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Background
Application of virtual reality (VR) with head-mounted displays (HMDs) possesses great 
advantages for the evaluation and therapy of clinical disorders. Among health problems, 
eye fatigue and visually induced motion sickness (VIMS) are highly concerned [1–4]. 
These display technologies possess a variety of advantages compared with traditional 
systems, while a remarkable stress is imposed due to the existence of a shorter dis-
tance from screen to observer’s eyes. Several psychophysiological and behavioral meth-
ods were utilized to indicate how VIMS affects electrodermal activity for a single user 
within a controlled environment [5, 6]. However, lack of a widely accepted measurement 
method for eye fatigue is highly tangible.

Symptoms of eye fatigue can be identified through subjective feelings and objective 
indicators. Subjective feelings include various kinds of symptoms, such as soreness of the 
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eyes, headache, and tiredness [7]. Ohno and Ukai [8] found that subjective feelings on 
eye fatigue included descriptions, such as “trouble focusing,” “hazy,” “gritty,” “near-vision 
difficulty,” and “far-vision difficulty.” Hockey et al. [9] defined eye fatigue as a decrease in 
the performance of a particular mission. The objective indicators involve critical fusion 
frequency (CFF)  [10], binocular vision [11], eye-blink rate (EBR) [12], and pupil con-
striction rate [13]. Changes in accommodative and vergence functions were reported to 
occur after working periods at a visual display terminal (VDT), and these changes were 
proposed as objective indicators for visual fatigue [14].

Bando et al. demonstrated that the difference between natural observation of real-world 
scenes versus display technology may cause visual discomfort and eye fatigue [15]. Eye 
fatigue in HMDs is mainly caused by the vergence–accommodation conflict [16]. This 
kind of conflict is created by a mismatch between perceived and virtual depth. In order 
to obtain a clear vision, our eyes converge and accommodate by a level dependent on the 
distance to the viewing object. When eyes converge to look at the object, accommodation 
changes the eye’s lens to obtain and maintain the object in the fovea. When the HMD is 
used in a stereoscopic mode, vergence is adjusted according to the virtual distance of the 
fixated object. However, accommodation is fixed in the HMD, and this is a cause of eye 
fatigue because accommodation and vergence are cross-linked functions. Fatigue has been 
mainly defined in association with muscle performance [17]. In the eye muscles, the same 
case can be assumed since eye movement is habitual from birth, eliminating symptoms of 
muscle fatigue [18]. In the present study, eye fatigue is defined as the functional decline in 
a number of specific eye muscles. Since extraocular muscles (EOMs) have been reported 
as fatigue-resistant muscles in the literature [19, 20] and EOMs can control different rota-
tion movements of the eye [21, 22], the specific eye muscles are only among those con-
trol the activities inside the eyeball. We selected the muscles that control accommodation 
response, pupil size, and lens thickness as the specific muscles. Ciliary muscles control 
accommodation response and lens thickness [23]. The size of pupil can be controlled by 
the pupillary muscle plant which includes two kinds of antagonistic muscles: the sphincter 
and dilator [24]. We demonstrated that these muscles have a short-term stable functional 
decline when eye fatigue occurred. Even though this definition can be used as a measure-
ment of eye fatigue, the measurement process is complex and non-real time.

Questionnaires were developed to subjectively assess visual fatigue caused by obser-
vation of various types of visual stimuli. The questionnaires were evaluated using four 
types of moving images: playing a TV game using an HMD or a TV, viewing images with 
and without elaborating camera shake, viewing a movie with and without color breakup, 
and viewing either a stereoscopic movie (anaglyph method) or a non-stereoscopic movie 
[7, 25]. Emoto et al. assessed and compared visual fatigue by measuring fusional ampli-
tude [26]. Li et al. found that delay in transmission of visual information measured by 
electroencephalogram (EEG) was efficient in visual fatigue [27]. A number of scholars 
also attempted to assess eye fatigue by measuring brain activity; however, their approach 
was indeed complicated, as well as being very sensitive to the individual state of the 
subjects. Thus, a series of subjective indexes had been captured by optometry instru-
ments and accommodation response were explored as indicators of visual fatigue [14, 
28]. Moreover, eye movement was employed to assess mental fatigue and visual fatigue 
[29, 30]. It was revealed that EBR decreased in HMD environment compared with that 
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in natural environment [30]. However, due to equipment limitations, EBR could not be 
measured when the subject was using the HMD. Some scholars measured EBR only 
in the natural environment for both experimental group and control group. To deeply 
increase the scientific knowledge on eye fatigue and eye activities, Kim et al. proposed a 
visual fatigue monitoring system based on eye movement and eye-blink detection [31]. 
They found that the saccade movement of the eye decreased, while the frequency of eye-
blink increased when eye fatigue was accumulated due to the increase in fixation time. 
In addition, a new assessment of eye fatigue related to three-dimensional (3D) display 
was proposed based on multimodal measurements [32]. To our knowledge, no research 
has assessed eye fatigue induced by HMDs using eye-tracking methods, even if eye-
trackers can be embedded into HMDs [33, 34].

In order to overcome the shortcomings of previously reported studies, we proposed 
an objective algorithm to estimate eye fatigue caused by an HMD using eye-tracking 
data. Based on our previous research, we adopted seven objective indicators as the 
ground truth of eye fatigue, which were all subjective optometry data, including binocu-
lar crossed cylinder (BCC) test, negative relative accommodation (NRA), positive rela-
tive accommodation (PRA), left pupil diameter (PL), right pupil diameter (PR), left lens 
thickness (LTL), and right lens thickness (LTR) [35–40]. Furthermore, we further devel-
oped the concept of eye fatigue by proposing a new assessment strategy due to measur-
able eye activities (e.g., accommodation, pupil change, lens change, and eye movement).

Results
SSQ results

The SSQ scores of 105 subjects are presented in Fig. 1. Here, 105 subjects on the hori-
zontal axis are arranged in ascending order of the data measured in the fourth SSQ. No 
consistent change can be observed through time of all the subjects, indicating that the 
subjects did not suffer from obvious VIMS after the experiment. For total of 420 sam-
ples, the linear correlations between SSQ and different indicators for optometry test are 
shown in Table 1. It can be seen that VIMS has a poor correlation with the feeling of “eye 
fatigue.” As all the subjects were fully relaxed before the experiment, all the 105 subjects 
were scored 0 in this item at the first SSQ, and it was revealed that only 41 out of 105 
subjects were scored more than 0 in this item at the fourth SSQ.
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Fig. 1 Changes of SSQ scores for the 105 subjects in four measurements, a main experiment, b control 
experiment
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Optometry results

Table 2 shows the mean values and the changes of the indicators in the fourth measure-
ment of the main and control experiments. There was an increasing trend for BCC, while 
a decreasing trend was observed for pupil size, lens thickness, and the amplitude of PRA 
and NRA in the first measurement compared with the second, third, and fourth meas-
urements; however, no obvious trend was found in the control experiment.

Weighted eye fatigue

We proposed a weighted eye fatigue measurement based on seven indicators of optom-
etry test. In order to demonstrate the reasonability of every indicator to eye fatigue, we 
conducted the Student’s t test on the seven indicators of optometry test. The results of 
statistical analysis are listed in Table 2. The significance level was set to 0.05. The results 
showed that all the indicators for optometry test showed significant differences in data 
collected from the beginning of the experiment to the end. Figure 2 shows the results of 
weighted eye fatigue of all the 105 subjects in the experiment computed by Eq. (4). The 
105 subjects on the horizontal axis are arranged in ascending order of the data measured 
in the fourth time. Compared with healthy controls, the eye fatigue level of all the 105 
subjects increased over time in the main experiment, which was caused by viewing the 
HMD display. The values of mean and standard deviation (SD) related to changes of the 
weighted fatigue are depicted in Fig. 3. The red crosses are outliers. It can be seen that in 

Table 1 Linear correlation between SSQ and indicators of optometry test

BCC (D) NRA (D) PRA (D) PR (mm) PL (mm) LTR (mm) LTL (mm)

SSQ 0.17 − 0.23 0.21 − 0.08 − 0.02 − 0.09 − 0.09

Table 2 Mean values and  changes of  optometry indicators in  the  main and  control 
experiments

Values of indicators were shown as mean ± standard deviation (SD)

Compared with 1st measurement, P < 0.05 were characterized in italics

Experiment Indicator 1st 
measurement

2nd 
measurement

3rd 
measurement

4th measurement

Main experiment BCC(D) 0.14 ± 0.08 0.26 ± 0.34 0.36 ± 0.36 {0.50} ± {0.40}

NRA (D) 2.35 ± 0.60 {2.15} ± {0.61} {2.00} ± {0.62} {1.79} ± {0.64}

PRA (D) − 2.74 ± 1.55 − 2.40 ± 1.50 − {2.11} ± {1.4} − {1.78} ± {1.33}

PR (mm) 5.37 ± 0.62 5.21 ± 0.60 {5.08} ± {0.6} {4.93} ± {0.62}

PL (mm) 5.29 ± 0.67 5.10 ± 0.63 {4.95} ± {0.65} {4.79} ± {0.65}

LTR (mm) 3.95 ± 0.36 3.90 ± 0.36 3.86 ± 0.36 {3.79} ± {0.36}

LTL (mm) 3.95 ± 0.35 3.89 ± 0.35 3.86 ± 0.36 {3.77} ± {0.35}

Control experi-
ment

BCC(D) 0.14 ± 0.28 0.14 ± 0.28 0.14 ± 0.28 0.14 ± 0.28

NRA (D) 2.35 ± 0.60 2.35 ± 0.60 2.35 ± 0.60 2.35 ± 0.60

PRA (D) − 2.74 ± 1.55 − 2.74 ± 1.55 − 2.74 ± 1.55 − 2.74 ± 1.55

PR (mm) 5.37 ± 0.62 5.37 ± 0.62 5.37 ± 0.61 5.37 ± 0.62

PL (mm) 5.29 ± 0.67 5.29 ± 0.67 5.29 ± 0.66 5.29 ± 0.68

LTR (mm) 3.95 ± 0.36 3.95 ± 0.36 3.94 ± 0.36 3.95 ± 0.36

LTL (mm) 3.94 ± 0.35 3.95 ± 0.35 3.95 ± 0.35 3.95 ± 0.36
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addition to mean values changes, the SD values of the subjects gradually changed with 
progress of the experiment.

Eye movements results

Table 3 shows the values of mean and SD related to changes of eye movement features 
in the main experiment. There was an increasing trend for SD duration of fixation and 
mean duration of fixation, as well as a decreasing trend for the number of fixation and 
total duration of fixation in the 1st measurement compared with the 2nd, 3rd, and 4th 
measurements. The findings disclosed that the four blinking features were enhanced 
over time for all the participants, and their eye fatigue level increased as well. In gen-
eral, individuals normally reduce EBR due to sleepiness or boredom. Compared with the 
1st measurement, the 2nd, 3rd, and 4th measurements were increased, representing the 
increase in eye fatigue level. In the present study, Kolmogorov–Smirnov [41] test was 
used to assess whether data were normally distributed. In addition, the Student’s t test 
was carried out on all the ten features selected in this study, and the results are presented 
in Table  3. P < 0.05 was considered statistically significant. It was revealed that there 
were significant differences in eye movement features between data collected from the 
beginning of the experiment to the end.

Subjects
0 15 30 45 60 75 90 105

W
ei

gh
te

d 
E

ye
 F

at
ig

ue

-90

-85

-80

-75

-70

-65

-60
TIME1
TIME2
TIME3
TIME4

a

Subjects
0 15 30 45 60 75 90 105

C
on

tro
l

-90

-85

-80

-75

-70

-65
TIME1
TIME2
TIME3
TIME4

b

Fig. 2 Weighted eye fatigue for the 105 subjects throughout the experiment, a main experiment, b control 
experiment
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Ranking the eye movement features

With the help of minimal-redundancy-maximal-relevance (MRMR) criterion [42], we 
ranked the ten eye movement features. The ranked features according to the unified 
weighted eye fatigue level are listed in Table 4. The total duration of computation was 37 
s. The findings indicated that the top five features of the all three kinds of classifications 
were consistent.

Assessment results

We established eleven feature sets for analyzing by support vector machine (SVM). The 
first ten feature sets were named as Set 1 to Set 10, and the name of the 11th feature set 
was blink set. Set 1 contained one eye movement feature, Set 2 contained two eye move-
ment features, and so forth. We applied the selection method of four-class classification 
for the epsilon regression and nonlinear regression. We established blink set to inves-
tigate whether the blink features alone are qualified to assess individuals’ eye fatigue, 
considering that it is more economic to achieve blinking features than general eye move-
ment features.

We analyzed kernels as follows: linear kernel, polynomial kernel, radial basis function 
kernel, and sigmoid kernel, corresponding to kernel 1 to kernel 4, respectively. All the 
five SVMs were trained in each round, which lasted for 48 min. Table 5 shows the results 
of the three kinds of classifications. It was unveiled that the set 10 had the highest accu-
racy of classification compared with the other feature sets. It also was revealed that the 
maximum accuracy of the two-class classification, three-class classification, and four-
class classification was 0.9079, 0.7947, and 0.7425, respectively. As displayed in Table 5, 
the blink set had a performance that was slightly worse than the feature set 10. Regard-
ing the kernel selection, kernel 3, kernel 1, and kernel 2 were the most appropriate ker-
nels for the three types of classifications, respectively. Table 6 represents the correlations 
between the regression results and the ground truth of eye fatigue. The feature set 10 
also showed the best performance compared with the other feature sets. Once compari-
sons were made between the two regressions, it was revealed that the epsilon regression 
outperformed.

According to the results of classification and regression, two assessment models were 
established: an eye tracker model and a blink detector model. The eye tracker model 

Table 4 Ranking the eye movement features based on MRMR

Feature rank Two-class classification Three-class classification Four-class classification

1 Length of scanpath Length of scanpath Length of scanpath

2 Mean duration of blinking Mean duration of blinking Mean duration of blinking

3 Variance of blink durations Variance of blink durations Variance of blink durations

4 Mean duration of fixation Mean duration of fixation Mean duration of fixation

5 Variance of fixation durations Variance of fixation durations Variance of fixation durations

6 Total duration of blinking Total duration of blinking Mean of saccade length

7 Total duration of fixation Total duration of fixation Total duration of blinking

8 Number of fixation Number of fixation Total duration of fixation

9 Times of blinking Times of blinking Number of fixation

10 Mean of saccade length Mean of saccade length Times of blinking
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used the feature set 10 as input data. The blink detector model utilized the blink set as 
input data. Both models had four applications, including three classifications and one 
regression. The mentioned three classifications used radial basis function kernel, linear 
kernel, and polynomial kernel, respectively. The regression was the epsilon regression 
using polynomial kernel. The performances of the two assessment models are listed in 
Table 7.

Discussion
In the present research, an objective algorithm was developed to estimate eye fatigue 
caused by an HMD using eye-tracking data. We used a weighted combination of seven 
indicators for optometry test as the ground truth of eye fatigue, which was found to be a 
novel definition based on our previous study. Based on SSQ and optometry data, we note 
that the relationship between VIMS and the feeling of eye fatigue was insignificant. For 
further study on HMDs related to eye fatigue, an unobtrusive eye tracker was mounted 
on the VR gear, which led to achieving ten features related to eye movement. With the 
help of MRMR criterion for ranking the features, three kinds of classifications and two 
kinds of regressions were resulted to evaluate the performance for different feature sets.

A series of methods have been proposed to assess eye fatigue; however, the eye fatigue 
caused by HMD has been rarely investigated yet. Previous studies were mainly concen-
trated on VIMS when discomfort caused by HMD was target [43, 44]. In the present 

Table 6 Correlation between the regression results and the ground truth of eye fatigue

Feature Correlation with epsilon regression Correlation with nonlinear regression

Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 1 Kernel 2 Kernel 3 Kernel 4

Feature set 1 0.6271 0.6989 0.6807 0.0237 0.6266 0.6712 0.6414 0.0663

Feature set 2 0.7364 0.7616 0.7456 0.4662 0.7449 0.7713 0.7369 0.4217

Feature set 3 0.7416 0.7707 0.7548 0.5674 0.7471 0.7779 0.7551 0.5401

Feature set 4 0.7536 0.7853 0.7557 0.6317 0.7547 0.7827 0.7631 0.5926

Feature set 5 0.7621 0.7886 0.7681 0.6593 0.7556 0.7851 0.7663 0.6182

Feature set 6 0.8062 0.8435 0.8122 0.6751 0.8063 0.8316 0.8197 0.6375

Feature set 7 0.8489 0.8514 0.8313 0.6925 0.8416 0.8383 0.8398 0.6597

Feature set 8 0.8563 0.8552 0.8363 0.6946 0.8452 0.8423 0.8469 0.6656

Feature set 9 0.8575 0.8675 0.8421 0.7087 0.8559 0.8583 0.8483 0.6735

Feature set 10 0.8652 0.8737 0.8489 0.7104 0.8568 0.8651 0.8532 0.6857

Blink set 0.7655 0.7966 0.7745 0.4624 0.7541 0.7746 0.7609 0.4731

Mean 0.7837 0.8085 0.7864 0.5720 0.7808 0.7999 0.7847 0.5485

Table 7 The performance of the two assessment models

Model Input data Accuracy 
of two-class 
classification

Accuracy 
of three-class 
classification

Accuracy 
of four-class 
classification

Correlation 
with regression

Eye tracker model Feature set 10 0.9079 0.7947 0.7425 0.8737

Blink detector 
model

Blink set 0.8763 0.7458 0.7225 0.7966
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study, we first demonstrated that eye fatigue and VIMS are different. We used SSQ to 
assess the subjects’ VIMS throughout the experiment. Figure 1 shows that the majority 
of the subjects did not feel any VIMS after the experiment. Figure 2 depicts that all the 
105 subjects suffered from eye fatigue after the experiment, indicating that eye fatigue is 
a muscular disorder, and subjective feeling of eye fatigue may associate with long con-
sciousness after the occurrence of eye fatigue. A number of scholars considered the sub-
jective feeling as the ground truth of the eye fatigue [26], which was not accurate. In the 
present experiment, there was also an item “eye fatigue” in the SSQ, in which 41 out 
of 105 subjects reported that they felt eye fatigue after the experiment, reflecting that 
subjective feelings cannot accurately measure eye fatigue. Li et  al. found that delay in 
the transmission of visual information measured with EEG could be helpful for visual 
fatigue [27]. However, eye fatigue is taken as an eye problem in lieu of a brain problem. 
In the current research, we used seven indicators for optometry test, including BCC, 
NRA, PRA, PL, PR, LTL, and LTR to define eye fatigue. Besides, BCC, NRA, PRA, LTL, 
and LTR reflected the accommodative ability of the ciliary muscles. Additionally, PL 
and PR referred to the accommodative ability of pupillary muscle plant. As shown in 
Table 2, all the seven indicators are sensitive to eye fatigue. It is noteworthy that LTR 
and LTL decreased from 3.95 mm at the first measurement to 3.79 and 3.77 mm at the 
fourth measurement. Researchers found that prior to presbyopia, the thickness of lens 
increased by about 42 to 72 μm per diopter of accommodation [45–47]. In every optom-
etry test of our experiment, the order of measurement was BCC, PRA, NRA, pupil size, 
and lens thickness. Pupil size and lens thickness were simultaneously measured by the 
optical biometer. For each subject, his/her lens thickness was measured right after NRA 
test. When NRA test was performed, the subject was added positive diopter, which led to 
decreasing of his/her lens thickness. When testing of lens thickness was undertaken, the 
subject observed a light source with a fix distance, which required accommodation. The 
results of the present experiment showed that lens thickness of the subjects decreased 
over time because their accommodative ability decreased as eye fatigue occurred.

Since the measurement based on optometry data needs medical equipment and it 
cannot be applied in real time, we proposed an assessment method using eye move-
ment data. Numerous scholars have recently presented assessment methods using eye 
movement data; however, the environment of their experiment was either natural or 
traditional displays [29, 31, 32]. When HMDs are utilized, the user’s eyes are remark-
ably closer to the screen compared with traditional displays. In addition, HMDs imposes 
more stress to users’ eyes than traditional displays due to their close distance to the 
screen and immersive environment. No study has investigated individuals’ eye move-
ment when HMD is used due to limitations in eye tracker. In the present study, we 
supervised the subjects’ eye movement using an eye tracker embedded in the HMD. 
We extracted 10 eye movement features based on previously conducted studies [30–
32]. Jansen et al. [30] defined fixation as an instant when our eyes were stationary and 
focused on an area interpreting data. It also has been reported that EBR is more sensitive 
to workload than other conventionally used eye-tracking measures, such as saccade rate 
and amplitude in a demanding visual task [31]. Changes in blinking habit indicated that 
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a subject may suffer from a high level of eye fatigue. The saccade length was defined as 
distance (in pixels) between two sequential fixation points in a scanpath [32]. We also 
ranked the ten eye movement features to assess eye fatigue by using a feature extrac-
tion algorithm. Afterward, by using the measurements related to optometry test as the 
ground truth and the eye movement features as input features, we established ten eye 
movement feature sets and one blink feature set with different dimensions based on 
the ranking, and attempted to perform SVM for assessment. Table 5 shows the results 
of the three kinds of classifications of eye fatigue, including two-class, three-class, and 
four-class classifications. When comparing the performance of the eleven input feature 
sets, it was unveiled that the more dimensions of the feature set, the better the result of 
the classification. The accuracies of the blink set were sightly lower than feature set 10, 
which were 0.8763, 0.7458, and 0.7225 in the two-class, three-class, and four-class classi-
fication, respectively. As presented in Table 6, there were two kinds of regressions of eye 
fatigue. The input features were as same as multi-class classifications. The accuracies of 
the blink set were also slightly lower than feature set 10. We also presented two assess-
ment models: eye tracker model and blink detector model. The general preferences and 
the accuracies of the two models are shown in Table 7. The eye tracker model uses fea-
ture set 10 as input data. The blink detector model uses blink set as input data. Both 
models could provide graded and continuous results to evaluate eye fatigue of HMDs 
users via analysis of parameters related to eye tracker. Further research should be con-
ducted to verify our findings and explore new practical scenarios.

Conclusion
In the present study, an objective algorithm to estimate eye fatigue caused by an HMD 
using eye-tracking data is developed. The experiment had two sessions: the main 
experiment and the control. In the main experiment, there were four times of SSQ and 
optometry test, and three times of utilizing HMD, with a total duration of 35 min per 
participant. The participants’ eyes went from a completely relaxed state to becoming 
quite fatigued during the experiment. We monitored the participants’ eye conditions 
during the whole process. SSQ was used to evaluate VIMS. We used a weighted com-
bination of seven indicators of optometry as the ground truth of eye fatigue, which is a 
novel definition based on our previous study. On the basis of SSQ and optometry data, 
we found that the relation between VIMS and the feeling of eye fatigue was small. We 
also demonstrated that subjective perception is not an accurate indicator of eye fatigue. 
An unobtrusive eye tracker installed in the VR gear was used to perform eye fatigue 
assessment. Ten eye movement features, including four fixation features, four blink fea-
tures, and two distance features, were recorded for assessment of eye fatigue. One fea-
ture selection algorithms were applied to rank the ten eye movement features based on a 
particular classifier. We conducted three kinds of classifications and two kinds of regres-
sions to evaluate the performance of different feature sets. We presented two assess-
ment models: eye tracker model and blink detector model. Both models provided graded 
result and continuous result to users. The models proposed in the present study could be 
applied to all users.
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Methods
Overview of experiment

A total of 105 subjects, who aged between 19 and 51 years old, participated in the experi-
ment. All the subjects were with normal or corrected to normal vision. In order to ensure 
that the initial conditions were the same, all the subjects were fully relaxed before the exper-
iment. Every subject was asked to observe distance (more than 5 m) for more than 30 min 
before the experiment. With commencement of the experiment, every subject was asked 
whether his/her eyes were tired or not to make sure he/she was fully relaxed. We assumed 
that every subject’s eyes experienced no fatigue only before the experiment. Figure 4 shows 
the experimental procedure. Session 1 presented the main experiment. We monitored the 
subjects’ eye movement in this session. Session 2 described the control experiment. Every 
subject participated in these two sessions on different days, while at the same time of the 
day. Each session included four times of questionnaire, four times of optometry test, and 
three segments of utilizing HMD. In session 1, subjects watched a video for 3 min in an 
HMD. An eye tracker was embedded in the HMD, which fully recorded the subjects’ eye 
movement data. In order to be time efficient, we analyzed the data achieved in four periods 
of 20 s rather than 3 min. In session 2, subjects still wore the HMD at the same time as ses-
sion 1, while their eyes were closed during these three parts. Besides, both sessions lasted 
for 35 min. During filling of the questionnaire, the participants evaluated their feelings on a 
four-grade quality scale. In the optometry test, we assessed seven parameters on each par-
ticipant. Optometrists carried out the experiment. The total time spent in this section was 6 
min. The same optometrist conducted the whole experiment on the same subject to main-
tain consistency.

As shown in Fig. 5a, the subject wore an HTC Vive HMD in the experiment, consisting of 
one headset, two controllers, and four base stations. The four base stations were positioned 
with the headset and controllers in a room with the area of 6.6× 5 square meters room. 
The screen had a resolution of 1080× 1200 pixels/eye, and 2160× 1200 pixels were com-
bined. The screen’s highest refresh rate was 90 Hz. As illustrated in Fig. 5b, we used aGlASS 
DKII (Beijing 7invensun Technology Co., Ltd., China) [34] in the experiment. The two black 

6mins 6mins 6mins 6mins3mins 3mins 3mins30s 30s 30s 30s

Session 1 

Session 2 SSQ Optometry Close eyes SSQ Optometry Close eyes SSQ Optometry Close eyes SSQ Optometry

SSQ Optometry HMD SSQ Optometry HMD SSQ Optometry HMD SSQ Optometry20s 20s20s20s

Fig. 4 Experiment overview. Session 1 is the main experiment. Session 2 is the control experiment. Each 
session includes four times of simulator sickness questionnaire (SSQ), four times of optometry test, and three 
segments of utilizing the HMD

Fig. 5 a HMD, b eye tracker [34], c optical biometer, d phoropter. Permission to publish photograph was 
obtained via a signed consent to publish document
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components were manually placed into the headset. Each part could emit infrared light to 
read the position of each eyeball. The refresh rate was 75 Hz. The error of the tracking posi-
tion was less than 0.5◦ , and the delay was less than 10 ms [48]. We tested the accuracy of the 
eye tracker before the experiment. We aimed to design a model that could read the value of 
user’s eye fatigue at any given time during the application of HMD. The system computed 
eye movement features in real time and imported the data into the assessment model. The 
lenses shown in Fig. 5b were used to replace the user’s glasses if they wouldn’t like to wear 
their own. However, since the lenses in aGLASS DKII only had three scales of diopter, 
which were not appropriate for everyone, participants were asked to wear their own glasses 
throughout the video-viewing process.

SSQ test

We used a traditional questionnaire, the SSQ [25], to assess VIMS. Table 8 presents the 
items and scoring rule. We utilized a 4-point scale, in which each symptom’s variable score 
(0,1,2,3) was multiplied by an appropriate weight, and the weighted values were summed 
down the column to obtain the weighted total. The N, O, and D scores were then calculated 
from the total values using the conversion formulas given at the bottom of Table 8. The 
scoring rule is as follows:

Optometry test

We obtained seven indicators for optometry test, including BCC, PRA, NRA, PL, PR, LTL, 
and LTR. The test was conducted by qualified optometrists. When BCC, PRA, and NRA 
were tested, the distance between the eye and the target was 40cm. The detailed meas-
urement process was described in our previous study [35]. As illustrated in Fig. 5c, d,  

(1)score = [1] + [2] + [3] × 3.74

Table 8 Items and scoring rule of SSQ

N O D

General discomfort 1 1

Fatigue 1

Headache 1

Eye fatigue 1

Difficulty focusing 1 1

Increased salivation 1

Sweating 1

Nausea 1 1

Difficulty concentrating 1 1

Fullness of head 1

Blurred vision 1 1

Dizzy (eyes open) 1

Dizzy (eyes closed) 1

Vertigo 1

Stomach awareness 1

Burping 1

Total [1] [2] [3]
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we herein used two ophthalmic devices: a phoropter and an optical biometer. The pho-
ropter was NIDEK RT-600 (NIDEK Co., Ltd, Japan). It was a comprehensive refractom-
eter, and it was also a favorable device for optometrists to accurately perform optometry. 
Although an automatic phoropter could provide an acceptable starting point in optom-
etry, it could never replace subjective refraction [49]. We achieved indicators of the three 
accommodative amplitudes through the phoropter, including BCC , PRA , and NRA , 
which were discrete and the minimum step size was 0.25 diopter. The optical biometer 
was SUOER SW-9000 (Suowei Electronic Technology Co., Ltd., China). It provided the 
indicators of pupil diameters and lens thicknesses for both eyes.

Definition of eye fatigue

A ground truth function for eye fatigue is given based on our previous study [35] as 
follows:

where BCC , PRA , NRA , PL , PR , LTL , and LTR represent seven indicators for optom-
etry that we previously mentioned in Background section. Besides, F is the ground truth 
function of the eye fatigue. Those seven indicators were simultaneously obtained. In our 
previous research [35], the ground truth function for individual’s eye fatigue was simply 
defined as

The minuses shown before NRA , PL , PR , LDL , and LDR indicate that these five indica-
tors were attenuated over time. According to the trends presented in Table 2, we rede-
fined eye fatigue as Eqs. (4) and (5), preventing any single large numerical change due to 
the fluctuation of all indicators of optometry test.

where wi, i = 1, 2 . . . 7 can be formulated in the following equation:

where meantime4 is the mean value of the corresponding indicator for optometry test in 
the 4th measurement and meantime1 is the mean value of the corresponding indicator of 
optometry test in the 1st measurement.

Eye movement test

The distance between the subject and the screen was 2  cm. During the video-watching 
experience, participants were able to freely blink and move their eyes and heads. In theory, 
the longer the experiment, the more notable the symptoms of eye fatigue would become. 
For ethical and humanitarian reasons, the total duration of observation in each subject’s 
HMD was set to 9 min. We selected ten features related to eye movement, including four 
features related to fixation (the number of fixation points, the total duration of fixation 
points, the mean duration of fixation points, and the standard deviation of the duration), 

(2)F = g(BCC, PRA, NRA, PL, PR, LTL, LTR)

(3)F = BCC+ PRA −NRA − PL− PR − LDL− LDR

(4)
F = w1 · BCC+ w2 ·NRA+ w3 · PRA+ w4 · PR+ w5 · PL+ w6 · LDR+ w7 · LDL

(5)wi =
1

meantime4 −meantime1

, i = 1, 2 . . . 7
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four features related to blinking (the times of blinking, the total duration of blinking, the 
mean duration of blinking, and the standard deviation of the duration), and two features 
related to scanpath (the length of scan path and the mean length of saccades).

The output of our eye tracker data included users’ gaze locations and their corresponding 
times. We, in the present study, used Dispersion-Threshold Identification (I-DT) algorithm 
to obtain the number of fixation and duration of measurement. The minimum duration 
threshold was set to 200 ms [50]. The dispersion threshold was set to 1◦ of visual angle. 
Blinking features were achieved at the same time of the extraction of fixation features. If 
the user blinked, the eye tracker was not able to detect the eyes and output data would not 
include gaze information. Therefore, we can assume that blinking occurred at this time. 
The duration of the consecutive null data in one time refers to duration of the blink at this 
time. Although an extreme gaze could also cause this condition, we did not consider this 
condition. Generally speaking, an extreme gaze happens when the peripheral vision picks 
up a very strong stimulus at the edge of the display. However, when using the HMD, the 
user can freely move his/her head, and the screen is always in front of his/her eyes. In the 
present study, scanpath features were defined by a saccade-fixate-saccade sequence on a 
display [51]. Here, the scanpath length and the mean length of the saccades were analyzed. 
The length of saccade was defined as a distance (in pixels) between two sequential fixation 
points in a scanpath. The scanpath length (in pixels) was taken as summation of the length 
of saccade in a certain period of time. As shown in Fig. 4, we analyzed eye movement in 
four periods, in which duration of each period was 20 s. These four periods are the closest 
periods to the four measurements of optometry test. In order to be time efficient, we ana-
lyzed the data obtained during 20 s rather than the 3 min. It lasted for 0.235s to compute all 
the eye movement features obtained during 20 s for one subject, while that lasted for 0.705s 
to compute all the features obtained during 1 min.

Eye fatigue assessment

We proposed an objective assessment for eye fatigue through the use of eye-tracking fea-
tures. Based on the collected eye-tracking features, the assessment function is given by Eq. 
(6) as follows:

where NF is the number of fixation points, DF represents the total duration of fixation 
points, MF denotes the mean duration of fixation points, VF denotes standard deviation 
of the fixation duration, BT is the times of blinking, DB represents the total duration of 
blinking, MB is the mean duration of the blinking, VB represents standard deviation of 
the blinking duration, SL is the scanpath length, ML denotes the mean length of the sac-
cades, and F is an estimated fatigue value of the user’s eyes at a certain period of time. 
Equation (6) is a real-time assessment function. All the above-mentioned ten parameters 
were simultaneously accumulated in a certain period of time. In this study, this period 
was set to 20 s.

Input data

The input data of our assessment model included the ground truth of the eye fatigue and 
the ten eye movement features. Since all the subjects’ eyes were fully relaxed before the 

(6)F = f (NF, DF, MF, VF, BT, DB, MB, VB, SL, ML)
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experiment, the ground truth and the ten features needed to be unified. All the 105 sub-
jects were asked to fully relax their eyes before the experiment. We defined the eye fatigue 
value of this condition equal to 0. To date, for all the subjects, the ground truth values of eye 
fatigue were all equal to 0 before the 1st measurement using the HMD. In Table 2, however, 
we noticed that different subjects had different values of the indicators in the 1st optometry 
test. Thus, we simply unified the ground truth and the features as

where Ftimei denotes the weighted fatigue value of the ith measurement in optometry 
test, which is computed by Eq. (4). The ‖Ftimei‖ is the unified ground truth. ‖Ftime1‖ for all 
the subjects in our experiment was equal to 0. In the same way, the ten eye movement 
features were unified by Eq. (8) as follows:

where Etimei is one of the ten features in Eq. (6) of the ith measurement in eye movement 
test, and ‖Etimei‖ is the unified feature.

We then simply discretized eye fatigue by an equal step classification system, and that is 
given by Eq. (9)

where P denotes weighted eye fatigue value or one of the eye movement features, S 
includes 420 samples, and n represents the number of classes. For instance, if there is a 
2-class classification, the ‖F‖ < step is set to 0 and the �F� ≥ step is set to 1.

Feature selection

MRMR criterion is a promising feature selection algorithm [42]. The criterion is a 
mutual-information-based feature selection. Given two random variables x and y, their 
mutual information is defined in terms of their probabilistic density functions p(x), p(y) 
and p(x, y):

Given a feature set S with m features xi , which jointly have the largest dependency on the 
target class c, the maximal relevance criterion is to search for features, satisfying

The minimal redundancy criterion is to search for features, satisfying

(7)�Ftimei� = Ftimei − Ftime1 i = 1, 2, 3, 4

(8)�Etimei� = Etimei − Etime1 i = 1, 2, 3, 4

(9)step =

(

max
�P�∈S

[�P�] − min
�P�∈S

[�P�]

)

/n

(10)I(x; y) =

∫ ∫

p(x, y)log
p(x, y)

p(x)p(y)
dxdy

(11)maxD(S, c),D =
1

| S |

∑

xi∈S

I(xi; c)

(12)min R(S),R =
1

| S |2

∑

xi ,xj∈S

I(xi; xj)
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The criterion combining these two constraints is called “minimal-redundancy- 
maximal-relevance”:

MRMR has two functions: (i) rank the features; and (ii) reduce the dimension of the fea-
tures. As we investigated the features with different dimensions in Results section, we 
only used MRMR to rank the features. However, the published MRMR software pack-
age [42] can only accept discrete ground truth data. Thus, we ranked the ten features in 
three kinds of classifications as follows: two-class classification, three-class classification, 
and four-class classification.

Modeling eye fatigue

The fatigue assessment was undertaken on the basis of SVM. Herein, we conducted 
three kinds of classifications and two kinds of regressions. The penalty coefficients were 
set to 1 for all the SVMs. We collected 420 samples from 105 participants for every fea-
ture set. We used the holdout method to conduct cross-validation. Eventually, 320 and 
100 samples were used for training and testing, respectively. We performed 100 rounds 
of cross-validation for making a fair comparison. In each round of validation, 100 testing 
samples were randomly selected.
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