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Abstract 

Background:  The non-invasive nature of near-infrared spectroscopy (NIRS) makes it a 
widely accepted method for blood oxygenation measurement in various parts of the 
human body. One of the main challenges in this method lies in the successful  removal 
of movement artefacts in the detected signal. In this respect, multi-channel inertia 
measurement unit (IMU) containing accelerometer, gyroscope and magnetometer can 
be used for better modelling of movement artefact than using accelerometer only, 
which as a result, movement artefact can be more accurately removed.

Methods:  A wearable two-channel continuous wave NIRS system, incorporating an 
IMU sensor which contain accelerometer, gyroscope and magnetometer in it, was 
developed to record NIRS signal along with the simultaneous recording of move-
ment artefacts related signal using the IMU. Four healthy subjects volunteered in the 
recording of the NIRS signals. During the recording  from the first two subject, move-
ment artefacts were simulated in one of the NIRS channels by tapping the photodiode 
sensor nearby. The corresponding IMU data for the simulated movement artefacts  
were used to estimate the artefacts in the corrupted signal by autoregressive with 
exogenous input method and subtracted from the corrupted signal to remove the 
artefacts in the NIRS signal. Signal-to-noise ratio (SNR) improvement was used to evalu-
ate the performance of the movement artefacts removal process. The performance of 
the movement artefacts estimation and removal were compared using accelerometer 
only, accelerometer and gyroscope, and accelerometer, gyroscope and magnetometer 
data from IMU sensor to estimate the artefact in NIRS reading. For the remaining two 
subjects the NIRS signal was recorded by natural movement artefacts impact and the 
results of artefacts removal was compared using accelerometer only, accelerometer 
and gyroscope, and accelerometer, gyroscope and magnetometer data from IMU sen-
sor to estimate the artefact in NIRS reading.

Results:  The quantitative and qualitative results revealed that the SNR improvement 
increases with the number of IMU channels used in the artefacts estimation, and there 
were approximately 5–11 dB increase in SNR when nine channel IMU data were used 
rather than using only three channel accelerometer data only. The artefact removal 
from natural movements also demonstrated that the combination of gyroscope and 
magnetometer sensors with accelerometer provided better estimation and removal of 
the movement artefacts, which was revealed by the minimal change of the HbO2 and 
Hb level before, during and after movement artefacts occurred in the NIRS signal.
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Conclusion:  The movement artefacts in NIRS can be more accurately estimated and 
removed by using accelerometer, gyroscope and magnetograph signals from an inte-
grated IMU sensor than using accelerometer signal only.

Keywords:  NIRS, Near infrared spectroscopy, Motion artefacts, Multi-channel IMU, 
Accelerometer, Gyroscope, Magnetometer, Artefacts removal, SNR improvement, 
De-noising

Background
The absorption coefficient by human tissue in the near-infrared light region of 700–
1000  nm [1] is much lower than other wavelength lights in the spectrum that are 
harmless to human body. This property leads to the development of near-infrared spec-
troscopy (NIRS) as a widely used method for detecting oxy- and deoxyhemoglobin level 
in blood. The NIRS signal can be detected by illuminating the human body with light 
from the near-infrared region [2, 3]. Moreover, the non-invasiveness, safety and cost-
effectiveness [4], make NIRS even more popular than any other methods of detecting 
blood oxygenation level. The level of blood oxygenation in various parts of the human 
body convey a great deal of information about various physiological phenomena and 
processes [5], such as cardiovascular disease [6] and sepsis [7] from muscle oxygena-
tion, cognitive involvement [8, 9] and activation of brain function [10, 11] from cerebral 
oxygenation.

Movement artefact removal is one of the most challenging parts of any type of bio-
signal processing and the NIRS for blood oxygen level detection is no exception. It is not 
possible to fully restrict a subject from movement, voluntary or involuntary, and thus the 
acquired bio-signals are contaminated by the movement artefacts in different extents. 
Sometimes this contamination is so prominent that the subtle changes correspond to 
physiological changes subdued by the artefacts, thus the usability of the acquired signal 
mostly depends on the successful removal of the movement artefacts [12]. In the NIRS, 
the light source and the detectors are directly coupled to the human skin and this cou-
pling is easily altered [13] by movement artefacts, which result in coupling error [14]. 
This coupling error imposes high uncertainty in the detection of the true changes in 
the NIRS signal which corresponds to the change in the physiological phenomena [15]. 
Moreover, from the perspective of the frequency domain, the NIRS signal variation due 
to the physiological change and the changes due to the movement artefacts are closely 
overlapped with each other, which makes it harder to separate the movement artefact 
content from the signal.

Numerous artefacts removal techniques for NIRS have been developed in the last few 
decades [16–22]. Most of them use the nature of the signal itself and the theoretical 
assumption of the influence of the movement artefact on the detected signal. A Major-
ity of these methods development direction lie in the fact that detecting any other sig-
nal highly correlated to the movement artefacts was not readily available or difficult 
[23]. But the recent improvements in the Microelectromechanical systems (MEMS) 
chip components that is capable of registering motion information, i.e. acceleration, 
yaw, pitch, roll etc., makes it possible to observe motion-related signal concurrently 
with bio-signals of interest for various biomedical applications [24–29]. With respect to 
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NIRS signal detection, this advancement in MEMS chip component makes it possible 
to record movement artefacts related motion data and the NIRS signal simultaneously 
[30–32]. This additional information related to movement artefact leads to the more 
effective use of the adaptive noise cancellation technique on NIRS signal. So far, to the 
best of our knowledge, all the research articles related to adaptive filtering to remove 
movement artefacts from NIRS signal uses only the three-channel accelerometer data 
to estimate the movement artefacts [25, 30, 31, 33]. In this study, nine-channel Inertia 
Measurement Unit (IMU) data, namely accelerometer, gyroscope and magnetometer, 
are used to estimate the movement artefacts in NIRS signal and subsequently to remove 
the motion-related movement artefact. The basis of the study is that, the more informa-
tion correlated to movement artefacts available, the better the estimation of the inter-
fering artefacts contribution on the detected signal, and greater SNR improvement can 
be achieved. Movement artefacts arise from diverse body movement, which might have 
very less acceleration but more rotational or directional change, would be better reg-
istered by gyroscope and magnetometer, and would result in better estimation of the 
movement artefacts.

Movement artefacts removal techniques commonly employ the autoregressive model-
ling (AR) to remove the artefacts from the NIRS signal [22, 34]. In this study, Autore-
gressive model with exogenous input (ARX) was used as the method to estimate the 
movement artefacts and the multi-channel IMU data served as the exogenous input to 
the system.

Adaptive noise cancellation (ANC) was widely used in the various field for noise can-
cellation [35]. In this approach, one or more additional channels of information that is 
highly correlated to the interfering noise component in the primary recorded signal is 
used to remove the noise. The ARX modelling can be assumed as an altered method of 
ANC, which applies the classical least-squares (LS) algorithm to estimate the noise using 
exogenous input as the reference source for indirect noise estimation in the observed 
signal. ARX modelling is extensively used in the problems related to system identifica-
tions. In the current study, IMU signals were used as the inputs to the ARX modelling to 
estimate the movement artefacts in the NIRS signal and then subtracted to estimate the 
true NIRS signal.

Methods
Data acquisition method

In this study, data acquisition with a single wavelength and a dual wavelength NIR light 
source were used during the recording from the subjects. The methodology presented in 
[16] was used to quantitatively assess improvement in the signal quality after the arte-
facts removal. The methodology requires that two version of the same NIRS channels 
are positioned as close as possible where one is impacted by movement artefacts and 
another remains unimpacted. In this respect, the unaffected signal is analogous to the 
“ground truth” signal presented in [16], which was denote here as “reference ground 
truth” as the actual “ground truth” cannot be acquired. For the first two subjects the 
single wavelength LED was used with simulated artefacts, and signal quality improve-
ment in respect to SNR and correlation was used for quantitative assessment. For the 
remaining two other subjects, a dual wavelength NIR light source was used to record 
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the data with actual movement of the subjects causing the movement artefacts. As the 
NIRS signal from the last two subjects were recorded using two wavelengths, the NIRS 
signals can be converted to blood oxygenation concentration changes using the modified 
Beer–Lambert law [36, 37] and the result of artefact removal can be compared to the 
expected hemodynamic changes. Considering that the hemodynamic change is minimal 
during a short duration when movement occurs, the levels of oxygenated (HbO2) and 
deoxygenated (Hb) hemoglobin concentration will be stable before and after movement 
occurs. Based on this, after the movement artefact removal from the contaminated por-
tion of the NIRS signal, a minimal hemodynamic change with stable HbO2 and Hb levels 
is expected.

Sensor system

To accomplish the above mentioned NIRS signal acquisition along with the simultane-
ous recording of multi-channel IMU data, a custom-made wearable NIRS system, based 
on Texas instrument (TI) CC3200 chip, was developed incorporating other peripheral 
chips and using the sensor node architecture developed in [38]. The IMU chip used in 
this architecture is MPU9250 which has 3-axis accelerometer, 3-axis gyroscope and 
3-axis magnetometer data acquisition capability with a 16-bit resolution for each chan-
nel and the chip was attached to the NIR detector for better registration of the move-
ment artefacts impact at the detector. In this study, each IMU channel was sampled at 
62.5 Hz. An 850 nm wavelength LED and another 850–770 nm dual wavelength LED are 
used as the source of NIR light, and as the detector, a photodiode chip from TI modelled 
as OPT101 was used, which incorporate the required trans-impedance amplifier in the 
same chip. To digitize the analog signal from OPT101, a high precision ADC chip from 
TI, with the part no ADS1292, was used which has 24-bit resolution and high CMMR 
and support two-channel input. This ADC support multiple sampling rate ranging from 
860 to 8000 Hz and we sampled the NIRS signal at 1000 Hz. To minimize the bus con-
tention by the two vital peripheral devices in the system, IMU and ADC, these devices 
were connected to the main processor unit via the different buses, I2C and SPI respec-
tively. The main processor unit used in this sensor architecture, CC3200, house two sep-
arate MCU in the same chip; one is featuring Wi-Fi Internet-On-a-Chip and another one 
as a typical microcontroller. Thus, the system can simultaneously collect the data from 
the peripheral devices and transfer those wirelessly through the internet to remote sys-
tem or any local computer connected to the system using Wi-Fi.

ARX modelling and artefacts removal

The artefacts estimation and removal process is outlined in Fig. 1. Let s[n] denote the 
true hemodynamic signal which was distorted by the motion artefacts signal w[n] . This 
corrupted hemodynamic signal x[n] detected by the NIRS sensor can be expressed as,

We used ARX modelling to estimate the motion artefacts in the detected signal. It is a 
widely used method in system identification task to determine the model structure using 
the input–output data. In this respect, it uses the least squares method to estimate the 

(1)x[n] = s[n] + w[n]



Page 5 of 16Siddiquee et al. BioMed Eng OnLine  (2018) 17:120 

best set of the coefficient of the system model from the input–output data available. In 
our study, the system resembled a multiple input single output (MISO) model, because 
the IMU data inputted into the model consisted of multiple channel data. In this case the 
ARX modelling can be represented using the following equation,

where x[n] is the detected NIRS signal and u[k] is the IMU data. Here ŵ[n] is the 
output from the system based on the model coefficients a = [a1a2 · · · aNA] and 
B = [b0b1 · · · bNB] when the input to the model is U = [u[k]u[k − 1] · · ·u[k − NB]] . 
The model coefficients a and B selection in ARX modelling can be depicted by the fol-
lowing equation which is also known as least square method,

where bT0 b
T
1 · · · bTNB are 1 × L coefficient vectors and u[k] is a L× 1 input vector, and 

the dimension L is the number of IMU data channel used. There were three combination 
cases for U  used in this study, and they were,

Case 1:	� u[k] =
[

Ax[k]Ay[k]Az[k]
]T

; L = 3

Case 2:	� u[k] =
[

Ax[k]Ay[k]Az[k]Gx[k]Gy[k]Gz[k]
]T

; L = 6

Case 3:	� u[k] =
[

Ax[k]Ay[k]Az[k]Gx[k]Gy[k]Gz[k]Mx[k]My[k]Mz[k]
]T

; L = 9

For the conventional studies [22, 30, 32, 33] where only three channels Accelerometer 
data are used for autoregressive modelling, U  can be expressed as in case 1 where Ax, Ay 
and Az represent the three channels of Accelerometer data. Additional to the conven-
tional study using only three channels Accelerometer data, we extended the study using 
six channels and nine channels IMU data. In case 2 and 3, Gx, Gy and Gz represent the 
three channels of Gyroscope data and Mx, My and Mz represent the three channels of 
magnetograph data.

In the artefact estimation process, the portion of the NIRS signal containing move-
ment artefacts was fed to the ARX modelling algorithm as the output and the corre-
sponding multichannel IMU data as the input to determine the model coefficients. For 

(2)
ŵ[k] = a1x[k − 1] + a2x[k − 2] + · · · + aNAx[k − NA]

+ b
T

0 u[k] + b
T

1 u[k − 1] + · · · + b
T

NBu[k − NB]

(3)J (a,B) =

N
∑

k=1

(

x[k] − ŵ[k]
)2

Fig. 1  Block diagram of artefacts removal process
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each artefact segment, this operation was iterated using several combinations of model 
orders from 1 to 10 and the order selected for who’s the sum of squared error was the 
minimum between the estimation and the detected signal. Using the returned coeffi-
cient, a simulation model was defined for the current noisy portion of the NIRS signal. 
In the newly defined simulation model, the IMU signals were used as the input to the 
model to get the estimation ŵ[n] . Here, the estimation closely resembled to artefact w[n] 
as the signal contribution by the true hemodynamic signal s[n] to the detected signal x[n] 
was very small compared to the artefact’s contribution. Thus this estimated signal ŵ[n] 
was then subtracted from the observed signal x[n] to get the estimation of the movement 
artefacts free hemodynamic signal ŝ[n] as per the equation,

SNR improvement

As the data acquisition methodology used in this study was very much similar to [16], 
the SNR calculation was also done using similar formula applied in that study. The dif-
ference in the SNR, before and after the artefacts removal, is calculated using the follow-
ing equation which is described in [39],

where, σ 2
x  is the variance of the movement artefacts free signal which is the referenced 

ground truth and σ 2
ebefore

 and σ 2
eafter

 are the variance of the signal with the movement arte-
facts before and after the artefacts are removed, respectively.

Subjects and experimental design

Four healthy subjects, ages 22, 25, 27 and 28, with no history of asphyxia or brain disor-
der, volunteered for this study and a total of twelve sessions of data were collected. The 
NIRS were recorded from the forehead for simplicity. All the subjects were instructed 
to sit comfortably during the NIRS recording. As mentioned before, the NIRS signals 
from the first two subjects were contaminated by simulated movement artefacts. These 
simulations were done by external tapping on one of the two optical sensors, while the 
other remained unaffected. The NIRS signal from the other two subjects were collected 
by dual wavelength NIR light source, the subjects were instructed to move their head to 
induce natural movement artefact in the NIRS signals.

Results
In this study, the artefacts removal from the NIRS signal was implemented on the 
raw signal from the optical sensor. Thus, the clean signal (after the movement artefact 
removal) can be used in any other processing for further study. Figure 2 depicts a repre-
sentative portion of the raw NIRS and the corresponding IMU data from subject 1. This 
NIRS signal contains three movement artefact segments which are indicated by verti-
cal lines in the topmost plot in the figure. The simultaneous IMU data of this portion, 
which are three channels accelerometer, three channels gyroscope and three channels 
magnetometer data, are plotted in the same figure. It is already mentioned earlier that 

(4)ŝ[n] = x[n]− ŵ[n]

(5)
�SNR = 10log

(

σ2x

σ2eafter

)

10 − 10log

(

σ2x

σ2ebefore

)

10
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most of the IMU-based movement artefact removal studies used three channels acceler-
ometer data [30, 31, 33], whereas in this study, it was observed from the raw signal that 
without any processing, the Gyroscope data have the most impact from the motion arte-
facts and thus highly effective in estimating the artefacts. In the signal portion presented 
in Fig. 2, the gyroscope data have a more prominent impact on all three movement arte-
fact segments in comparison to the accelerometer and the magnetometer data, which is 
apparent in Fig. 2.

The movement artefact estimation for the second segment in Fig.  2 is presented in 
Fig. 3. In Fig. 3, movement artefact containing signal is depicted by the solid black line, 
and the estimation of the movement artefact is indicated by the dashed blue line. Three 
estimation results are presented qualitatively in Fig. 3; the plot (a) for the case when only 
accelerometer data is used to estimate, the plot (b) presents the estimation result when 
accelerometer and gyroscope data are used in the modelling and lastly bottom-most plot 
(c) shows the estimation result when all the nine-channel IMU data, namely accelerom-
eter, gyroscope and magnetometer, were used. This qualitative representation indicates 
that the more IMU channels that were used to model, the better the estimation was, and 
the best estimation was achieved when all the nine channels of IMU data available were 
used.

The quantitative metric, to assess the performance of the artefacts removal tech-
nique used in this study was the improvement in SNR which was calculated according 
to the Eq. (5) described in the previous section. This same metric and calculation was 
also used in several other research related to artefacts removal techniques presented 
in [16, 22, 32, 39]. In this respect, Table 1 represents the data of SNR improvement’s 
quantitative data for the three movement artefact segments indicated in Fig. 2, which 
belongs to the data recorded from the subject 1 and for the data from the subject 
2. For all the six segments, SNR improvements have been calculated in the cases of 

Fig. 2  Raw data of one channel NIRS signal containing 3 noise segments indicated by vertical blue lines and 
corresponding 9 channel IMU signals
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using three channels (only accelerometer data), six channels (accelerometer and gyro-
scope data) and nine channels (accelerometer, gyroscope and magnetometer). The 
data presented in Table 1 indicates that for all the movement artefact segments, SNR 
improvements are higher when gyroscope and magnetometer data are used along 
with the accelerometer data. Specifically, for the first movement artefact segments 
from subject 1, we had 11.33 dB SNR when six channels were used, which was 3.41 dB 
higher than the SNR when only three channels were used, and the SNR was 14.77 dB 
when nine channels were used which was 6.85  dB higher than the SNR we got for 
three channels only. Similarly, for the second movement artefact segment, we had 
15.11 dB SNR which was 6.18 dB higher than the SNR when we only used three chan-
nels IMU data and for the third movement artefact segment, we had 13.92 dB SNR 
which was 8.61 dB higher than the result for the three channels only case. Addition-
ally, we computed the correlation between the artefacts removed signal and reference 

Fig. 3  The estimated noise signal (blue dotted line) and the original signal (black solid line) for the second 
noise segment depicted in Fig. 2. Plot (a) shows the result when 3 channels were used, plot (b) when 6 
channels were used and plot (c) when 9 channels were used

Table 1  SNR improvement of  6 representative segments of  noise in  the  recording 
from the subject 1 and 2, when various number of IMU channel data were used to remove 
the artefacts

The correlation coefficient presented in the table is between artefacts removed signal and the ground truth signal

Subjects Accel. Accel. + Gyro. Accel. + Gyro. + Magn.

SNR (dB) Correlation SNR (dB) Correlation SNR (dB) Correlation

Sub 1 Seg 1 7.92 0.79 11.33 0.82 14.77 0.83

Sub 1 Seg 2 8.93 0.89 12.66 0.92 15.11 0.93

Sub 1 Seg 3 5.31 0.94 13.92 0.96 13.92 0.96

Sub 2 Seg 1 7.35 0.96 13.44 0.97 19.08 0.97

Sub 2 Seg 2 3.04 0.77 5.29 0.78 11.95 0.98

Sub 2 Seg 3 11.56 0.94 14.31 0.95 17.46 0.95
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ground truth signal for each movement artefact segments which are also presented 
in Table  1. For the first movement artefact segment, the correlation coefficient was 
increased from 0.79 to 0.82 when six channels IMU data were used to remove the 
movement artefacts than when only three channels data were used, and this value 
increased to 0.83 when nine channels IMU data were used. In case of the second 
movement artefact segment, the correlation coefficient was increased from 0.89 to 
0.92 and 0.93 when six channels and nine channels IMU data were used respectively 
to remove the movement artefacts contribution in the signals. For the third move-
ment artefact segment the correlation between the movement artefact removed signal 
and the reference ground truth signal was 0.94 when only three channel IMU data 
were used to remove the artefacts and it was 0.96 when six or nine channel IMU data 
were used for artefacts removal.

In the data recorded from the second subject, another three movement artefact seg-
ments were selected and all the similar processing described above were applied on 
those movement artefact segments. The quantitative SNR improvements for those 
segments are also presented in the data Table 1 which shows the similar trend in the 
SNR improvements for subject 1. In case of movement artefact segments from the 
subject 2, we had 19.08  dB SNR when we used nine channels IMU data which was 
11.73 dB higher than the result for three channels usage case for the first movement 
artefact segment. Likewise, for the second movement artefact segment from subject 
2, we had 11.95  dB SNR and for third segment 17.46  dB when nine channels IMU 
data were used which were 8.91 and 5.90 dB higher than when six and nine channels 
IMU data were used, respectively. In respect of correction coefficient, the first move-
ment artefact segment for this subject had a coefficient of 0.96 between movement 
artefact removed signal and referenced ground truth signal when three channels IMU 
data were used and it 0.97 when six or nine channels IMU data were used. For the 
second movement artefact segment, the correlation coefficient was increased from 
0.77 to 0.78 and 0.99 when we increased the number of IMU channels used in arte-
fact removal to six and nine channels respectively from only three channels data. The 
last movement artefact segment from this subject had a correlation coefficient of 0.94 
between the movement artefact removed signal and the reference ground truth when 
three channels IMU data were used to remove movement artefacts and 0.95 when six 
or nine channel IMU data were used.

The qualitative result of removing the artefacts that contaminated the abovemen-
tioned three segments present in the recording from subject 1 is presented in Fig. 4 
which are plotted with the solid blue lines, whereas the artefacts-free NIRS signals 
from the other channel are also concurrently plotted in the same figure using black 
solid lines to indicate the empirical comparisons. Similar to the presentation used in 
Fig. 3, the result of a various number of IMU channel data usage is presented in Fig. 4, 
plot (a) represent the result when only accelerometer data were used, plot (b) when 
accelerometer along with the gyroscope data were used and finally plot (c) depicts the 
result when accelerometer, gyroscope and magnetometer data were used altogether.

In case of quantitative results, it was easy to determine the best outcome of the 
artefacts removal as it was obvious from exact values of SNR presented in the data 
table that the higher the SNR, the better the result is. But in case of empirical result, 
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there is no direct way to determine the best. In this respect, in the current study, we 
assumed the artefact-free NIRS channel to be the reference ground truth signal, to 
compare empirically. Empirically, we can say that the closer the variance of NIRS sig-
nal after the artefacts removal to the variance of the referenced ground truth signal, 
the better the result is. In that sense, we can say the best result was achieved when 
nine channels of IMU data were used, which is also consistent with SNR improve-
ment data presented in Table 1 and apparent from the plot (c) in Fig. 4.

The NIRS signal from the subject 3 and 4 were recorded using dual wavelength NIR 
light source, so that it can be converted to oxygenated (HbO2) and deoxygenated (Hb) 
hemoglobin concentration changes with typical processing. The movement artefacts 
were removed from the raw NIRS signal using IMU signals as described in the previous 
section and then converted the denoised signals to HbO2 and Hb changes using typical 
Beer–Lambert law [36]. Three noise segments data from each of the two subjects are 
presented in Fig. 5. Each of the six plots in Fig. 5 present the HbO2 and Hb change when 
no denoising was used, when only accelerometer signals were used, when accelerometer 
and gyroscope signal were used and when accelerometer, gyroscope and magnetometer 
signal were used for artefacts estimation and removal. In all the plots there were sub-
stantial changes in HbO2 and Hb concentration around the movement artefacts contain-
ing parts of the signals when no denoising were used. For all the six artefact segments, 
HbO2 and Hb changes curve get closer to the minimal change when artefacts estimation 
and removal was done for the artefacts containing part of the NIRS signal, and the case 
of estimating the artefacts by accelerometer, gyroscope and magnetometer result better 
than the case of using only accelerometer for the estimation and removal of the move-
ment artefacts.

Fig. 4  Qualitative representation of the NIRS signal after replacing the 3 artefacts containing segments 
by de-noised signal along with the referenced ground truth signal from the other NIRS channel which is 
analogous to “ground truth” signal. Plot (a) shows the result when three channels were used, plot (b) when six 
channels were used and plot (c) when nine channels were used
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Discussion
In this paper, a method of using multi-channel IMU data to successfully remove move-
ment artefacts from NIRS signal has been presented. The qualitative and quantitative 
results show that implementation of multi-channel IMU data resulted in more accurate 
modelling of motion artefacts in NIRS, and thus we obtained more accurate motion 
artefacts free NIRS signal which can be used to detect physiological changes accurately.

After the first massive production of micro-electromechanical-system (MEMS) 
chip based accelerometer in about 1993 [40] it was extensively used in other fields 
such as automobile, aerodynamics and so on; but there was a sloth progress in effec-
tively using such devices in the field of bio-signal acquisition due to the reduction of 
comfort of the subject [32] which results from the extra wiring and placement of this 
additional sensors. Moreover, placing the accelerometer sensor close to the NIR sen-
sor was also another challenge as the NIRS system used in most of the research, uti-
lized the optical fiber based light transport system [41] to and from the subject body. 
This close placement of the accelerometer to the light coupling to the subject body 

Fig. 5  Effect of estimating and removing movement artefacts using multi-channel IMU signals on HbO2 and 
Hb change detection
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is necessary to record motion artefacts caused by the subject movement as well as 
due to the NIR sensor shifting [32]. These challenges were mitigated in this study by 
careful selection of the components used in the design of the system and making the 
system as wearable as possible, for instance, the IMU chip, MPU9250, used in the sys-
tem is only 3 mm by 3 mm in dimension and this IMU was attached to the body of the 
NIR detector sensor OPT101 chip to record the true motion of this detector as well as 
the movement of the subject body. The entire wireless NIRS system used in this study 
has a dimension of only 30 mm by 48 mm and power by a small lithium-ion battery, 
which makes it a true wearable NIRS data acquisition system. Considering the subtle 
details like those presented above could be helpful in designing wearable NIRS sys-
tem incorporating sophisticated chip like IMU which will improve the overall system 
performance.

The main challenge related to the hardware of the system in this study came from 
the strategy used in the acquisition of the multi-channel NIRS signals. As already 
mentioned earlier, to use the effective method of quantitative evaluation of the result 
of movement artefacts removal success, the two NIRS detectors were placed as close 
as possible with the target of recording a very similar version of NIRS signal where 
one of them are intentional movements’ artefacts induced. Due to this closeness, 
inducing artefacts in one NIRS channel while leaving another channel undisturbed 
was tough and a lot of attempts took place to achieve this data acquisition strategic 
goal.

The effectiveness of the regressive modelling, like the ARX used in this study to 
estimate motion artefacts, highly depends on how much motion related information 
present in the exogenous input. The raw data presented in Fig.  2 has an important 
finding in this context, the first and the last artefact segments have a high impact 
on the gyroscope data whereas, for the middle artefact segment, the accelerometer 
data have a prominent impact. This finding implies that, using more channels of IMU 
data increases the probability of capturing the motion-related data in at least some 
of the channels which in turn increase successful estimation of the movement arte-
facts. In this respect, the SNR improvement results presented in Table 1 depicts that 
SNR improvement increased if the number of IMU data channel used in the model-
ling were increased except for the movement artefact segment 3 from the subject 1. 
For the movement artefact segment 3 from subject 1, the SNR improvement value for 
the six channel and nine channel IMU data, are same, which is due to the fact that the 
last three channel of the IMU data (the magnetometer data) had insignificant contri-
bution on the artefact estimation. This insignificant contribution might have two rea-
sons, either the artefact was indifferent to the variable the sensor was sensing or the 
sensor itself was not sensitive enough to detect the subtle change in that variable. On 
the other hand, for the movement artefact segment 2 from subject 2 in Table 1, the 
magnetometer data has a high contribution to the SNR improvement result. Besides 
the SNR improvement results, correlation coefficients between the movement arte-
fact removed signal and the referenced ground truth signal are presented in Table 1 
for both subjects 1 and 2 for each of the movement artefact segments as another 
quantitative improvement indicators. This indicator signifies how much alike the sig-
nals are in respect of covariance by a single unitless quantity ranging from − 1 to + 1 
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where values closer to + 1 indicates stronger correlation between the signals [42]. For 
all the movement artefact segments the correlation coefficients increase towards + 1 
when six channels of IMU data were used than only when three channels IMU data 
were used to estimate and remove the movement artefacts. When nine channel IMU 
data were used to estimate and remove the movement artefacts, the correlation coef-
ficients remained same for some of the segments which is analogues to the case of 
SNR improvements after artefact removal from the third movement artefact segment 
from the first subject.

The data from the subject three and four are presented in Fig. 5. In the experiments 
with these two subjects, the movement artefacts in the NIRS were induced by natu-
ral head movements rather than the simulated movement artefacts as presented for 
the first two subjects. Furthermore, the NIRS signals were converted into oxygenated 
(HbO2) and deoxygenated (Hb) hemoglobin change using Beer-Lambert law [36]. In 
contrast to the experiments with simulated artefacts where validation of the artefacts 
removal was assessed by the SNR and correlation improvement, the same validation 
method cannot be used in case of natural movement artefacts removal due to the lack 
of any reference ground truth signal. Considering that there was a minimal hemody-
namic change during a short duration of the natural movement occurrence, a minimal 
change in concentration of the HbO2 and Hb was used to determine the performance 
of the artefacts removal associated with natural movements. The result presented in 
Fig.  5 demonstrates that with additional gyroscope sensors and magnetometer, the 
artefact in NIRS signals can be better removed as revealed by the minimal change 
of HbO2 and Hb signals before, during, and after the movement artefacts occurred. 
This suggests that, in addition to the accelerometer in the IMU sensor, gyroscopes 
and magnetometer in the IMU are complementary to the accelerometer for a better 
modelling of the movement artefacts, which as a result, leads to better removal of 
the movement artefact in NIRS signals. A previous study [21] showed that the level 
of negative correlation between Hb and HbO2 get reduced when movement occur. 
In case of this study, the duration of the natural head movement resulting artefact 
in NIRS signals was relatively short and hypothetically, there would not be any sig-
nificant hemodynamic change during this short period. Based on this assumption, the 
distorted waveform of Hb and HbO2 signals as depicted in Fig. 5, was due to the arte-
facts contaminated in the NIRS signal. As the distorted Hb and HbO2 waveform was 
due to the artefacts, the distortion should be independent to the real hemodynamic 
changes of Hb and HbO2, which might be positively or negatively correlated. In the 
experiments performed in this study, the data showed a major negative correlation 
between the oxyhaemoglobin and deoxyhemoglobin signal; however, after removing 
the distortion induced by the artefact, the level of Hb and HbO2 kept the same as the 
baseline, which was in agreement with the hypothesis.

It is to be noted here, the selection of the movement artefact segments were done 
manually by keeping track of the time of movement artefact occurrence and later visual 
inspections on the raw IMU data and the raw NIRS signal. This manual detection of the 
segment will be automated in future based on IMU and NIRS signal feature changes. 
Though this study was not purposed to evaluate the quality of NIR signal from the cus-
tom-made system, we did perform preliminary evaluation—the raw NIRS signal was 
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visually inspected for the presence of heart beating signal, showing whether the signal 
was correctly acquired. However, the accuracy and quality of the NIR signals using the 
custom-made system needs further well-controlled test, particularly, the correlation 
with brain functions. This will be the goal for the future study.

Although the current results presented in this paper showed a significant improve-
ment in artefacts removal, there are still a lot of scopes to improve the developed tech-
nique. From the system identification point of view, any movement artefact impact on 
the NIRS signal is unpredictable in nature as they might differ in amplitudes, directivi-
ties, latencies, frequency contents and so on [41]; moreover, it has been observed in this 
research that various IMU channel might have different level of artefacts impact in dif-
ferent cases, which is another variability probably arise from sensor or from the nature 
of the artefact itself.

Conclusion
In the previous studies, accelerometer was used in adaptive filtering for movement arte-
facts registering and estimating its impact in NIRS signal. The theoretical application to 
accelerometer-based motion artefact removal is effective in mechanical systems, but the 
organic movements of a human subject are not only subjected to linear movements, but 
simultaneous rotation and multi-directional displacements. These motions are roughly 
captured by the accelerometer but are effortlessly quantified with the use of the addi-
tional magnetometer and gyroscope. Thus, movement artefacts related signals detected 
by other sensors from IMU, along with the accelerometer signal, result in better esti-
mation of the movement artefacts in the detected NIRS signal. In this study, the result 
showed that using the accelerometer, gyroscope and magnetometer signals from IMU 
sensor provide more accurate modelling of motion artefacts and thus improves the SNR 
improvement yields.
Authors’ contributions
MS was responsible for writing the manuscript. MS, SB and RA were responsible for data acquisition, data analysis and 
algorithmic development. MS, RR and RM contributed in data acquisition system hardware and software development. 
OB was responsible for overall planning of the study. All authors read and approved the final manuscript.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets generated during and/or analyzed during the current study are available from the corresponding author on 
reasonable request, without breaching participant confidentiality.

Consent for publication
Consent for publication of individual data has been obtained from all the participants of the study.

Ethics approval and consent to participate
Not applicable.

Funding
This research is partly supported by National Science Foundation (CNS-1552163).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 March 2018   Accepted: 1 September 2018



Page 15 of 16Siddiquee et al. BioMed Eng OnLine  (2018) 17:120 

References
	1.	 Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 

1997;20:435–42.
	2.	 Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) devel-

opment and fields of application. Neuroimage. 2012;63:921–35. https​://doi.org/10.1016/j.neuro​image​.2012.03.049.
	3.	 Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, et al. A review on continuous wave func-

tional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage. 2014;85:6–27. https​
://doi.org/10.1016/j.neuro​image​.2013.05.004.

	4.	 Scheeren TWL, Schober P, Schwarte LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): back-
ground and current applications. J Clin Monit Comput. 2012;26:279–87. https​://doi.org/10.1007/s1087​7-012-9348-y.

	5.	 Jobsis F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. 
Science (80-). 1977;198:1264–7. https​://doi.org/10.1126/scien​ce.92919​9.

	6.	 Oemrawsingh RM, Cheng JM, García-García HM, van Geuns R-J, de Boer SPM, Simsek C, et al. Near-infrared spectros-
copy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol. 2014;64:2510–8.

	7.	 Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ. Dynamic near-infrared spectroscopy measurements in 
patients with severe sepsis. Shock. 2007;27:348–53.

	8.	 León-Carrion J, Damas-López J, Martín-Rodríguez JF, Domínguez-Roldán JM, Murillo-Cabezas F, Barroso y Martin JM, 
et al. The hemodynamics of cognitive control: the level of concentration of oxygenated hemoglobin in the superior 
prefrontal cortex varies as a function of performance in a modified Stroop task. Behav Brain Res. 2008;193:248–56.

	9.	 Cui X, Bray S, Bryant DM, Glover GH, Reiss AL. A quantitative comparison of NIRS and fMRI across multiple cognitive 
tasks. Neuroimage. 2011;54:2808–21. https​://doi.org/10.1016/j.neuro​image​.2010.10.069.

	10.	 Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U. Near infrared spectroscopy (NIRS): A new tool to study hemo-
dynamic changes during activation of brain function in human adults. Neurosci Lett. 1993;154:101–4.

	11.	 Holper L, Muehlemann T, Scholkmann F, Eng K, Kiper D, Wolf M. Testing the potential of a virtual reality neuroreha-
bilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless 
functional near-infrared spectroscopy (fNIRS). J Neuroeng Rehabil. 2010;7:1–13.

	12.	 Salehizadeh SMA. Motion and noise artifact detection and vital signal reconstruction in ECG/PPG based wearable 
devices. Dr Diss. 2015. http://digit​alcom​mons.uconn​.edu/disse​rtati​ons/980. Accessed 26 Feb 2018.

	13.	 Noponen TEJ, Kotilahti K, Nissilä I, Kajava T, Meriläinen PT. Effects of improper source coupling in frequency-domain 
near-infrared spectroscopy. Phys Med Biol. 2010;55:2941–60.

	14.	 Schweiger M, Nissilä I, Boas DA, Arridge SR. Image reconstruction in optical tomography in the presence of coupling 
errors. Appl Opt. 2007;46(14):2743–56.

	15.	 Scholkmann F, Metz AJ, Wolf M. Measuring tissue hemodynamics and oxygenation by continuous-wave functional 
near-infrared spectroscopy—how robust are the different calculation methods against movement artifacts? Physiol 
Meas. 2014;35:717–34.

	16.	 Sweeney KT, Ayaz H, Ward TE, Izzetoglu M, McLoone SF, Onaral B. A methodology for validating artifact removal 
techniques for physiological signals. IEEE Trans Inf Technol Biomed. 2012;16:918–26.

	17.	 Scholkmann F, Spichtig S, Muehlemann T, Wolf M. How to detect and reduce movement artifacts in near-infrared 
imaging using moving standard deviation and spline interpolation. Physiol Meas. 2010;31:649–62.

	18.	 Molavi B, Dumont GA. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol 
Meas. 2012;33:259–70.

	19.	 Robertson FC, Douglas TS, Meintjes EM. Motion artifact removal for functional near infrared spectroscopy: a com-
parison of methods. IEEE Trans Biomed Eng. 2010;57:1377–87.

	20.	 Barker JW, Aarabi A, Huppert TJ. Autoregressive model based algorithm for correcting motion and serially 
correlated errors in fNIRS. Biomed Opt Express. 2013;4:1366. https​://www.osapu​blish​ing.org/boe/abstr​act.
cfm?uri=boe-4-8-1366. Accessed 26 Feb 2018.

	21.	 Cui X, Bray S, Reiss AL. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correla-
tion between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage. 2010;49:3039–46. https​://doi.
org/10.1016/j.neuro​image​.2009.11.050.

	22.	 Izzetoglu M, Chitrapu P, Bunce S, Onaral B. Motion artifact cancellation in NIR spectroscopy using discrete Kalman 
filtering. Biomed Eng Online. 2010;9:16.

	23.	 Izzetoglu M, Devaraj A, Bunce S, Onaral B. Motion artifact cancellation in NIR spectroscopy using wiener filtering. 
IEEE Trans Biomed Eng. 2005;52:2–5.

	24.	 Hossen A, Muthuraman M, Raethjen J, Deuschl G, Heute U. Discrimination of parkinsonian tremor from essential 
tremor by implementation of a wavelet-based soft-decision technique on emg and accelerometer signals. Biomed 
Signal Process. 2010;5:181–8. https​://doi.org/10.1016/j.bspc.2010.02.005.

	25.	 Lawoyin S, Fei D-Y, Bai O. Accelerometer-based steering-wheel movement monitoring for drowsy-driving detection. 
Proc Inst Mech Eng Part D J Automob Eng. 2015;229:163–73. https​://doi.org/10.1177/09544​07014​53614​8.

	26.	 Lawoyin S, Fei D-Y, Bai O, Liu X. Evaluating the efficacy of an accelerometer–based method for drowsy driving detec-
tion. Int J Veh Saf. 2015;8:165–79. http://dx.doi.org/10.1504/IJVS.2015.06869​1, http://inder​scien​ce.metap​ress.com/
link.asp?targe​t=contr​ibuti​on&id=T3M77​66263​25760​K, https://trid.trb.org/view/1350249.

	27.	 Bai O, Atri R, Marquez JS, Fei D-Y. Characterization of lower limb activity during gait using wearable, multi-channel 
surface EMG and IMU sensors. Int Electr Eng Congr. 2017;1–4. http://ieeex​plore​.ieee.org/docum​ent/80758​72/. 
Accessed 26 Feb 2018.

	28.	 Lawoyin S, Liu X, Fei DY, Bai O. Detection methods for a low-cost accelerometer-based approach for driver drowsi-
ness detection. Conf Proc IEEE Int Conf Syst Man Cybern. 2014;2014:1636–41.

	29.	 Lawoyin SA, Fei D-Y, Bai O. A novel application of inertial measurement units (IMUs) as vehicular technologies 
for Drowsy driving detection via steering wheel movement. Open J Saf Sci Technol. 2014;04:166–77. https​://doi.
org/10.4236/ojsst​.2014.44018​.

https://doi.org/10.1016/j.neuroimage.2012.03.049
https://doi.org/10.1016/j.neuroimage.2013.05.004
https://doi.org/10.1016/j.neuroimage.2013.05.004
https://doi.org/10.1007/s10877-012-9348-y
https://doi.org/10.1126/science.929199
https://doi.org/10.1016/j.neuroimage.2010.10.069
http://digitalcommons.uconn.edu/dissertations/980
https://www.osapublishing.org/boe/abstract.cfm%3furi%3dboe-4-8-1366
https://www.osapublishing.org/boe/abstract.cfm%3furi%3dboe-4-8-1366
https://doi.org/10.1016/j.neuroimage.2009.11.050
https://doi.org/10.1016/j.neuroimage.2009.11.050
https://doi.org/10.1016/j.bspc.2010.02.005
https://doi.org/10.1177/0954407014536148
http://dx.doi.org/10.1504/IJVS.2015.068691
http://inderscience.metapress.com/link.asp?target=contribution&id=T3M776626325760K
http://inderscience.metapress.com/link.asp?target=contribution&id=T3M776626325760K
http://ieeexplore.ieee.org/document/8075872/
https://doi.org/10.4236/ojsst.2014.44018
https://doi.org/10.4236/ojsst.2014.44018


Page 16 of 16Siddiquee et al. BioMed Eng OnLine  (2018) 17:120 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	30.	 Virtanen J, Noponen T, Kotilahti K, Virtanen J, Ilmoniemi RJ. Accelerometer-based method for correcting signal 
baseline changes caused by motion artifacts in medical near-infrared spectroscopy. J Biomed Opt. 2011;16:087005. 
https​://doi.org/10.1117/1.36065​76.

	31.	 Kim SH, Ryoo DW, Bae C. Adaptive noise cancellation using accelerometers for the PPG signal from forehead. Conf 
Proc IEEE Eng Med Biol Soc. 2007;2007:2564–7.

	32.	 Izzetoglu M, Devaraj A, Bunce S, Onaral B. Motion artifact cancellation in NIR spectroscopy using Wiener filtering. 
IEEE Trans Biomed Eng. 2005;52:934–8.

	33.	 Kim CK, Lee S, Koh D, Kim BM. Development of wireless NIRS system with dynamic removal of motion artifacts. 
Biomed Eng Lett. 2011;1:254–9.

	34.	 Cooper RJ, Selb J, Gagnon L, Phillip D, Schytz HW, Iversen HK, et al. A systematic comparison of motion artifact cor-
rection techniques for functional near-infrared spectroscopy. Front Neurosci. 2012;6:1–10.

	35.	 Widrow B, Williams CS, Glover JR, McCool JM, Hearn RH, Zeidler JR, et al. Adaptive noise cancelling: principles and 
applications. Proc IEEE. 1975;63:1692–716.

	36.	 Cope M. The development of a near infrared spectroscopy system and its application for non invasive monitory 
of cerebral blood and tissue oxygenation in the newborn infants.  Doctoral thesis, University of London. 1991. p. 
1–342. http://disco​very.ucl.ac.uk/13179​56/. Accessed 26 Feb 2018.

	37.	 Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EOR. Characterization of the near infrared absorption spectra of 
cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta 
Bioenergy. 1988;933:184–92.

	38.	 Wang Y, Zheng Y, Bai O, Wang Q, Liu D, Liu X, et al. A multifunctional wireless body area sensors network with real 
time embedded data analysis. Circuits Syst Conf BioCAS. 2016;2016(2017):508–11.

	39.	 Sweeney KT, McLoone SF, Ward TE. The use of ensemble empirical mode decomposition with canonical correlation 
analysis as a novel artifact removal technique. IEEE Trans Biomed Eng. 2013;60:97–105.

	40.	 Boser BE, Howe RT. Surface micromachined accelerometers. IEEE J Solid-State Circ. 1996;31:366–75.
	41.	 Brigadoi S, Ceccherini L, Cutini S, Scarpa F, Scatturin P, Selb J, et al. Motion artifacts in functional near-infrared spec-

troscopy: a comparison of motion correction techniques applied to real cognitive data. Neuroimage. 2014;85:181–
91. https​://doi.org/10.1016/j.neuro​image​.2013.04.082.

	42.	 Walplte RE, Myers RH, Myers Key SL. Probability and statistics for Engineers and Scientists. 9th ed. New Jersey: Pren-
tice Hall; 2011.

https://doi.org/10.1117/1.3606576
http://discovery.ucl.ac.uk/1317956/
https://doi.org/10.1016/j.neuroimage.2013.04.082

	Movement artefact removal from NIRS signal using multi-channel IMU data
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Data acquisition method
	Sensor system
	ARX modelling and artefacts removal
	SNR improvement
	Subjects and experimental design

	Results
	Discussion
	Conclusion
	Authors’ contributions
	References




