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Background
Breathing frequency (BF) is a vital biomarker utilized for diagnostics, and sport physiol-
ogy applications. However, measuring BF using respiratory sensors over long-term mon-
itoring sessions can be uncomfortable. Indirect monitoring of respiratory frequency can 
be conducted in different modalities, including video-based [1], electrical impedance 
pneumography-based [2] or wearable accelerometer-based respiration reconstruction 
[3]. Single or multiple channel electrocardiography (ECG) is one of the well-established 
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Background: We study the estimation of breathing frequency (BF) derived from wear-
able single-channel ECG signal in the context of mobile daily life activities. Although 
respiration effects on heart rate variability and ECG morphology have been well estab-
lished, studies on ECG-derived respiration in daily living settings are scarce; possibly 
due to considerable amount of disturbances in such data. Yet, unobtrusive BF estima-
tion during everyday activities can provide vital information for both disease manage-
ment and athletic performance optimization.

Method and data: For robust ECG-derived BF estimation, we combine the respiratory 
information derived from R–R interval (RRI) variability and morphological scale variation 
of QRS complexes (MSV), acquired from ECG signals. Two different fusion techniques 
are applied on MSV and RRI signals: cross-power spectral density (CPSD) estimation and 
power spectrum multiplication (PSM). The algorithms were tested on large sets of data 
collected from 67 participants during office, household and sport activities, simulat-
ing daily living activities. We use spirometer reference BF to evaluate and compare our 
estimations made by different models.

Results and conclusion: PSM acquires the least average error of BF estimation, 
%D

2σ
= 9.86 and %E = 9.45 , compared to the reference spirometer values. PSM offers 

approximately 25 and 75% less error in comparison with the CPSD fusion estimation 
and the estimation by those two exclusive sources, respectively. Our results demon-
strate the superiority of both of the fusion approaches, compared to the estimation 
derived from either of RRI or MSV signals exclusively.
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modalities explored for BF and respiratory pattern reconstruction, known as ECG-
derived respiration (EDR).

EDR was introduced during the 80s in [4, 5]. The idea was based on the fact that respir-
atory sinus arrhythmia (RSA)—which is obtainable from heart rate variability (HRV)—
correlates with the respiratory pattern. Additionally, the beat-to-beat morphological 
variation of ECG signal, e.g. modulation of R-peak amplitudes or areas under R-wave, is 
largely a result of inhale and exhale. Thus, it is feasible to derive respiratory information 
such as the BF indirectly by analyzing a single-channel ECG signal.

The development of wearable devices has made it practical and inexpensive to moni-
tor the biosignals of subjects who can benefit from continuous monitoring, including 
patients suffering from sleep apnea [6–8], and professional athletes managing their exer-
cise regimes according to the biosignal feedback [9]. Consequently, there is an increasing 
demand on the biosignal processing algorithm development to enhance the capabilities 
of wearables and/or to introduce new features.

In order to rely on BF reconstruction from single-channel wearable ECG signal, the 
algorithm employed and its performance should be validated across a variety of daily 
activities. We found a few studies about BF estimation during physical activities using 
single-channel ECG signals. However, most of the research in this discipline has contrib-
uted to the resting state EDR [10–12]. What is more, severe challenges are introduced to 
ECG processing in physical activity contexts, including variable mean heart rate (HR), 
high level of movement artifacts and introduction of cardio–locomotion coupling (CLC) 
components [13, 14].

In this paper, we hypothesize that the combined information taken from different 
existing sources of respiratory signal in ECG indices yields a more accurate and relia-
ble BF estimation. To this end, we tested two frequency-domain data fusion techniques 
on two respiratorily modulated indices. Namely, we apply cross-power spectral density 
(CPSD) estimation and power spectrum multiplication (PSM) on R–R interval variabil-
ity (RRI) and morphological scale variation of QRS complexes (MSV). We tested our 
hypothesis on a data set collected from 67 subjects in real-life activities such as office, 
households and sports.

Methods
Preprocessing

The first step is to preprocess the raw ECG and extract the RRI and MSV indices. Initially, 
we detect the R-peak locations using the conventional Pan-Tompkins method [15]. Then, 
RRI is simply obtained by computing the intra-beat intervals and MSV is constructed by 
the procedure introduced in [16], following the R-peak delineation. MSV at each candi-
date R-time instant is the morphological shape difference of the candidate QRS complex 
with the mean shape of QRS-complexes. According to the literature, these signals poten-
tially contain respiratory components within their spectrum [4, 16]. Figure 1 exemplifies 
the constructed signals as well as the original ECG for a short time window.

This preprocessing step is followed by signal conditioning wherein anomalies from 
RRI are detected and replaced with linear interpolation to keep the number of beats 
unaltered. This ectopic beat detection and editing is explained in more details in the 
following subsection.
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Ectopic beat detection and editing

In practice, the RRI signal derivation must be followed by ectopic and anomaly beat 
detection and editing [17, 18]. Especially when the data is recorded during physical 
activities via wearables, the signal quality of ECG is generally lower, which can cause 
problems in the R-peak detection. During such activities, motion artifacts and ectopic 
beats are also more abundant. Hence, ectopic beat detection and editing is an impor-
tant preprocessing step in HRV analysis.

Let’s assume that RRI signal consists of n samples, and every sample can be 
expressed as RRi. The following steps illustrate the proposed procedure of anomaly 
detection and editing:

(a) Detect the evident outliers and edit them using linear interpolation. Although the 
HR ranges from 60 beats/min (bpm) to 200(bpm) in our dataset, we define a wider 
range for healthy intervals between 250 and 1500 ms. This is to ensure that healthy 
controlled beats are not discarded and to make the outlier detector more general 
for any dataset.

(b) Construct an n-by-three dimensional feature matrix describing local HRV around 
each beat. More precisely, the following three descriptors are calculated for each 
beat:
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Fig. 1 Derived signals from ECG, potentially containing respiratory frequency information. The first row is a 
30-s ECG signal and in the next rows corresponding RRI and MSV signals are depicted, respectively
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• RRi,

•  | RRi − RRi−1 | + | RRi − RRi−2 |

• | RRi − RRi+1 | + | RRi − RRi+2 |

At the borders, use symmetric padding by mirroring the samples.

({RR1,RR2,RR3, . . . ,RRn−2,RRn−1,RRn} =⇒

{RR3,RR2,RR1,RR2,RR3, . . . ,RRn−2,RRn−1,RRn,RRn−1,RRn−2}).

Duration unit of millisecond is used.

(c) Normalize the feature matrix column-wise for zero-mean and unit-standard devia-
tion.

(d) A multivariate Gaussian distribution is fitted on the feature matrix using 
µ ∈ IR3 and the covariance matrix of features σ ∈ IR3×3 . Given the feature set 
{x(1), x(2), . . . , x(n)} , where every x(i) ∈ IR3 , 

 The model can be fitted by computing 

 and 

(e) Detect as anomalous beats those with p(x(i)) ≤ ǫ where ǫ is a threshold value. The 
value of ǫ tunes the strictness of the anomaly detection and is adjusted according to 
the HR level. In this work ǫ is set in the range of [10−11, 10−5] , where lower range 
was used for high exercise intensity data, and upper range for non-physical context.

(f ) Edit the detected anomalies using linear interpolation by nearby controlled beats 
to keep the same number of beats. Linear interpolation is selected because it is a 
widely used method.

(g) Steps (b) to (f ) are iterated as long as there is a newly detected anomaly, otherwise 
the procedure is terminated.

After a few iterations—the number of which depending on the quality of the signal, 
number of ectopic beats and the value of ǫ—the RRI signal is prepared for further 
steps. All the ectopic beats are replaced with the interpolated values in the MSV sig-
nal as well. Interpolation is made using a linear model over the MSV controlled beats.
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Spectral analysis

Naturally, the heart is beating irregularly. Hence, the constructed signals (RRI and MSV) 
are not evenly sampled. Therefore, we resample the signals to make them equidistant 
which also prepares them for spectral analysis, as suggested in [19]. We interpolate the 
signals by 8 Hz sampling frequency and compute their baseline using a 5-s window mov-
ing average smoothing function. We apply the standardization procedure in [20] for cor-
rection of mean HR, induced by physical activities as follows: The baseline is subtracted 
from the signal and divided up by the baseline, i.e. (signal-baseline)/baseline.

The HRV spectral components during physical activities differs from those of resting 
condition [14]. During steady state resting condition, high frequency (HF) components 
of HRV spans the range of [0.15 Hz 0.4 Hz] [21], but during exercise this range is rede-
fined to be [0.15 Hz HRm

2
], in which HRm

2
 is the half of local mean HR1 in Hertz.

Considering the heart as a natural signal sampler with the sampling frequency of HRm, 
HRm
2

 is the intrinsic Nyquist frequency of HRV signal, meaning that interpretable physi-
ological components should fall within the range of HF. Aliasing phenomenon of the 
components over this intrinsic Nyquist frequency of HRV signal might lead to misin-
terpretation of autonomic nervous system (ANS) activity. For instance, let’s assume 
an abnormal BF just a bit over the intrinsic Nyquist frequency, e.g. HRm

2
+�F  . Due to 

the sampling theorem, it will fold back into the HF range of interest at the frequency of 
HRm
2

−�F  . In the spectral analysis this could lead into misguided detection of BF at this 
lower frequency, instead of the higher actual one. Speaking of which, a prevalent factor 
that might influence the spectral interpretation of HRV signal is CLC components that 
arise from cadence during walking or running; or pedaling frequency during cycling [13, 
14]. Because of the mentioned aliasing phenomenon, these components will fold back to 
the HF range when they exceed the Nyquist frequency. The folded components might 
possess significant energy level compared to the energy at BF at some time instants. Our 
proposed fusion models aim to highlight the joint BF components in both signals and 
attenuate the influence of existing disturbances exclusively in either of those signals.

For spectral analysis, smoothed pseudo Wigner–Ville distribution (SPWVD) is pre-
ferred as the time–frequency representation model in this study. It is a nonparametric 
quadratic model and offers high time and frequency resolution [22]. According to [22], 
we define the SPWVD of x(n) as Eq. (4)

where x(n) is a discrete signal, rx(n, k) is instantaneous autocorrelation function, n and m 
are the time and frequency indices. f(k) and t(p) are the frequency and time smoothing 
normed window, sized 2N − 1 and 2M − 1 , respectively. The first four top sub-figures 
of Fig. 2 shows the two time series (RRI and MSV) as well as their normalized SPWVD 
time–frequency representations.

(4)X(n,m) = 2

N−1∑

k=−N+1

| f (k)2 |

M−1∑

p=−M+1

t(p)rx(n+ p, k)e−
2π jkm
N

1 In this study, local mean HR is derived from the computed baseline of RRI using a 5-s window moving average 
smoothing function.
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Spectral fusion

The existence of energy around the BF range in HRV and morphologically-derived sig-
nals is justified in the literature as noted in the Introduction. Moreover, some of the pos-
sible challenges related to these signals were also described in the previous subsection.

To enhance the estimation of BF particularly during a non-stationary recording sit-
uation (e.g. physical activities), we propose to combine the spectral information of BF 
components of RSA and morphological variation (situated in RRI and MSV signals, 
respectively). We address the spectral fusion in two different ways: by PSM and CPSD 
estimation of MSV and RRI signals. The key point is that potentially there are mutual 

7450 7500 7550 7600 7650

-0.02

0

0.02

A
rb

itr
ar

y 
U

ni
t

7450 7500 7550 7600 7650
-0.5

0

0.5
A

rb
itr

ar
y 

U
ni

t

7450 7500 7550 7600 7650
0

1

2

F
re

qu
en

cy
[H

z]

0

2

4

6

7450 7500 7550 7600 7650
0

1

2

F
re

qu
en

cy
[H

z]

0

2

4

6

7450 7500 7550 7600 7650
0

1

2

F
re

qu
en

cy
[H

z]

0

2

4

6

7450 7500 7550 7600 7650

Time[s]

0

1

2

F
re

qu
en

cy
[H

z]

0

2

4

6

Fig. 2 Preprocessed signals plus the representation of them and their fusions. This figure shows an epoch 
of the time series, RRI and MSV after preprocessing in the first and second top sub-figures. Assuming RRI 
and MSV signals as x and y, time–frequency representations of x and y are depicted in the third and fourth 
sub-figures ( NZ−score{Sxx} and NZ−score{Syy} , respectively). Normalized squared magnitude of CPSD 
( NZ−score{| Sxy |

2} ) is represented in the second last sub-figure. The last spectrogram is the normalized 
spectral multiplication of MSV and RRI ( NZ−score{| Sxx · Syy |} ). NZ−score{.} states as Z-score column-wise 
normalization. The dashed lines over the time–frequency representations are the reference BF



Page 7 of 12Alikhani et al. BioMed Eng OnLine  (2018) 17:99 

joint energies in the spectrum of these two signals, supposedly greater than the back-
ground energy and corresponding to the BF at each time instant. Thus, attempting to 
find the significant joint energy content present in both signals at each time instant 
makes sense, since the influence of unwanted distortions (e.g. CLC components) 
between those two sources might vary.

Element-wise PSM basically enhances the shared joint energy bands and dimin-
ishes the unshared ones [23]. This technique is advantageous in strengthening shared 
energy bands, potentially also the BF component. Assume the time–frequency repre-
sentation of RRI and MSV respectively as Sxx(ti, fj) and Syy(ti, fj) , where i and j represent 
the time and frequency indices. The spectral multiplication at each time and frequency 
index can be computed by element-wise multiplication of the amplitude spectrum 
( Sxx(ti, fj)× Syy(ti, fj) ) and is expressed as | Sxx · Syy |.

The other fusion method CPSD, quantifies the local synchrony among non-stationary 
signals and provides information about the shared power among two time series in a 
given frequency. There are high magnitude values surrounding the correlated compo-
nents of two time series and low magnitude values nearby uncorrelated components. 
Let’s assume x(t) and y(t) as two zero-mean stationary time series, Sxy(t, f ) as the CPSD 
can be defined as (5), where F{.} and E[.] indicate Fourier transform and expectation 
operator [24, 25].

Having said that, Sxy(t, f ) for non-stationary processes can have different definitions and 
therefore variety of methods exist for Sxy(t, f ) estimation of non-stationary signals in the 
literature. In this study we used SPWVD estimator for Sxy(t, f ) , proposed in [25], since it 
has been used on biosignals.

We quantify the coupling between RRI and MSV signals using squared magnitude of 
Sxy(t, f ) , assuming that BF is a joint frequency component among those signals. The sec-
ond last sub-figure of Fig. 2 exemplifies the normalized (column-wise Z-score normali-
zation) squared CSPD magnitude for sample sets of RRI and MSV depicted in the first 
and second sub-figures. Similarly, the normalized spectral multiplication is depicted in 
the last sub-figure. The coupling of the time series in the spectrums (high energy nar-
row band) is closely aligned with the reference BF (depicted as dashed lines) in the last 
two sub-figures. We derive the frequency which owns the maximum power at each time 
instant as the BF estimation.

Results
Data

Since our goal is to evaluate the proposed method in real-life context, data was collected 
from measurements in different activity protocols. In total, there are 67 subjects (30 
female and 37 male) aged from 18 to 60 years who participated in eight different proto-
col phases, including office, household and sport activities. General physical characteris-
tics of the participants are summarized in Table 1.

In the protocol, 4 min of office work (working with computer) and 4 min of emo-
tional stress (video-induced emotion) comprise the office setting. The household 
activities consist of floor sweeping, tidying up and table cleaning, each of which lasts 

(5)Sxy(t, f ) = F
τ→f {E[x(t)y

⋆
(t − τ )]}
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for 4 min. The sport setting includes walking, cycling and running that each similarly 
last for 4 min each. The intensity level of each task is noted in Table 2 as a percentage 
of maximal HR ( HRmax ). A commercially available spirometer, MetaMax 3B (Cortex 
Biophysik GmbH, Leipzig, Germany) and a Polar H10-based (Polar Electro, Kempele, 
Finland) prototype which was modified to produce one-lead ECG were used to record 
the reference respiration and ECG, respectively. The ECG signal voltage resolution 
was approximately 2.44 μV and it was up-sampled to 1 kHz, and spirometer data was 
re-sampled to the rate of 1 sample/s.

Evaluation metrics

The constructed series of estimated BF ( R̂ = {r̂1, r̂2, r̂3, . . .} ) possesses the same fre-
quency (number of samples) as the reference BF ( R = {r1, r2, r3, . . .} ) recorded by the 
spirometer. Thus, we can construct pairs of samples and compute the error between 
those. Two metrics are computed for the performance evaluation. Percentage error 
( %E ) computed in 6, basically penalizes more for equal error in lower reference BF 
range.

Additionally, using Bland–Altman plot, the mean deviation is defined as R− R̂ , where 
the bar denotes the averaging operator. The percentage of pairs of samples differing 
more than the range of R− R̂± 2σ(R) , expressed as %D2σ are reported, where σ(x) is 
the standard deviation of x. In Fig. 3 Bland–Altman plot is depicted for a sample set of 
BF estimation. %D2σ is the percentage of samples beyond the solid line boundaries.

(6)%E =
100

N

N∑

i=1

∣∣∣∣
r̂i − ri

ri

∣∣∣∣

Table 1 General characteristics of participants

Characteristic Mean Min Max

Height (cm) 175 160 195

Weight (kg) 75.4 45.6 122.8

Age (years) 37.9 18 60

BMI (kg/m2) 24.51 14.72 35.5

Table 2 Table of exercise intensity

Mean intensity of activity protocols as a percentage of HRmax

Activity protocol Mean Min Max

Office work 45 28 66

Emotional stress 43 26 73

Floor sweeping 52 35 73

Tidying up 54 38 75

Table cleaning 50 34 77

Walking 52 36 74

Cycling 66 48 83

Running 75 48 91
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Quantitative results

In this subsection, we evaluate the performance of estimated BF by the proposed 
method. The fusion methods, including squared magnitude of CPSD and the PSM-based 
BF estimation were compared with the BF estimation from either of RRI or MSV spec-
trograms [10, 11], using the metrics introduced in the previous subsection. All the soft-
ware implementation and processing are done in MATLAB R2017a.

Table 3 summarizes the average figures computed for different BF estimation meth-
ods. The numbers show that both of the fusion methods outperform the BF estimation 
from either of the RRI or MSV spectrums exclusively. Among the two fusion methods, 
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Fig. 3 Bland–Altman plot of a sample estimation. The BF estimation performance of a sample time series 
illustrated as Bland–Altman plot. The thick dashed line indicates the mean deviation value ( R − R̂ ) and the 
solid lines represent R − R̂ ± 2σ(R) . In this sample, %D2σ = 14.81 and %E = 5.97

Table 3 Table of results

The performance of RRI spectral‑based ( Sxx ) and MSV spectral‑based ( Syy ) BF estimation as well as fusion methods, including 
CPSD‑based ( | Sxy (t, f ) |2 ) and spectral multiplication ( | Sxx · Syy | ) BF estimation over the protocols. For each method, 
average %D2σ and %E is reported and the lowest error in each protocol is written in italics

Activity protocol | Sxy |2 | Sxx · Syy | Sxx Syy

%D2σ %E %D2σ %E %D2σ %E %D2σ %E

Office work 13.09 7.82 8.65 5.61 16.48 11.56 14.08 12.21

Emotional stress 13.62 10.98 9.03 8.68 16.47 11.67 16.70 14.42

Floor sweeping 13.43 11.08 10.74 9.03 22.17 15.77 18.75 11.57

Tidying up 17.96 13.74 14.05 11.50 25.37 17.94 21.25 14.18

Table cleaning 16.91 13.01 9.93 9.05 22.21 15.82 18.51 12.33

Walking 11.31 11.31 8.51 8.74 17.35 15.99 23.00 16.95

Cycling 8.10 9.44 5.40 6.96 21.35 16.97 10.10 11.71

Running 15.59 19.17 12.58 16.05 28.20 24.06 25.16 25.30

Average 13.75 12.06 9.86 9.45 21.20 16.22 18.44 14.83
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the PSM-based BF estimation ( | Sxx · Syy | ) outperforms the other one. Among all the 
protocol phases, cycling acquires the lowest BF estimation error in the chosen metrics. 
In contrast, the running and tidying up phases are the most erroneous BF estimation.

Discussion and conclusion
Computationally efficient methods to boost the performance of BF estimation via 
ECG surrogate signal processing could enlarge the scope of BF monitoring applica-
tions, increase user-acceptance, and provide the users more accurate data. Single-chan-
nel ECG-derived BF estimation was investigated in this paper. Unlike many studies in 
the literature of this discipline, the purpose of our practical approach was to examine 
the performance of methods in a real-life like context. Thus, our database was com-
prised accordingly of different real-life settings, including office, households and sport 
activities.

The existence of breathing component in ECG and feasibility of deriving BF from the 
RSA and morphological variation of the signal is well-recognized in the literature. Nev-
ertheless, the examination of BF estimation during daily activities measured by a single-
channel wearable ECG recorder has not been largely studied. This is most likely due to 
the challenges involved in such a context such as noteworthy movement artifacts, vari-
able and non-stationary HR, and CLC component’s introduction to ECG.

We proposed to fuse two sources of existing respiratory components in ECG, since 
those sources might be differently influenced by noise, movements, physiological fac-
tors such as age and health, as well as aliasing artifacts. Spectral-domain fusion meth-
ods, including CPSD and PSM were applied on RRI and MSV signals, constructed and 
derived from ECG. Table  3 shows that the performance of fusion methods in all the 
activity protocols in a daily-life situation is superior to the BF estimation derived from a 
single source, whether RRI- or MSV-derived BF.

Among the fusion methods, the PSM offers more accurate estimation, compared to 
the CPSD-based estimation. Both fusion methods are computationally efficient, while 
relatively PSM technique is slightly more demanding than the CPSD as two separate 
spectrograms are computed, and then BF is estimated from the multiplied spectrum. In 
CPSD, the computational cost is reduced by avoiding another transform computation 
and then the subsequent multiplication of the spectrograms. Quantitatively in a non-
optimized implementation, for two time series with 130 s of data, the elapsed time for 
computation of PSM fusion is 0.61 s versus 0.19 s for CPSD fusion. These numbers were 
acquired with an Intel(R) Core(TM)i5-3570 processor @ 3.40 GHz and 8 GB of RAM on 
a 64-bit operating Windows 7.

It should also be noted that whereas the PSM only requires sufficient energies to exist 
at the same time for a high reading, the CPSD requires also phase difference stability 
between the two signals [26]. Based on our results provided in Table 3, the superiority 
of spectral multiplication could hence be explained by phase dispersion between the two 
derived time series.
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