposed 
method on ORIGA dataset [35].

For the parameter setting in training, we employ step learning policy and initially 
set the learning rate to 10−2 for all layers. All models are trained for 100 epochs from 
scratch, using the weight initialization strategy described in [36]. The units of the output 
FC layer are changed according to the number of training data’s classes. We set the batch 
size to 16 and momentum to 0.9. L2 weight decay is applied with penalty multiplier set 
to 5 ∗ 10−4 and dropout ratio set to 0.5, respectively. All the experiments are conducted 
on a workstation with Windows 10, a 3.50 GHz Intel(R) Xeon(R) E5-1620 CPU, and a 
Nvidia GTX 2080Ti GPU.

For the glaucoma detection task, we adopt four commonly used evaluation criteria to 
evaluate the performance of classification models, including accuracy, sensitivity, speci-
ficity, and area under the curve (AUC). Specifically, the metrics of sensitivity and speci-
ficity are defined as follows:

where TP, TN, FP, and FN are the numbers of the true-positive glaucoma, true-negative 
glaucoma, false-positive glaucoma, and false-negative glaucoma, respectively.

Experimental results

First, we explore the best settings of transferred layers on glaucoma detection. To do a 
better comparative experiment, we set up two groups of comparative experiments: in 
one group, the transferred layers have to be frozen consecutively, while the remaining 
layers are trained along with their weights updated; another group implements fine-tune 
strategy, means the whole network is updated after transferring. Analyzing the model 
performance with the frozen parameters of different layers will identify the best transfer 
network for the target task, i.e., which levels of general to specific features are useful. 
Figures 3, 4, respectively, show the effects of transferring different layers (our base CNN 
network has seven layers in total) on the accuracy and Area Under Curve (AUC) of glau-
coma classification.

Second, to fully evaluate the performance of our TIA-Net, we compare it with three 
benchmark sets: (1) For heuristic methods, we train logistic regression models based on 

(1)Sensitivity =
TP

TP+ FN

(2)Specificity =
TN

TN+ FP
,
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higher order spectra (HOS) [22], discrete wavelet transform [23], Gabor transformation 
features [26], and the combination of these three handcrafted features, respectively. We 
denote them as HOS-LR, Wavelet-LR, Gabor-LR, and HWG correspondingly. (2) For 
classical deep learning methods, we select our base CNN model (CNN) and five other 
representative models: VGG [37], GoogLeNet [38], ResNet [39], Chen et  al. [11], and 
Shibata et  al. [29]. (3) To assess the impact of two main components in TIA-Net on 
the performance of glaucoma detection, we set up four transfer learning comparisons 
according to different transfer training procedures and different network structures: 
NMD + CNN, NMD + Attention, SOD + CNN, and SOD + Attention. For the trans-
fer training procedure, one selects a non-medical dataset (NMD) as the source dataset, 
i.e., ImageNet dataset, which has been used in [6, 18]; and another uses similar ophthal-
mic dataset (SOD), i.e., cataract dataset in this paper. For the network structure, one is 
the base CNN network (CNN), and another is our attention-based network (Attention). 
Table 1, and Figs. 5 and 6 show the performance results among various glaucoma detec-
tion methods in three benchmark sets. Besides, to illustrate the bottleneck caused by 
insufficient glaucoma training data, the performance of base CNN in different numbers 
of training sample is shown in Table 2 and Fig. 7.

Fig. 3  Influence of different transferred layers on accuracy

Fig. 4  Influence of different transferred layers on AUC​
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To prove the effectiveness of TIA-Net for specific feature extraction, we provide 
a transparent and interpretable process of feature transfer in this part. Specifically, 
at the end of pre-training and starting to use source and target dataset for train-
ing, we visualize the localization changes of pathological area under different train-
ing iterations. When the original transferred feature map G is reweighted with the 
channel attention map m , we can get learned specific attention feature P (in Eq. (4)). 
The specific attention feature P is used to generate these heat maps by masking the 
input fundus image in different iterations, where warm-colored area indicates high 
weight region for the detection of glaucoma (e.g., the red area represents most criti-
cal region in making the classification, whereas the yellow area is more important 
than blue). Here, we take a positive sample of glaucoma as a description. As shown 
in Fig.  8a–d demonstrate the visualized heat maps of transfer processing with the 
training rounds increased (0, 5th, 15th, and 100th iteration, respectively).

Table 1  Comparison between TIA-Net and models in three benchmark sets

Acc, Se, and Sp represent accuracy, sensitivity, and specificity, respectively

Database Methods Acc (%) Se (%) Sp (%) AUC​

Ours HOS-LR 69.9 91.1 55.6 0.719

Wavelet-LR 68.9 69.5 58.9 0.715

Gabor-LR 70.5 86.7 62.2 0.776

HWG 72.1 93.2 61.9 0.802

CNN 80.2 91.4 77.0 0.869

VGG 80.7 87.7 79.1 0.871

GoogLeNet 79.8 80.7 73.8 0.870

ResNet 81.2 83.6 73.9 0.872

Chen [11] 80.9 89.1 77.8 0.875

Shibata [29] 81.7 87.5 80.2 0.879

NMD+CNN 84.1 84.7 83.4 0.911

SOD+CNN 83.7 84.2 80.6 0.903

NMD+Attention 84.5 84.4 84.9 0.911

TIA-Net (SOD+Attention) 85.7 84.9 86.9 0.929

ORIGA HOS-LR 63.5 90.3 32.2 0.632

Wavelet-LR 65.9 59.1 66.8 0.648

Gabor-LR 67.2 49.0 77.2 0.682

HWG 68.8 71.7 55.0 0.693

CNN 70.4 70.7 74.8 0.791

VGG 70.1 69.8 71.0 0.800

GoogLeNet 71.8 69.8 73.5 0.805

ResNet 71.5 71.3 71.7 0.803

Chen [11] 70.8 69.2 71.0 0.794

Shibata [29] 73.3 73.2 76.7 0.809

NMD+CNN 74.5 68.7 80.7 0.815

SOD+CNN 73.9 80.9 72.2 0.813

NMD+Attention 74.9 71.2 77.7 0.817

TIA-Net (SOD+Attention) 76.6 75.3 77.2 0.835
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Discussion
Effects of different transferred layers on glaucoma detection

According to Figs. 3, 4, we can find the following two points. (1) Transfer learning using 
fine-tune strategy effectively improves the model performance, and both accuracy and 
AUC are above the original CNN baseline (the blue curves in Figs. 3, 4). This suggests 
that the general features from source cataract dataset, including learned gabor features 
and color blobs, are beneficial to the target glaucoma task. (2) The green curves in both 
of Figs. 3, 4 (representing the frozen strategy) basically are declined especially from the 

Fig. 5  Comparison of ROC curves among different methods (Testing on our database)

Fig. 6  Comparison of ROC curves among different methods (testing on ORIGA database)
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fourth layer. This could be because the fourth layer is the dividing line between general 
features and specific features of base CNN model. Since there is a considerable differ-
ence between pathological features of the cataract and glaucoma in this experiment, the 
direct use of the high-layer specific features of the source domain network may cause 
negative transfer to the target task. For example, large and small blood vessels are sen-
sitive information for cataract classification, but not significantly helpful for glaucoma 
detection. In summary, although the discriminant features of the two ophthalmic dis-
eases are different, the shallow general features of cataract dataset can be used to sup-
plement the target glaucoma classification task due to the consistent basic features of 
fundus images. It is proved that this mechanism is helpful to improve the performance 
at the limited training supervision.

Evaluation on glaucoma detection

From Table 1, and Figs. 5, 6, we can summarize the following finding: (1) The heu-
ristic methods in benchmark set 1 do not achieve good performance on the two 
datasets, with accuracies and AUC all around 0.70 (on our database)/0.65 (on the 
ORIGA database). The reason may be that predefined features in these models are 
not the best patterns of glaucoma and non-glaucoma cases. (2) It is clearly seen that 
deep learning methods outperform heuristic methods, which demonstrates that 
deep learning methods are able to extract better features than heuristic methods. 
However, we further find that these deep learning methods do not differ greatly in 

Table 2  Performances and variance values of base CNN model in different numbers of training 
samples

Number of data 100 200 400 800 1600

Accuracy (%) 72.6 75.9 77.2 79.5 80.1

Variance (10−5) 578.34 113.23 43.21 26.67 15.32

Sensitivity (%) 80.2 83.9 87.9 89.7 91.2

Variance (10−5) 478.43 101.30 53.98 24.67 19.92

Specificity (%) 70.2 72.5 74.3 75.9 76.8

Variance (10−5) 438.55 112.23 48.34 25.61 18.45

Fig. 7  AUC of base CNN model in different numbers of training samples
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performance. For example, all metrics of these deep learning methods do not exceed 
0.81 on the ORIGA database. Hence, we infer that they still have shortcomings in 
improving the performance, a bottleneck caused by insufficient glaucoma train-
ing data. The validity of this hypothesis can be proved by Table 2 and Fig. 7, as the 
number of training samples has a significant impact on the performance of the deep 
learning method: the greater the amount of data, the better and more stable the 
model performs. (3) Although the performance of benchmark set 3 is better than 
deep learning models in some metrics, the improvement is not significant. This may 
be because 1) non-medical dataset leads to a poor transferability of general features; 
2) irrelevant redundancy influences the extraction of specific features. When both 
similar ophthalmic dataset and transfer induced attention are introduced, TIA-Net 
obtains the best performance on our database (85.7% accuracy/0.929 AUC) and 
the ORIGA database (76.6% accuracy/0.835 AUC), which has about 2% improve-
ment than the best combination in benchmark set 3 (NMD+Attention). It indicates 
the necessity of the introduction of both similar ophthalmic dataset and transfer 
induced attention structure, since more latent discriminative information for glau-
coma detection can be obtained under limited supervision.

Fig. 8  Changes of pathological areas during feature transfer
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Pathological area visualization in feature transfer

In the early stage of training, We find that TIA-Net focuses on the optic disc and 
the blood vessels, which are all pathological areas for cataract screening (shown in 
Fig.  8a). However, the large and small blood vessels are redundant information for 
glaucoma detection. As seen in Fig. 8b, c, the pathological areas of specific features 
have changed significantly with the increasing rounds of training. In particular, the 
salient areas in the heat maps are gradually concentrated, while the redundant areas 
are reduced. At the end of training convergence, we find that our TIA-Net accurately 
locates the optic cup and disc, especially for the pathological areas of the inferior and 
superior optic disc, which are commonly used by ophthalmologists to diagnose glau-
coma (as shown in Fig. 8d). The visualization results indicate that: (1) The appropri-
ate extraction of general features guarantees the transformation of high-level specific 
features between source and target datasets. (2) Transfer induced attention makes 
specific features effectively focus on the key pathological areas with reduced redun-
dancy. Both of them jointly ensure the stability of high classification performance. 
These specific attention features bridge among the diagnosis model and users (includ-
ing ophthalmologists and patients), leading to a better understanding of our transfer 
mechanism.

Future works

In this paper, the non-glaucomatous cases in our dataset cover various ophthalmic 
diseases, since all fundus images are collected from real-world screening. However, 
symptoms of other diseases may interfere with feature extraction for glaucoma detec-
tion. For example, PPA is a common symptom between high myopia and glaucoma; 
all important fundus features are fuzzy and visible in severe cataract. This limita-
tion makes the learning task difficult, thus affecting the performance of the model. 
To address this problem, we will establish a large-scale database that contains more 
heterogeneous samples and design an auxiliary module to distinguish complicated 
cases, thus improving the generalization of our method. Besides, we will investigate 
the transfer patterns of different CNN structures, e.g., residual block and inception 
architecture, to select the appropriate base network for feature extraction.

Conclusion
In this paper, we leverage knowledge from similar ophthalmic dataset and propose an 
attention-based deep transfer learning model for the glaucoma diagnosis task, which 
includes two main operations: transferring general features from similar ophthalmic 
dataset and extracting specific features based on transfer induced attention. It is an 
appropriate combination for automatic glaucoma detection due to two reasons: (1) 
Since the basic features in fundus images are consistent between source and target 
datasets, the transferability of general feature would be improved. (2) Although there 
still exists irrelevant redundancy in the transfer process, the channel-wise attention 
and the maximum mean discrepancy can adaptively recalibrate the feature mapping 
of transmission to focus on key glaucoma-related areas. Experiments conducted on 
two real clinical datasets prove that TIA-Net is particularly efficient and useful in 
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modeling glaucoma detection. In the future work, we plan to conduct comprehensive 
experiments to investigate the transfer patterns in the different eye diseases and CNN 
networks.

Methods
In this section, we introduce the proposed TIA-Net. The framework of TIA-Net is dis-
played in Fig. 1, and its processes, including two main operations: (1) transferring gen-
eral features from similar ophthalmic dataset and (2) extracting specific features based 
on transfer induced attention, are further highlighted as blue and green blocks, respec-
tively, in the figure. To learn general features, we first pre-train base CNN network on 
labeled cataract dataset and explore the best settings of transferred layers on glaucoma 
detection. We then transfer general features into TIA-Net to help learn specific features, 
and optimize the weights according to the loss of Eq. (5) using both source and target 
data. Note that we rely on mini-batches for training, since large batch sizes will increase 
the computational cost.

Data

In the medical field, the digital fundus screening is a popular diagnostic examination, 
since it is safe and efficient to analyze the changes of hypertensive retinopathy and arte-
riosclerosis in patients with various eye diseases. The retinal fundus images used in this 
paper contain two categories: the glaucoma images for target dataset and the cataract 
images for source dataset, respectively, which are all manually labeled by professional 
ophthalmologists from Beijing Tongren Eye Center. Subjects in the dataset are mainly 
from northern China. Among them, the proportion of males is around 48%; the remain-
ing 52% are females. The age range of the subjects in the dataset is from 10 to 90.

The glaucoma dataset contains 1882 retinal fundus images, including non-glaucoma 
(1005) and glaucoma (877), where the uniform size of each image is 2196 ∗ 1740 pixels. 
There are some common pathological features of fundus images for glaucoma diagno-
sis, such as increased cup–disc ratio, retinal nerve fiber layer defect (RNFLD), peripapil-
lary atrophy (PPA). In the retinal image, the optic disc is a vertical shallow ellipse, and 
the center of the optic disc is a white cup area, as shown in Fig. 9. The measurement of 

Fig. 9  Fundus images of non-glaucoma and glaucoma cases
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cup-to-disc ratio is the ratio of the area diameter of the optical cup-disc to the diameter 
of the optic disc [40]. Patients with glaucoma usually have a large cup-to-disc ratio; for 
example, when the ratio is greater than 0.5, glaucoma probably occur [4]. RNFLD is the 
lesion area in the fundus images (a roughly wedge-shaped region starting from the optic 
disc), which is one of the features to identify glaucoma [41]. Besides, PPA, a green area 
around the optic disc, is another major feature of glaucoma images [5]. We can find that 
these special features clearly appear in Fig. 9 (where Fig. 9b is a glaucoma image, while 
(a) is a normal condition).

The cataract dataset used in our experiment comprises of 10463 retinal fundus images 
(3023 ∗ 2431 pixels), including non-cataract (3314), mild (2331), moderate (2245), and 
severe (2573) cataract images. Note that all diagnosis results are based on the unified 
grading standard [42–44]. Figure 10 shows four samples of cataract patients of varying 
degrees. Figure 10a is a cataract-free image, where the optic disc, large and small blood 
vessels are visible. Figure 10 (b) has fewer vascular details in moderate-to-mild cataract 
images, while in Fig. 10c, only large vessels and optic discs can be seen in moderate cata-
ract images. In addition, in Fig. 10d, the severe cataract image, there is hardly anything 
to see. Based on these retinal fundus images, we can conclude that blood vessels and 
optic discs are the main references for cataract detection and classification.

Fig. 10  Fundus images of non-cataract and three different levels of cataracts
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Transferring general features from similar ophthalmic dataset

As a kind of deep learning network, CNN is used in the field of image recognition to 
learn features automatically. Having a weight sharing network structure that is more 
similar to the biological neural network, CNN reduces the complexity of the network 
model. This advantage is more obvious when input of the network is multidimensional 
image. The kind of image can be used as the input of the network directly, thus avoiding 
the complex feature extraction and data reconstruction process of the traditional rec-
ognition algorithm. Therefore, we adopt an extension of a classic CNN network in [45], 
as the base model for transfer learning in our experiment. The base CNN network pos-
sesses a structure of seven layers: five convolutional layers and two fully connected (FC) 
layers. In the convolution layer, feature maps computed in the previous layer are con-
volved with a set of weights, the so-called filters. The generated feature maps are then 
passed through a nonlinearity unit, the rectified linear unit (RELU). Next, in the pooling 
layer, each feature map is subsampled with pooling over a contiguous region to produce 
the pooled maps. After performing convolution and pooling in the fifth layer, the output 
is then fed into fully connected layers to perform the classification. Besides, data aug-
mentation and dropout methods are adopted to reduce overfitting.

In a trained CNN, features of the shallow layer are general, while those of the higher 
layer are task-specific; meanwhile, the middle layers transit gradually from general to 
specific, forming a hierarchical multilayer architecture [33]. The general layers are typi-
cally used to extract local edge features similar to Gabor filters. As shown in Fig. 11, we 
visualize feature maps and the corresponding deconvolution results of the first convo-
lution layer. We can find that general features, such as edges and line segments of the 
fundus image, are extracted in different directions. Figure  11a–c tends to extract the 
edge contour features in − 45, 45, and 90 degree directions, respectively. When a pre-
trained CNN structure is fine-tuned, the layers have to be frozen consecutively, so that 
any updated weight in the unfrozen shallower layers can be propagated to deeper layers. 
However, when transferring features from a less related source dataset, it may inversely 
hurt the transferability of general features.

Hence, rather than extracting general features from non-medical dataset, we transfer 
the weights of shallow layers, which are optimized to recognize the generalized struc-
tures in cataract dataset (shown in blue blocks in Fig. 1), and then retrain the weights 
of the deep layers with glaucoma dataset propagation. This strategy helps to identify 
the distinguishing features of glaucoma fundus images more accurately under limited 
supervision.

Fig. 11  Visualization of feature maps and the corresponding deconvolution results in conv1 layer
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Extracting specific features based on transfer induced attention

Specialization of deep layer neurons for the target task is based on general features. 
However, there still exists redundant regions in the fundus image when capturing spe-
cific features from general features of similar ophthalmic datasets. For example, the edge 
regions of the eyeball or other unrelated pathological areas are redundant for the glau-
coma detection. To effectively refine specific features and remove irrelevant redundancy, 
we use a soft attention design across channels to replace the original CNN architecture.

As it is known, attention mechanism has been successfully applied in deep learning 
architecture, since it can locate the most salient parts of the features [46–49]. This meri-
torious property conforms to human visual perception: instead of trying to deal with the 
whole scene at the same time, human beings use a series of local glimpses to selectively 
focus on the prominent parts to better capture the visual structure [50]. As shown in 
the green block of Fig. 1, a transfer induced attention module is produced by utilizing 
the inter-channel relationship of general transferred features. In our transfer process-
ing, each learned filter operates with a local receiving field; therefore, each unit of the 
transferred general features G is unable to exploit contextual information outside of this 
region. To tackle this issue, we use global average pooling (GAP) to compress the global 
spatial information, which helps to accelerate specific features extraction on glaucoma 
critical areas. Specifically, the element of o is generated by shrinking g through spatial 
dimensions W ×H :

GAP descriptor is then forwarded to FC layers which aims to recalibrate channel infor-
mation adaptively:

where σ refers to the sigmoid activation function, W1 and W0 are the FC layer weights, 
and m is our channel-wise attention map.

To get final specific feature P , we reweight the original transferred general feature G 
with the channel attention map m:

where ⊗ denotes element-wise multiplication. During multiplication, the attention val-
ues are broadcasted accordingly. Besides, the attention-based specific feature P can help 
us highlight the discriminative regions by masking the original fundus image, which 
contributes to improve interpretability of our proposed model. When pre-training base 
CNN model on the source dataset, the cross-entropy Lce between the predicted label 
and its corresponding true label is defined as the loss function. When transferring gen-
eral features to learn specific features, a new loss function is redefined by integrating 
three parts:

(3)o = GAP
(

g
)

=
1

W ×H

W
∑

i=1

H
∑

j=1

g(i, j).

(4)m = FC(o) = σ(W1(W0o))),

(5)P = G⊗m,

(6)Loss = Lce(Xs,Ys)+ Lce(Xt ,Yt)+ �LDisc,
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where Xs and Xt refer to the sets of training images from the source and target datasets, 
respectively, and is � is non-negative regularization parameter. And the first and second 
parts represent the classification loss of corresponding dataset. The third term, discrep-
ancy loss, aims to measure the distance of the feature vectors computed from the source 
and target datasets. Following the popular trend in transfer learning [51, 52], we rely 
on on the Maximum Mean Discrepancy (MMD) [53] to encode this distance. Supposed 
that Ns and Nt are the number of source and target samples respectively, then the LDisc is 
calculated through Eq. (5):

where φ(·) denotes the mapping to RKHS. For network optimization, the mini-batch sto-
chastic gradient descent (SGD) and back-propagation algorithm are used in this paper.
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