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Abstract 

Background:  Most of the objective and quantitative methods proposed for spasticity 
measurement are not suitable for clinical application, and methods for surface electro-
myography (sEMG) signal processing are mainly limited to the time-domain. This study 
aims to quantify muscle activity in the time–frequency domain, and develop a practi-
cal clinical method for the objective and reliable evaluation of the spasticity based on 
the Hilbert–Huang transform marginal spectrum entropy (HMSEN) and the root mean 
square (RMS) of sEMG signals.

Methods:  Twenty-six stroke patients with elbow flexor spasticity participated in 
the study. The subjects were tested at sitting position with the upper limb stretched 
towards the ground. The HMSEN of the sEMG signals obtained from the biceps brachii 
was employed to facilitate the stretch reflex onset (SRO) detection. Then, the difference 
between the RMS of a fixed-length sEMG signal obtained after the SRO and the RMS of 
a baseline sEMG signal, denoted as the RMS difference (RMSD), was employed to evalu-
ate the spasticity level. The relations between Modified Ashworth Scale (MAS) scores 
and RMSD were investigated by Ordinal Logistic Regression (OLR). Goodness-of-fit of 
the OLR was obtained with Hosmer–Lemeshow test.

Results:  The HMSEN based method can precisely detect the SRO, and the RMSD 
scores and the MAS scores were fairly well related (test: χ2 = 8.8060, p = 0.2669; retest: 
χ2 = 1.9094, p = 0.9647). The prediction accuracies were 85% (test) and 77% (retest) 
when using RMSD for predicting MAS scores. In addition, the test–retest reliability was 
high, with an interclass correlation coefficient of 0.914 and a standard error of measure-
ment of 1.137. Bland–Altman plots also indicated a small bias.

Conclusions:  The proposed method is manually operated and easy to use, and 
the HMSEN based method is robust in detecting SRO in clinical settings. Hence, the 
method is applicable to clinical practice. The RMSD can assess spasticity in a quanti-
tative way and provide greater resolution of spasticity levels compared to the MAS 
in clinical settings. These results demonstrate that the proposed method could be 
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clinically more useful for the accurate and reliable assessment of spasticity and may be 
an alternative clinical measure to the MAS.

Keywords:  Spasticity assessment, sEMG, Onset detection, HHT marginal spectrum 
entropy, RMS

Background
Spasticity is a serious and potentially disabling complication of stroke [1]. In the com-
monly accepted definition, spasticity is characterized by an increase in muscle tension 
during passive stretching, which is velocity-dependent and results from the hyperexcit-
ability of the stretch reflex [2, 3]. Accurate and reliable assessment of spasticity is crucial 
for designing optimal treatment plans or evaluating potential effects of treatment inter-
ventions [4, 5].

At present, the dominant clinical method for assessing spasticity is the Modified 
Ashworth Scale (MAS), which provides for great simplicity in clinical assessment, but 
nonetheless represents a semi-quantitative method that depends on subjective physi-
otherapists evaluations based on experience [6–11]. Moreover, the method provides 
ambiguous descriptions such as “more marked (MAS 2), slight increase (MAS 1 and 
MAS 1+) in muscle tone”, which leads to equally ambiguous and imprecise results such 
as “1 to 1+” or “1+ to 2” [5].

The subjective and imprecise assessments of spasticity are not sensitive enough to 
slight changes of patient’s status [12]. They may misestimate the rehabilitation state of 
patients and lead to an inaccurate understanding of the characteristics of spasticity, 
thereby affecting the longitudinal follow-up of patients. They may also undermine the 
evaluation of the performance of therapeutic resources and misjudge the efficacy of an 
intervention in the clinical management of spasticity, thereby affecting the interventions, 
such as dose adjustment of anti-spasticity drugs or design of physiotherapy options.

Many studies have reported on the inaccurate and unreliable results obtained in the 
clinical assessment of spasticity, demonstrating the need to improve assessment accu-
racy and reliability [13–16]. However, most of these proposed methods have been criti-
cized for being too cumbersome and inconvenient to apply in clinical settings [17–20].

Among the proposed methods, the tonic stretch reflex threshold (TSRT) seems to 
be the most promising approach [21]. The stretch reflex threshold (SRT) refers to the 
joint angle at which motoneurons and respective muscles begin to be recruited, and this 
onset of muscle recruitment is referred to as the stretch reflex onset (SRO), which can 
be detected based on surface electromyography (sEMG) activity [22, 23]. The TSRT rep-
resents the angle at which the SRO is detected when the muscle is at rest (i.e., at zero 
stretch velocity).

However, no consensus has yet been attained regarding the detection of the SRO [23]. 
In clinical settings, current approaches for detection of the SRO are mainly based on 
visual interpretation (VI) or time-domain signal analysis methods [24, 25]. These meth-
ods readily result in the erroneous detection of the SRO because sEMG signals are weak 
and vulnerable to interference. Additionally, the estimation of TSRT relies on a number 
of preliminary measurements with different stretching velocities that must be carefully 
undertaken in advance [26]. Finally, spasticity assessment based on the TSRT requires 
measurement of the joint angle and sEMG signal synchronously. It is quite difficult to 
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realize ideal synchronous sampling in an actual testing environment because synchro-
nization errors for separately sampled values always exist. In summary, spasticity assess-
ment methods based on the TSRT are not practicable for clinical settings.

The nature of sEMG signals presents numerous processing challenges. sEMG signal is 
sparsely distributed in the time–frequency domain, and current detection approaches 
only expand signal in the time domain. The more detailed information in each frequency 
component is absent [25]. As such, a time–frequency representation is required to facili-
tate the SRO detection [25]. Moreover, sEMG signals seem to be nonlinear or even cha-
otic in nature. Therefore, nonlinear time series analysis methods, for example, entropy, 
may achieve improved performance over the methods relying on time domain param-
eter [27, 28]. Hence, a signal processing method that combines nonlinear dynamics and 
time–frequency analysis is more suitable for sEMG signal processing.

The Hilbert–Huang transform (HHT) is a relatively new time–frequency analysis 
approach, which is well suited for processing non-linear, non-stationary signals such 
as sEMG signals [29]. HHT marginal spectrum entropy (HMSEN) analysis is based on 
HHT and entropy, and the method of HMSEN has been used and acquired good perfor-
mance in non-linear and non-stationary signal processing [30].

This study proposes a new practical clinical assessment method based on the HMSEN 
and the root mean square (RMS) of sEMG signals. The method detects the SRO based 
on the HMSEN of sEMG signals, and directly assesses spasticity quantitatively based on 
the difference between the RMS of a fixed-length sEMG signal obtained after the SRO 
and the RMS of a baseline sEMG signal.

The objectives of this study are to determine (1) the ability of the HMSEN to detect the 
SRO, (2) the relationship between the spasticity levels obtained clinically based on the 
MAS and the RMS difference measured from sEMG signals, (3) the test–retest reliabil-
ity of the proposed method between days, and finally to (4) develop a clinical practical 
method of spasticity assessment, which is simple to operate and could provide greater 
resolution of spasticity level and better treatment and rehabilitation programs in clinical 
settings.

Methods
Subjects

Twenty-six patients (19 males and 7 females) with stroke participated in the study (mean 
age 53.85 ±  15.39, range 21–80  years). All the subjects were from Anhui Provincial 
Hospital. The study was approved by the ethics committee of Anhui Provincial Hospi-
tal. All subjects gave written informed consent approved by Anhui Provincial Hospital. 
For assuring confidentiality, the subjects were identified through the use of an Arabic 
numeral code, and no identifying information was recorded (i.e., no names, addresses, 
or contact information).

Subjects were included if they had (a) sustained a stroke; (b) elbow flexor spasticity; (c) 
at least a 90° passive range of motion in the elbow joint; (d) good awareness and no seri-
ous cognitive, visual, or auditory disorders.

Subjects were excluded if they had (a) other concurrent central nervous system dis-
orders that may lead to myodystonia, e.g., Parkinson’s syndrome or multiple sclerosis; 
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(b) other concurrent diseases that may compromise movement of the upper limb elbow 
joints, e.g., upper limb fracture or pain.

Each subject’s eligibility was carefully reviewed by an attending physician. The clinical 
characteristics of the 26 participants are listed in Table 1.

Sensing system

Acquisition of the sEMG signal from the biceps brachii was accomplished using three 
electrodes via a three-point differential input. The patient’s skin at the points of elec-
trode application was first wiped with an alcohol-soaked cotton swab to remove sur-
face grease and dander. Two electrodes corresponding to the sEMG differential input 
were placed over the motor point of the biceps brachii muscles along the direction of the 
muscle fibers. The centers of the two electrodes were separated by 20 mm. The remain-
ing electrode was designed as a reference point and was placed over the skin without any 
muscle activity.

The acquired sEMG signals were first filtered and amplified. The sEMG acquisition 
system consisted of a 10  Hz notch filter and a 500  Hz low-pass filter to remove the 
noise of the sEMG signals, and the filtered signals were amplified by a factor of 1000. 
The sEMG signals were then converted via a 12-bit analog to digital converter (ADC) 

Table 1  Characteristics of the clinical test subjects

MAS Modified Ashworth Scale, M male, F female, R right, L left

Subjects Months after stroke Age Gender Affected side MAS score

S1 24 21 M R 2

S2 1 64 M L 1+
S3 24 48 F R 1+
S4 2 76 M R 1

S5 2 65 F L 1

S6 0.5 63 M R 1

S7 5 77 F R 1

S8 13 30 M R 1

S9 7 44 M R 2

S10 2 62 M L 1

S11 3 39 M L 2

S12 38 80 M L 1+
S13 1 52 M R 1

S14 6 55 F L 1

S15 24 38 M R 1+
S16 0.5 64 M L 1

S17 4 37 M R 1

S18 1 54 M L 1

S19 5 57 M R 1+
S20 7 50 F L 2

S21 2 48 F R 2

S22 2 36 M L 1+
S23 8 39 F L 1+
S24 2 73 M R 2

S25 6 61 M L 1

S26 48 67 M L 1+
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(ADS1198, Texas Instruments, Dallas, TX, USA) at a sampling rate of 1 kHz, and trans-
ferred to a personal computer via USB ports. To store and analyze the data obtained 
during the study, data acquisition software were developed using Microsoft Foundation 
Classes (MFC). The trace of sEMG signals was continuously displayed on a monitor, and 
simultaneously stored on the computer. The data were employed to detect the SRO for 
each subject tested and investigate the correlation between the RMSD and MAS scores.

Experimental protocol

Each subject was tested in a seated position with the upper limb stretched toward the 
ground. Prior to assessment, a professional physiotherapist manually stretched the 
upper limb of each subject to assist the subject in adapting to the extension activity to 
avoid inaccuracy of spasticity assessment due to sudden extension. Subsequently, the 
physiotherapist performed a standard MAS scoring for each subject at a proper stretch 
velocity based on his professional experience. Here, we define elbow extension as a 
motion from full flexion, which represents the maximum flexion allowed by the upper 
arm and forearm without making contact between them, to full extension, representing 
the maximum extension allowed by the arm and the forearm. An MAS testing session 
consisted of a single elbow extension (Fig. 1). For purposes of statistical coding, ‘1+’ on 
the MAS was assigned a value of 1.5 in this study. Spasticity was evaluated in two ses-
sions, denoted as test and retest, separated by an interval of 3–5 days. To minimize the 
influence of environmental and stress factors on spasticity assessment, all assessments 
were performed by the same physiotherapist, at approximately the same time of day, at 
the same location, and at a room temperature of 25 °C.

SRO

Patients with spasticity have suffered damage to their upper motor neurons. The central 
lesion disrupts the balance of supraspinal inhibitory and excitatory inputs directed to 
the spinal cord, leading to a state of disinhibition of the stretch reflex. Decreased post-
synaptic inhibition is involved in the hyperexcitability of the stretch reflex, which ulti-
mately changes the electrophysiological output, manifesting as an increased complexity 

Fig. 1  Clinical spasticity assessment based on MAS and sEMG signal acquisition
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of sEMG signals in the time and frequency domain [31, 32]. This feature allows for the 
determination of the SRO using the HMSEN.

HHT marginal spectral entropy

The fundamental component of HHT [29] is the empirical mode decomposition (EMD) 
method and the Hilbert transform. Application of EMD to an original time-based signal 
x(t) provides n intrinsic mode functions (IMFs) ci(t) and a residue signal rn(t) as follows:

For any ci(t), its Hilbert transform H(ci(t)) is defined as:

To construct the analytic signal:

where ai(t) and φi(t) are the amplitude and instantaneous phase, which are respectively 
given as

Correspondingly, x(t) can be expressed as

where fi(t) is the instantaneous frequency, which is defined as

The Hilbert–Huang spectrum is then defined to represent the frequency–time distri-
bution of the amplitude:

Then, Eq.  (8) is subjected to an integration over t to generate the Hilbert marginal 
spectrum of the signal:

(1)x(t) =

n
∑

i=1

ci(t)+ rn(t).

(2)H(ci(t)) =
1

π

∫ +∞

−∞

ci(τ )

t − τ
dτ .

(3)zi(t) = ci(t)+ jH(ci(t)) = ai(t)e
jϕi(t),

(4)ai(t) =

√

c2i (t)+H2[ci(t)],

(5)ϕi(t) = arctan

(

H [ci(t)]

ci(t)

)

.

(6)x(t) = Re

n
∑

i=0

ai(t)e
j2π

∫

fidt ,

(7)fi(t) =
1

2π

dϕi(t)

dt
.

(8)H(f , t) = Re

n
∑

i=1

ai(t)e
j2π

∫

fi(t)dt .
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The marginal spectrum offers a measure of total amplitude (or energy) contribution 
from each frequency value. Equation  (9) can be rewritten to generate h(i) for discrete 
frequency points f = iΔf:

where n represents the number of discrete frequency points within each analytic fre-
quency band.

Correspondingly, the HMSEN is expressed according to the definition of information 
entropy as

where pi = h(i)/∑h(i), and pi is the probability of occurrence of an event and here it 
refers the probability density of the spectrum and the occurrence probability of ampli-
tude corresponding to the i th frequency.

The HMSEN values are then normalized in the range [0, 1], yielding the new HMSEN 
as follows:

where N represents the sequence length of h(i).

SRO detection algorithm

The HMSEN of sEMG signals obtained from the biceps brachii of patients was employed 
to detect the SRO according to the following procedure as shown in Fig.  2. First, the 
sEMG signal was framed by a sliding window of fix-length (k points) with a frame shift 
of m points. The HMSEN of each signal frame was calculated and denoted as MsEn. 
Subsequently, an adaptive threshold Th was set according to minimum and maximum 
values of MsEn [i.e., min(MsEn) and max(MsEn), respectively] as follows:

where λ is the sensitivity factor of Th. Here, the MsEn values were adjusted according 
to Th, where MsEn values less than Th were reassigned as 0, and MsEn values greater 
than Th were retained. The adjusted MsEn values are denoted as En. If, at a given point 
in time, an En value was greater than 0 and all n consecutive En values afterward were 
greater than 0, that point in time was determined to be the SRO. Considering a reason-
able tradeoff between the computational burden and the desired level of accuracy, the 
values of these parameters were set as k = 90, m = 3, n = 50, and λ = 0.3 or 0.35.

The detection algorithm is outlined in Fig. 2, and was implemented in MATLAB (ver-
sion 8.3, R2014a).

(9)h(f ) =

∫ +∞

−∞

H(f , t)dt.

(10)h(i) =

∫ T

o
H(i, t)dt, i = 1, 2, . . . , n,

(11)HMSEN = −

n
∑

i=1

pi(ln pi), i = 1, 2, . . . , n,

(12)HMSEN =
HMSEN

lnN
,

(13)Th = min(MsEn)+ �[max(MsEn)−min(MsEn)],
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Activity bursts of short duration (25–40 ms) are considered to have little effect on the 
resulting kinetic output [33]. Therefore, the present study employed an interval [t0 − 50, 
t0 + 50] to obtain the recognition rate of the algorithm. The recognition rate is defined as

where TD and FD represent the number of true detection and false detection, respec-
tively. A classification is counted as TD if the detected onset time is within the interval 
[t0 −  50, t0 +  50], and classifications are counted as FD if the detected onset time is 
outside the interval [t0 − 50, t0 + 50]. Here, t0 is the onset time obtained by the physi-
otherapist using VI.

The most cited method proposed by Calota A to measure TSRT [22], in which SRO 
was defined as the point at which the EMG signal increased 2 (standard deviation) SDs 
above the mean baseline EMG was selected for our performance comparison tests. Base-
line EMG was the EMG activity while the subject was at rest before beginning the evalu-
ation session. This method will be referred to as “SD detection” from now on.

(14)Recognition_rate =
TD

TD + FD
,

Fig. 2  Algorithm flow chart for SRO detection
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The performance of the proposed method was evaluated using semi-synthetic sEMG 
signals where the onset time was artificially set. To construct the semi-synthetic sEMG 
signals employed for testing, we collected actual sEMG signals of the biceps brachii of 
elbow flexor spasticity patients, and two types of experimental signals were first iden-
tified. The first type represents quiescent baselines obtained during passive stretching. 
The second type represents clear sEMG signals where SRO occurred during passive 
stretching. The duration of each segment was 1000 ms.

Spasticity assessment based on the RMSD

The SRO is accompanied by an excessive reflex activation of α-motoneurons, and the 
number of excitatory motoneurons and the electric activity are both increased. As a 
result, the RMS values of the sEMG signals increase with increasing muscle tension [34]. 
Hence, the spasticity level can be quantified using the RMS of the sEMG signals. How-
ever, some studies found that the sEMG signal showed differences in power spectrum 
even it was obtained when same action was performed by different individuals, and the 
differences still existed when the same individual performed the same action at differ-
ent time [35]. Significant differences in signal amplitudes were also found in the baseline 
sEMG signals of the same subject. Hence, to eliminate the effects of individual differ-
ences of sEMG signals to the lowest, the difference between the RMS of sEMG signals 
obtained after the SRO and the RMS of baseline sEMG signals, henceforth defined as 
the RMSD, was employed to assess the spasticity level quantitatively. In consideration of 
the fact that the muscle continues contracting if the stretch is maintained (stretch veloc-
ity = 0) according to sEMG recordings [31], a fixed signal length of 1000 ms was adopted 
for assessing spasticity by this method. For short time-series, a fixed signal length of 
500 ms was adopted.

The RMS is as follow:

where Xi is the i th sampling value of sEMG signals.

Statistical analysis

The relations between MAS scores and RMSD are investigated by Ordinal Logistic 
Regression (OLR) using R software. The quality of the RMSD in spasticity assessment 
was evaluated by how well the classes of the MAS test were predicted by the RMSD 
based on confusion matrix. Goodness-of-fit of the OLR was assessed with Hosmer–
Lemeshow test with the R package generalhoslem [36]. The test–retest reliability was 
examined using (1) the interclass correlation coefficient (ICC) one-way random effects 
model for single measures [37], implemented using SPSS Statistics (IBM, Version 21.0), 
(2) Bland–Altman 95% limits of agreement (LOA) [38], implemented using MedCalc 
statistical software (version 15.8), and (3) standard errors of measurement (SEM) [39]. 
We employed ICC and SEM together because ICC is a relative measure of reliability that 

(15)RMS =

√

∑N
i=0 (Xi)2

N
,
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reflects the ability of the measurements to differentiate between participants, while SEM 
is an absolute measure. A one way ANOVA and post hoc test were used to compare the 
RMSDs among all subjects [20]. All statistical tests were conducted at a significance level 
of p = 0.05.

Results
SRO detection

The data processing results based on the developed detection algorithm for subjects 
1, 2, 7, and 19 with varying MAS levels are shown in Figs. 3, 4, 5 and 6, respectively. 
In the experimental results of subject 1 with an MAS score of 2 (Fig. 3), the HMSEN 
is approximately 0.25 prior to the SRO and approximately 0.5 after the SRO, which 
represents a significant difference before and after the SRO. Likewise, the experi-
mental results of subject 2 with MAS 1+ (Fig. 4), subject 7 with MAS 1 (Fig. 5) and 
subject 19 with MAS 1+ (Fig. 6) demonstrate significant differences in their HMSEN 
values before and after the SRO as well, indicating that the HMSEN based method 

Fig. 3  SRO detection result of clinical test subject 1. The vertical dashed line indicates the SRO

Fig. 4  SRO detection result of clinical test subject 2. The vertical dashed line indicates the SRO
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can reliably identify the SRO. According to Eq. (14), the results demonstrate that the 
HMSEN based method obtained a high SRO recognition rate of 96.3%.

Performance comparison

Figure 7 presents the performance comparison result. The vertical dashed lines indi-
cate the SROs, which are detected by the SD detection method using different base-
lines. Visual inspection of the figure shows that a slight change in the baseline EMG 
signals may lead to a substantial change in the detection result (max error: 991 ms) 
when using SD detection. However, the SROs detected by the proposed approach, 
which are indicated by the vertical solid lines, show a smaller error (max error: 69 ms) 
and a better stability. Hence, the HMSEN based method appears to be more accurate 
and more robust than the SD detection method for SRO detection.

Fig. 5  SRO detection result of clinical test subject 7. The vertical dashed line indicates the SRO

Fig. 6  SRO detection result of clinical test subject 19. The vertical dashed line indicates the SRO
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Spasticity assessments

The RMSD of each subject is listed in Table 2. The scatter plot below shows the distri-
bution of the RMSD of test (Fig. 8) and the RMSD of retest (Fig. 9) according to the 
MAS classification of the patients. The distribution of RMSD shows less variability 

Table 2  Root mean square difference (RMSD) results for all clinical subjects

Subjects RMSD (μV) Subjects RMSD (μV) Subjects RMSD (μV)

Test Retset Test Retest Test Retest

S1 12.3626 14.9392 S10 3.0899 2.77 S19 7.4094 6.7106

S2 7.8972 5.9526 S11 11.4453 12.2285 S20 12.4408 16.3307

S3 6.6086 7.7197 S12 5.9376 7.6495 S21 10.7271 9.6359

S4 3.7376 2.3069 S13 1.3423 1.0797 S22 8.2567 8.347

S5 4.3297 4.9061 S14 4.8374 7.7962 S23 9.7447 6.6587

S6 7.6125 7.1067 S15 2.5677 3.8826 S24 11.2206 9.1761

S7 2.9684 3.2001 S16 4.1903 6.0266 S25 6.9481 7.4326

S8 1.6711 1.6053 S17 5.5998 5.4565 S26 8.6382 7.7777

S9 13.6893 15.9421 S18 2.2286 2.4608

Fig. 8  Scatterplots of RMSD vs MAS score (test)

Fig. 7  Performance comparison result: the vertical dashed line indicates SRO detected by SD detection, and 
the vertical solid line indicates SRO detected by our approach. The numbers next to the dashed line indicate 
the SD of the baseline sEMG signals. The solid lines from left to right indicate the SRO detection results when 
the sensitivity factor of Th is 0.3, 0.35 and 0.45
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than the RMSD of retest: except for three scores, the RMSD are monotonically related 
to the MAS classification. For the retest, the monotonic relation is less clear.

An OLR was performed with the three levels of the MAS score as outcome meas-
ure and RMSD test as a predictor. The Hosmer–Lemeshow test (Table 3) shows sig-
nificant goodness of fit and that the RMSD scores and the MAS scores are fairly well 
related (χ2 =  8.8060, p =  0.2669). Regarding the retest, the RMSD scores and the 
MAS scores are also fairly well related (χ2 = 1.9094, p = 0.9647), which demonstrates 
that the RMSD can quantitatively assess the level of upper limb spasticity.

The confusion matrix (Table 4) shows how the MAS scores predicted with the RMSD 
(test) correspond to the observed MAS scores of the patients. The six patients who were 

Fig. 9  Scatterplots of RMSD vs MAS score (retest)

Table 3  Goodness-of-fit of the OLR assessed with Hosmer–Lemeshow test

Test Retest

χ2 p χ2 p

8.8060 0.2669 1.9094 0.9647

Table 4  Confusion matrix (test)

Actual

1 1+ 2

Predicted

 1 10 2 0

 1+ 2 6 0

 2 0 0 6

Table 5  Confusion matrix (retest)

Actual

1 1+ 2

Predicted

 1 9 2 0

 1+ 3 6 1

 2 0 0 5
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classified with a MAS score of 2, all have a predicted score of 2 based on their RMSD 
scores. Not all patients are correctly classified: two patients were classified with MAS score 
of 1, but the predicted score based on RMSD is 1+, and for another two patients exactly the 
opposite occurs: observed MAS score is 1+, predicted based on RMSD is equal to 1. Over-
all the accuracy of the test is good: 0.85, 95% CI = (0.65, 0.96), which means that 85% of the 
patients were correctly classified. The confusion matrix of retest (Table 5) shows that the 
patients are less well classified based on the RMSD of retest: overall accuracy of the retest 
is equal to 0.77, 95% CI = (0.56, 0.91), which means that 78% of the patients were correctly 
classified.

However, the goodness-of-fit of the OLR when considering only the RMS of sEMG sig-
nals after the SRO are (test: χ2 = 7.3070, p = 0.3976; retest: χ2 = 3.8367, p = 0.7984), and 
overall accuracy of the test and retest are 0.77 and 0.62 predicted predicting MAS scores 
with the RMSD respectively. These results mean the RMSD can achieve improved perfor-
mance over the RMS in spasticity assessment, and decrease the individual difference effect 
to some degree.

Test–retest reliability

The results of the test–retest reliability study are listed in Table  6. In addition, a Bland–
Altman plot showing the mean RMSD over a period of two test days (X-axis), the differ-
ence in the RMSD values between the test days (Y-axis), and the 95% LOA (dashed lines), 
is presented in Fig. 10. We note from Table 6 that the ICC scores indicate good agreement 
between the two tests with an ICC of 0.914. The SEM value is very small (1.137). Finally, 
the Bland–Altman 95% LOA results also suggest a small bias with 92.3% (24/26) of the data 
points lying within the LOA.

Table 6  Test-retest reliability results

ICC SEM Bland–Altman LOA

ICC 95% CI D SD 95% LOA

0.914 0.819 0.960 1.137 − 0.29 1.63 − 3.5 2.9

Fig. 10  Bland–Altman plots with 95% limits of agreement (dashed lines). The X-axis shows the mean RMSD 
across the two assessments, and the Y-axis shows the difference in RMSD between the two assessments
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Through a post hoc analysis by means of the Bonferroni test, it was found that the dif-
ferences between the RMSD values of the MAS 1 group and that of the MAS 1+ group 
(retest: p = 0.089) were not significant.

Discussion
The objective of this study was to evaluate the level of spasticity easily, accurately, and 
reliable by combining the characteristics of both the MAS and sEMG signals. One 
advantage of the proposed approach is that the elbow flexors are manually stretched by 
the rater, instead of by isokinetic-dynamometer-like devices which may make the spas-
ticity assessment more complicated. Another advantage is that it measures the RMS of 
sEMG signals after the SRO, rather than the TSRT, and the strict synchronous acquisi-
tion of the sEMG signals and the joint angle is no longer needed. Hence, the proposed 
method is more practical in clinical practice due to its compactness and portability. It is 
not clear whether it is absolutely necessary to apply constant velocity when measuring 
spastic joint stiffness [40]. Therefore, our manual methods and device might be a bet-
ter measure of spasticity than those used in current practice and play an important role 
in further studies for spasticity measurement in clinical settings. Additionally, a novel 
approach for detecting SRO was presented based on time–frequency analysis and non-
linear dynamics, which is robust in detecting the SRO in clinical settings.

Patient selection

Patients with MAS score 0, 3 and 4 are excluded from this experiment because the 
instructions of MAS score 0 and score 4 are obvious: either no resistance felt (score 0) 
or no movement possible (score 4) [41]. Therefore, the evaluation of spasticity levels 
of patients with MAS 0 and MAS 4 is simple and clear, and the chances of misdiagno-
sis barely exist. What’s more, the ROM of patients with MAS score 3 is very small, the 
chances of misdiagnosis barely exist as well. However, the descriptions of MAS score 1, 
1+ and 2, such as “more marked (MAS 2), or slight increase (MAS 1 or 1+) in muscle 
tone”, as we discussed in Background, are qualitative and ambiguous Therefore, we only 
recruited patients with MAS score 1, 1+ and 2. Patients with these scores comprise the 
majority, and physiotherapists are tending to make mistakes when assessing the spastic-
ity levels of patients with these scores in a clinical setting. Furthermore, the distribution 
of our dataset is similar to many studies [42–44], which indicate that only a small per-
centage of individuals with chronic stroke exhibit scores at the upper two levels of the 
MAS under passive extension of the elbow.

Results analysis

We note that the recognition rate of 96.3% obtained by the HMSEN is considerably 
greater than the recognition rate of 87.5% correspondence with VI using the Teager-Kai-
ser Energy Operator method [23]. Hence, the HMSEN based method achieved improved 
performance over the methods relying on conventional SD detection and the Teager 
Kaiser Energy domain. The HMSEN also presents definite advantages relative to the 
sample entropy of sEMG signals, which currently has been employed for detecting the 
onset of muscle activity [45]. Despite the significant performance of the standard sample 
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entropy in physiological signals processing, it does require more various parameters, 
such as the dimension and the tolerance, first be empirically established to obtain accu-
rate results [46]. However, the HMSEN approach needs less parameter settings, result-
ing in enhanced practicability for clinicians. Overall, the HMSEN approach for SRO 
detection is more suitable for clinical settings.

While this study provides some evidence for the good test–retest reliability of the sys-
tem, Rankin and Stokes [47] have recommended that a large sample size of at least 50 
is required for an accurate evaluation of the 95% LOA. As such, our sample size of 26 
subjects does not provide for an accurate calculation of the Bland–Altman LOA, which 
limits the credibility of our test–retest reliability study. Additionally, unlike the ICC, the 
SEM provides an absolute index of reliability [39], which is of greater usefulness to clini-
cians. In this study, the RMSD varies from 1.0797 to 16.3307, so an SEM of 1.137 may 
have little effect on the spasticity level measured by the RMSD. However, the SEM value 
obtained was slightly greater for patients with MAS 1 than that obtained for other spas-
ticity levels, and we preliminarily hypothesize that this may be the result of the small 
sample size. Thus, better test–retest reliability data can be expected for a larger sample 
size.

No significant differences of the average RMSDs between the MAS1 and 
MAS1+ groups were detected (retest: p = 0.089). Hence, this supports the questionabil-
ity of the MAS due to its subjectivity and the equivocal descriptions employed, where 
the rate of change in passive resistance and the joint angle at the onset of stretching are 
what physiotherapists actually examine based on their experience [48]. In this sense, 
spasticity assessment based on RMSD is aligned with the study of Damiano DL in [48]. 
Additionally, the MAS grades spasticity through only 6 levels, but the RMSD varies from 
1.0797 to 16.3077. Therefore, our manual method might be more reasonable for pro-
viding an accurate, reliable, detailed, and discriminative evaluation of spasticity once its 
reliability and validity are established further.

Study limitations

Considerable work is required before the proposed system can be adopted as a practical 
clinical tool. Firstly, we note that examiners typically did not take the velocity-dependent 
character of spasticity into account during MAS evaluation, and the elbow extension of 
the patients was conducted according to their experience and visual feedback. As such, 
the RMSD must also be considered at different stretch velocities. Thus, we plan to inves-
tigate the impact of the stretch velocity on the experimental results in a future study, 
as well as to develop a clinically simple method of eliminating the influence of different 
stretch velocities.

Secondly, we acknowledge that the subjects in this study all came from one rehabilita-
tion centre and that the sample is thus relatively small. Therefore, this system should 
be applied to a larger number of spasticity patients with a greater variation in spasticity 
levels, particularly patients with MAS 1+ and 2 levels. Besides, we will need to apply our 
system to patients with various upper motor-neuron disorders, in order to demonstrate 
its feasibility.

Thirdly, spasticity level was determined by means of the MAS by one physiothera-
pist, following routine clinical test procedures. However, the MAS has been criticized 
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for inaccuracy and unreliability [7], which may have impact on results. Hence, the 
inter-rater reliability should be considered in the future. In addition, the value of other 
clinical scales, for example, Modified Tardieu Scale, as an indicator for the level of spas-
ticity should be further explored. Besides, the SRO detection results may be biased by 
the length of the sliding window and the interval which is set based on the onset time 
detected using VI. The assessment of spasticity levels may be biased by the length of 
sEMG signals for the calculation of RMSD. How to set the optimal parameters for more 
precise detection of the SRO and more accurate assessment for spasticity should be 
future studied.

A final limitation of this study is that we only use one single clinical parameter (RMSD) 
to assess the spasticity levels of patients. In a future study, we plan to equip our device 
with extra force sensors and use multiple parameters to assess spasticity level, such as 
the mean power–frequency of sEMG signal, the joint resistance and the SRT.

Clinical implications

A quantitative method to measure spasticity may provide physiotherapists with accu-
rate understanding of spasticity and optimal treatment plans for patients. The proposed 
method takes the advantages of the MAS and portable manual system and is easy to 
operate. Hence, the proposed method permits physiotherapists to assess the level of 
spasticity reliably, easily and unrestrictedly. Compared with the clinical scales for spas-
ticity assessment, which are not sensitive enough to status changes of patients, it can 
provide clinicians with a greater resolution of spasticity level. Another advantage is that 
RMSD values can also provide clinicians with insight into the etiology of spasticity in the 
future, for it mainly demonstrates the neural response to the muscle stretch [49]. From 
a therapeutical point of view, the proposed method can provide better treatment pro-
gram. For patients, the proposed method assesses their spasticity level manually, which 
avoid the uncomfortable muscle stretches, which are forcibly made by locking up the 
extremity in an instrument [20, 44]. From the view of rehabilitation, it is likely to derive 
a standardized clinical evaluation protocol for patients with different spasticity levels. 
It can provide a more refined classification of spasticity grades, which may lead to bet-
ter healthcare services and better therapeutic intervention for patients, and facilitate the 
rehabilitation of patients in clinical practice.

Conclusions
This report presented a novel framework for upper limb spasticity assessment based on 
the analysis of sEMG signals for detecting the SRO and for the direct quantitative assess-
ment of spasticity. Experimental results demonstrated that the HMSEN based method 
could precisely detect the SRO. The statistical analysis results demonstrated a strong 
correlation between the RMSD and the MAS scores obtained for spasticity patients, and 
good test–retest reliability. This method is manually operated and easy to use, so it can 
make quantitative spasticity assessment readily available in clinical practice, and there-
fore enhancing diagnostic and recovery of patients. The preliminary results suggest that 
the proposed method could potentially provide useful clinical information, and may be 
viewed as an alternative clinical measure to the MAS in clinical settings.
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