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Background
Thanks to the ever-increasing fluorescent probes, proteins, and dyes, quantities of in vivo 
biomedical researches at cellular and subcellular levels are achieved noninvasively such 
as protein–protein interactions, protein function and gene expression [1–3]. With the 
advancement of fluorescent markers, a number of fluorescent imaging techniques now 
are available to visualize them at either microscopic [4–7] or macroscopic scale [8–10]. 
Fluorescence molecular tomography (FMT) [10–12] is a typical macroscopic fluorescent 
imaging technique that noninvasively reveals the distributions of fluorescent markers 
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inside the bodies of small animals through fluorescent measurements at the surfaces of 
bodies, which has been applied for drug discovery [13, 14] and oncology [15, 16].

The concept of FMT can be summarized as: the excitation and fluorescent light prop-
agations in tissues are described with a certain mathematical model firstly, and then, 
a reconstruction scheme is conceived based on the minimization of the differences 
between fluorescent measurements and the corresponding predicted ones through the 
model. The two processes are generalized as two problems: forward and inverse prob-
lems [17]. Commonly, diffusion equation, an approximation of radiative transfer equa-
tion, is used to model the light propagations in tissues in forward problem [18]. As a 
partial differential equation, diffusion equation is usually solved with numerical methods 
such as finite element method (FEM) [19]. On the other hand, because the fluorescent 
measurements used in reconstruction are only obtained at the surfaces, inverse prob-
lem is ill-posed, which makes reconstruction results sensitive to measurement noise and 
numerical errors. To overcome the ill-posedness, inverse problem is treated as an opti-
mization problem with regularizations and a list of numerical methods can be applied to 
solve it such as Newton method [17] and conjugate gradient method [18]. In reconstruc-
tion, the value of fluorescent yield of each node, pixel, or voxel is recovered from a set of 
fluorescent measurements obtained from different projection angles. However, the high 
ill-posedness of inverse problem and the utilization of regularization result in a poor 
spatial resolution that the boundaries of reconstructed objects are blurred [20].

The blurry images inhibit the applications of FMT in some occasions that need explicit 
boundaries [20]. To deal with these cases, shape-based reconstruction methods [20–28] 
are developed, which parameterize the shapes of reconstructed objects and recover these 
shape parameters instead of the values of fluorescent yield at each node, pixel, or voxel 
in classical image-based reconstruction schemes. In general, shape-based reconstruction 
methods can be classified into two types: implicit [20–24] and explicit shape methods 
[25–28]. Explicit shape method describes the boundaries of reconstructed objects with 
a spherical harmonics expansion and the expansion coefficients are reconstructed to 
construct the images. Implicit shape method defines the shapes of reconstructed objects 
with a level set function, which is updated during reconstruction iterations to recover 
the boundaries. Both of the two types are capable of recovering arbitrary shapes theo-
retically, but the complexity of the shapes defined by spherical harmonics expansion is 
restricted by the maximum degree of spherical harmonics which is limited and deter-
mined manually in practical applications [25].

Shape-based reconstruction methods are capable of achieving higher image clarity 
than the image-based reconstruction methods. However, priori information about the 
number of reconstructed objects is essential for both of the two types of shape-based 
reconstruction methods. For the spherical harmonics expansion, a set of expansion coef-
ficients can only describe a single object. Thus, multi-object reconstruction needs more 
than one set of expansion coefficients and each one needs to be initialized at the begin-
ning of reconstruction [25]. In parallel, the definition of multiple objects needs multiple 
levels of a single level set function or more than one level set function and the initiali-
zations of both need to know the number of objects [29, 30]. Moreover, in the implicit 
shape method, reconstruction is commonly accomplished through an artificial time evo-
lution approach which utilizes gradient-based optimization methods to update the level 
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set function such as the gradient descent method [20–24]. The gradient-based optimiza-
tion methods are first order methods which suffer from a low convergence speed and 
sometimes converge to a local minimum [31]. In addition, the choice of step length is 
also an intractable problem, which controls the convergence speed and the calculation 
accuracy.

Second order methods, e.g. Newton-type methods, converge quadratically, which ben-
efits from the utilization of the second derivative of object function. Compared to first 
order methods, second order methods converge more quickly and perform more stably 
[31]. However, the implicit shape method is failure to take advantage of second order 
methods due to the non-differentiability of the derivative of the Heaviside function. 
In this paper, a shape-based reconstruction scheme of FMT with cosinoidal level set 
method is conceived to take use of Newton-type method. This reconstruction method 
replaces the Heaviside function with a cosine function in the classical implicit shape 
method so as to obtain the second derivative of object function. Simulation and phan-
tom studies are implemented to validate the performance of the proposed method.

Methods
The lights with wavelength between 700 and 900  nm are highly scattered and lowly 
absorbed in tissues, which are called diffuse lights commonly. Diffuse lights are appro-
priate for macroscopic imaging because of the high tissue penetration. Due to the high 
scattering property, diffusion equation is usually used to describe the propagations of 
diffuse light [18]. Because the generation of fluorescence consists of two processes (exci-
tation and emission), a couple of diffusion equations are commonly used to describe the 
propagations of the excitation light and fluorescence, which are converted into linear 
equations through FEM as follows [32, 33]:

where U is the photon density and Q is the source term. The subscripts x and m are 
used to discriminate between the excitation and the emission. U and Q are column vec-
tors with Nn elements. Nn denotes the number of nodes used in FEM. X is the vector of 
fluorescent yield with the same length with U and Q, which is the unknown vector to 
be reconstructed. K is the stiffness matrix with Nn × Nn elements. F is a matrix with the 
same size with K. The elements of K, F, and Q are given by:

(1)

{

KUx = Q
KUm = FX

(2)Kij =

∫

Ω

(D∇υi · ∇υj + µaυiυj)dr
n +

1

2q

∫

∂Ω

υiυjdr
n−1

(3)Qi =

∫

Ω

Q(r)υidr
n

(4)Fij =

∫

Ω

Ux(r)υiυjdr
n
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where μa is the absorption coefficient, D is the diffusion coefficient, q is a term related 
to the optical reflective index mismatch at the boundary, r is the position, υ represents 
the shape function, and the subscripts i and j denote the indices of column and row, 
respectively.

In the implicit shape method, the level set function is introduced to express the distri-
bution of the unknown parameter as follows [21]:

where x denotes the fluorescent yield and ψ represents the level set function. The sub-
scripts f and b denote the regions of fluorescent targets and background, respectively. 
To obtain the gradient used in reconstruction, the Heaviside function H(ψ) is used to 
express x(r) in the classical implicit shape method [21]:

Equation (6) is capable of describing the distribution of unknown parameter with the 
level set function. However, this equation is only appropriate for the cases with a single 
object or multiple objects with the same fluorescent yield. For the cases with multiple 
objects with different fluorescent yields, a level set function with multiple levels or more 
than one level set function should be used to express the distribution of fluorescent 
yield and the number of the levels or level set functions is determined by the number of 
objects [29, 30]. Consequently, for the classical implicit shape method, priori informa-
tion about the number of objects is required to initialize the configuration of level set 
function and fluorescent yield. Moreover, the derivative of the Heaviside function is the 
Dirac function, which cannot be differentiated further. This leads to the inability of the 
applications of second order methods in reconstruction. To solve these problems, the 
following equation is used to describe the distribution of fluorescent yield:

Equation  (7) replaces the pair of Heaviside functions with a pair of cosine function. 
When the level set function ψ varies within [0,1], the value of fluorescent yield x(ψ) var-
ies between xb and xf. Compared to Eq.  (6), the advantage of Eq.  (7) is that the value 
of fluorescent yield is not restricted at only two values but varies between two values, 
i.e., Eq (7) is capable of the representation of multiple objects with different fluorescent 
yields. As a consequence, the number of objects is not required any more. In addition, 
the derivative of cosine function is sine function, which can be further differentiated. 
Therefore, second order methods can be applied.

From the second equation of Eq.  (1), equation Um=K−1FX=AX can be obtained. In 
reconstruction, measurements acquired from different projection angles are corre-
sponding to different fluorescent photon density Um and matrix A. Extracting all the ele-
ments of Um and rows of A according to the nodes on the surface for measurements and 
assembling them yields the vector of measurements Y and the Jacobian matrix J with 
respect to the fluorescent yield x. Then the following equation can express the relation-
ship between the measurements Y and the fluorescent yield X:

(5)x(r) =

{

xf ψ(r) ≤ 0

xb ψ(r) > 0

(6)x(ψ) = xbH(ψ)+ xf [1−H(ψ)]

(7)x(ψ) =
1

2
[1+ cos(πψ)]xb +

1

2
[1− cos(πψ)]xf
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To reconstruct the fluorescent yield X from the measurements Y, an object function is 
defined as follows:

where Jij denotes the elements of the matrix J at the ith row and jth column. Nm is the 
number of measurements.

The level set function ψ is discretized into a vector Ψ with the basis expansion of shape 
functions as follows:

Then differentiating the object function Γ shown in Eq. (9) with respect to the level set 
function of a certain node Ψk yields:

From Eq. (7) the derivative of Xk with respect to Ψk can be obtained:

Assembling the derivatives of the object function with respect to the level set function 
for all the nodes yields:

where Jψ is the Jacobian matrix with respect to the level set function ψ.
Further differentiating Eq. (13) with respect to the level set function yields the second 

derivative of the object function as follows:

(8)Y = JX

(9)Γ =
1

2
�JX − Y �22 =

1

2

Nm
�

i=1





Nn
�

j=1

JijXj − Yi





2

(10)ψ(r) =

Nn
∑

i=1

Ψiυi

(11)
∂Γ

∂Ψk
=

Nm
�

i=1





Nn
�

j=1

JijXj − Yi



Jik
∂Xk

∂Ψk

(12)
∂Xk

∂Ψk
=

π

2
(xf − xb) sin(πΨk)

(13)Γ ′ =

[

∂Γ
∂Ψ1

· · · ∂Γ
∂ΨNn

]T
= JTψ (JX − Y )

(14)Jψ ij =
π

2
(xf − xb)Jij sin(πΨj)

(15)
∂(∂Γ

�

∂Ψk)

∂Ψl
=

Nm
�

i=1

Jψ ik Jψ il +

Nm
�

i=1

∂Jψ ik

∂Ψl





Nn
�

j=1

JijXj − Yi





(16)
∂Jψ ik

∂Ψl
=

{

0 l �= k
π2

2
(xf − xb)Jij cos(πΨk) l = k
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Assembling the second derivatives of the object function with respect to the level set 
function for all the nodes yields:

where Hψ is the Hessian matrix with respect to the level set function and can be 
expressed as:

Then Eqs.  (13) and (17) are substituted into the Newton method (x(n+1)
=

x
(n) − (Γ ′′)−1Γ ′, where x denotes the unknown parameters and the superscript n 

denotes the index of iteration) [18] to obtain the iteration equation as follows:

where b represents the matrix consisting of residual vectors on the right side of Eq. (17). 
To simplify the calculations and take advantage of regularization, the Levenberg–Mar-
quardt (LM) method [18] is used to reconstruct the level set function instead of Eq. (19):

where I denotes the identity matrix and λ is a regularization parameter. The LM method 
is a variation of the Newton method but more useful in practical applications, which 
ignores the Hessian matrix to reduce the computational requirements and introduces 
a regularization term to suppress the influence of noise. Compared with the original 
Newton method, the LM method provides a similar convergence speed but consumes 
less computational time and less storage space.

In parallel, the iteration equation for the fluorescent yields xb and xf can be acquired 
through the derivative of object function with respect to xb and xf:

Equations (20) and (21) are used to reconstruct the level set function and fluorescent 
yields, respectively. During the reconstruction, the update of the level set function and 
fluorescent yields is carried out separately. Within each iteration, the level set function Ψ 
is updated through Eq. (20) firstly, and then the fluorescent yields xb and xf are updated 

(17)Γ ′′ =











∂(∂Γ / ∂Ψ1)

∂Ψ1
· · ·

∂(∂Γ
�

∂ΨNn )

∂Ψ1

.

.

.
. . .

.

.

.

∂(∂Γ / ∂Ψ1)

∂ΨNn
· · ·

∂(∂Γ
�

∂ΨNn )

∂ΨNn











= JTψ Jψ +Hψ







JX − Y

. . .

JX − Y







(18)Hψ =









∂Jψ11

∂Ψ1
· · ·

∂JψNm1

∂Ψ1

∂Jψ12

∂Ψ1
· · ·

∂JψNm2

∂Ψ1
· · ·

∂JψNmNn
∂Ψ1

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

∂Jψ11

∂ΨNn
· · ·

∂JψNm1

∂ΨNn

∂Jψ12

∂ΨNn
· · ·

∂JψNm2

∂ΨNn
· · ·

∂JψNmNn
∂ΨNn









(19)Ψ (n+1) = Ψ (n) − (JTψ Jψ +Hb)−1JTψ (JX − Y )

(20)Ψ (n+1) = Ψ (n) − (JTψ Jψ + �I)−1JTψ (JX − Y )

(21)

[

xb
xf

](n+1)

=

[

xb
xf

](n)

− (JTx Jx + �I)−1JTx (JX − Y )

(22)Jx =
1

2

[

J (1+ cos(πΨ )) J (1− cos(πΨ ))
]



Page 7 of 17Zhang et al. BioMed Eng OnLine  (2017) 16:86 

through Eq.  (21). After the update of the level set function and fluorescent yields, a 
restriction process is executed to ensure the level set function within [0,1]. When ψ < 0 
the level set function is set as 0. When ψ > 1 the level set function is set as 1.

Results and discussion
In order to validate the performance of the proposed method, numerical simulations and 
phantom experiments were carried out. The geometry of the imaged object used in the 
simulations and phantom experiments was a cylinder with a diameter of 3 cm and a height 
of 5 cm as shown in Fig. 1. Two tubes with a diameter of 0.4 cm and a height of 5 cm 
were inserted into the cylinder as the fluorescent targets. The distance between the centers 
of the two tubes was 1 cm. In the simulations, fluorescent measurements were generated 
through Eq. (1) and contaminated with 1% Gaussian noise. In the phantom experiments, 
a free-space FMT system [34] was used to acquire the fluorescent measurements. A sche-
matic of the imaging system is shown in Fig. 2. A 250W Halogen lamp (7ILT250, 7-star, 
Beijing, China) was used as the excitation light source. A 775 ± 23 nm band pass filter 

Fig. 1  Geometry of the imaged object used in simulations and phantom experiments. a 3D view of the 
geometry of the cylindrical object. b Top view of the geometry

Fig. 2  Schematic of the free-space FMT system
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(FF01-775/46-25, Semrock, Rochester, NY, USA) was placed toward the lamp and cou-
pled with a special optical fiber. The output of the fiber was rectangular beam which 
was converted into line-shaped beam through an adjustable slit. The imaged object was 
placed on a rotation stage for full-angle projection measurements. An electron multiply-
ing charge-coupled device (EMCCD) camera (iXon DU-897, Andor Technologies, Belfast, 
Northern Ireland) coupled with a Nikkor 60 mm f/2.8D lens (Nikon, Melville, NY, USA) 
and an 840 ± 6 nm bandpass filter (FF01-840/12-25, Semrock, Rochester, NY, USA) was 
implemented to capture the images. In both the simulations and phantom experiments, 
two different groups of measurements were obtained for the test of the cases with single 
or double targets. Tubes 1 and 2 were filled with 1.7 and 1.02 μmol/L indocyanine green 
(ICG) in the phantom experiments for the measurements of double targets, respectively, 
whereas only tube 1 was filled with 1.02 μmol/L ICG for those of single target. In addition, 
1% intralipid with a reduced scattering coefficient of 10 cm−1 and an absorption coefficient 
of 0.02 cm−1 was used to fill the cylindrical object to simulate the tissues. Accordingly, the 
fluorescent yields of the two targets used in the simulations were set to 1 and 0.6, respec-
tively, and the optical coefficients were set as the same with the phantom experiments. For 
each group of the measurements, a line source was utilized to illuminate the cylinder along 
z-axis and 36 fluorescent images of different projection angles were acquired. 

In reconstruction, the distributions of fluorescent yield at the central slice z = 2.5 cm 
were recovered through the proposed method, the classical image-based reconstruc-
tion method as well as the implicit shape method. The LM method was implemented to 
accomplish the iteration in the proposed and image-based reconstruction method, while 
the gradient descent method based on the artificial time evolution approach [23] was 
used in the implicit shape method. A mesh with 1352 nodes and 2602 elements was used 
in the simulations while another one with 1473 nodes and 2800 elements was utilized for 
the phantom experiments. The reconstruction was terminated after 5 iterations for the 
LM method whereas 500 iterations were executed for the gradient descent method. The 
initial values of fluorescent yield used in the image-based reconstruction method were 
set to 0, while the initial values of level set function in the proposed and implicit shape 
method were set to 0.5 and 0.05, respectively. In addition, the reconstructions through 
the implicit shape method were implemented without the priori information about the 
number of targets, i.e. only a single level set function was used and the fluorescent yield 
was initialized with a background coefficient xb and a single target coefficient xf.

The reconstruction results of simulations and phantom experiments are shown in 
Figs. 3, 4, 5, 6, 7 and 8, respectively. Figures 3 and 6 show the distributions of fluores-
cent yield normalized with the maximum and the corresponding distributions of level 
set function. Figures 4 and 7 show the profiles of normalized fluorescent yield along the 
blue dotted lines in Figs. 3d, j and 6d, j. Figures 5 and 8 give the residual norms as a func-
tion of iteration indices. To compare the convergence speeds of different methods, the 
residual norms are also normalized with the maximum. To evaluate the reconstruction 
results quantitatively, the contrast to noise ratio (CNR) and Pearson correlation (PC) 
[35] were used, which are defined as follows:

(23)CNR =

1

T

∑T
i=1 (xi − xback)

√

atar
T

∑T
i=1 σ

2
i + σ 2

backaback
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where xi and xback denote the mean value of fluorescent yield within the true region 
of the ith target and the background, respectively. σi and σback are the corresponding 

(24)PC(Xtru,Xrec) =
COV (Xtru,Xrec)

σ (Xtru)σ (Xrec)

Fig. 3  Reconstruction results of simulations. a–c Distributions of fluorescent yield reconstructed with the 
image-based method, the proposed method, and the implicit shape method for single target, respectively. 
d True distribution of fluorescent yield for single target. e, f Distributions of level set function reconstructed 
with the proposed method and the implicit shape method for single target, respectively. g–l Corresponding 
results for double targets. The reconstructions with the implicit shape method were implemented without 
the priori information about the number of targets
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variances. atar and aback represent the ratios of the areas, which are given as atar = Atar/A 
and aback = Aback/A, where Atar, Aback, and A denote the area of targets, the area of back-
ground, and the total area, respectively. T is the number of targets. Xtrue and Xrec are 
the vectors of fluorescent yield for the true and reconstructed distribution, respectively. 
The COV denotes the covariance and σ is the standard deviation. Higher CNR indicates 
better differentiability between the targets and the background, i.e. better image quality. 
The metric PC is used to describe the similarity between the true distribution and the 
reconstructed one. The CNRs and PCs of the reconstruction results of the simulation 
and phantom studies are listed in Tables 1 and 2.

Figures 3a–f and 6a–f show that all of the three methods are capable of recovering the 
distribution of fluorescent yield for single target, but the results of image-based method 

Fig. 4  Profiles of normalized fluorescent yield along the blue dotted lines in Fig. 3d and j. a Result for Fig. 3d. 
b Result for Fig. 3j

Fig. 5  Residual norms as a function of iteration indices for simulation studies. a Result for single target.  
b Result for double targets



Page 11 of 17Zhang et al. BioMed Eng OnLine  (2017) 16:86 

are more blurry than the results of the other two methods due to the over-smoothness. 
Because of the Heaviside function used in the implicit shape method, the results of 
the implicit shape method show explicit boundaries, while the results of the proposed 
method show blurry boundaries due to the cosine function. However, the results of the 
implicit shape method indicate incapability of recovering boundaries exactly match-
ing the true shapes due to the irregularity of the meshes and the ill-posedness of the 

Fig. 6  Reconstruction results of phantom studies. a–c Distributions of fluorescent yield reconstructed 
with the image-based method, the proposed method, and the implicit shape method for single target, 
respectively. d True distribution of fluorescent yield for single target. e, f Distributions of level set function 
reconstructed with the proposed method and the implicit shape method for single target, respectively. g–l 
Corresponding results for double targets. The reconstructions with the implicit shape method were imple-
mented without the priori information about the number of targets
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inverse problem. As a result, the CNRs and PCs of the results of the proposed method 
are higher than those of the implicit shape method as shown in Tables 1 and 2. In gen-
eral, the proposed method and the implicit shape method achieve higher image clarity 
than the image-based method and have similar performance for the reconstruction of 

Table 1  CNRs and PCs of reconstruction results of simulation studies

Single target Double targets

CNR PC CNR PC

Image-based method 6.2905 0.6341 4.4873 0.6533

Proposed method 17.969 0.9221 10.945 0.9027

Implicit shape method 12.135 0.8486 −0.0034 0.0052

Fig. 7  Profiles of normalized fluorescent yield along the blue dotted lines in Fig. 6d and j. a Result for Fig. 6d.  
b Result for Fig. 6j

Fig. 8  Residual norms as a function of iteration indices for phantom studies. a Result for single target.  
b Result for double targets
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single target. However, through Figs. 3g–l and 6g–l as well as the corresponding CNRs 
and PCs in Tables 1 and 2, it can be found that the implicit shape method is incapable 
of reconstructing the two targets without the priori information about the number of 
targets but the proposed method still works. The inability of the implicit shape method 
reconstructing double targets with different fluorescent yields derives from that the level 
set function is unable to represent multiple targets unless these targets have the same 
fluorescent yield. If multiple regions can be recognized during the iterative process, the 
coefficient xf in Eq. (5) that describes the fluorescent yield of the targets can be split into 
multiple coefficients to represent multiple targets. Nevertheless, this condition is usually 
difficult to meet especially when the targets are close to each other like Figs. 3l and 6l. To 
avoid the overlap of the reconstructed shapes of multiple targets, multiple coefficients 
and the corresponding shapes should be initialized before the start of the iterative pro-
cess, however, a good guess of the distribution of fluorescent yield and the number of 
targets is essential for the initialization. Alternatively, for multiple targets, multiple levels 
of a level set function or more than one level set function can be adopted, but both of 
them need to be initialized with the information about the number of targets.

As a variation of the Newton method, the LM method converges much faster than the 
gradient descent method which is a first order method as shown in Figs. 5 and 8. Five 
iterations are sufficient for the LM method while hundreds of iterations are required for 
the gradient descent method. Furthermore, the gradient descent method needs a num-
ber of iterations to make the level set function decline to minus and during these itera-
tions the residual norm does not vary because there is no region restricted by the level 
set function. It leads to a flat section in the curve of residual norm versus iteration indi-
ces as shown in Figs. 5 and 8 and the length of the flat section are controlled by the ini-
tial conditions including the step length and the initial values of level set function and 
fluorescent yield. The initial conditions of the gradient descent method are more difficult 
to be determined than the LM method because the gradient descent method is usually 
unable to converge when the initial conditions are chosen improperly. The choice of the 
initial value of level set function and the choice of step length are contradicted with each 
other. When a large step length and a small initial value of level set function are used, 
the flat section can be shortened but the residual norm may increase along with the 
increasing of the iteration index, which results in divergence. On the contrary, a small 
step length and a large initial value of level set function lead to a low convergence speed, 
i.e. more iterations are required. Moreover, it is difficult to avoid the iterations those 
increase the residual norm in the gradient descent method, thus the curve of residual 
norm versus iteration indices commonly appears as a sawtooth pattern that the resid-
ual norm increases and decreases alternately along with the increase of iteration index, 

Table 2  CNRs and PCs of reconstruction results of phantom studies

Single target Double targets

CNR PC CNR PC

Image-based method 3.2547 0.6503 4.6587 0.6407

Proposed method 5.4847 0.8134 5.9463 0.7351

Implicit shape method 5.2447 0.7971 0.7426 0.1645



Page 14 of 17Zhang et al. BioMed Eng OnLine  (2017) 16:86 

which can be observed in Figs. 5 and 8. A varied step length may solve the problem while 
how to change the step length is still intractable and the choice of the step length would 
be time-consuming. The difficulty of the choice of step length also derives from that the 
gradient used in the artificial time evolution approach is not the true gradient of the 
object function because the Dirac function, the derivative of the Heaviside function, is 
omitted in the gradient. Rigorously, the gradient is only proper for the positions with the 
level set function equal to 0. The Dirac function makes the reconstruction results so sen-
sitive to the step length that the step length is difficult to be chosen.

Figures 3a, g and 6a, g show that the reconstruction results of the image-based method 
are not homogeneous within the regions of targets and there are caves in the recon-
structed targets. This phenomenon can also be observed in Figs. 4 and 7. It is caused by 
the irregularity of the meshes. The reconstructed values of fluorescent yield of nodes are 
affected by the sizes of the elements which contain these nodes. A reconstruction strat-
egy with double levels of mesh that performs the forward calculations on a triangular 
or tetrahedral mesh and implements the reconstruction on a square or cubic mesh can 
solve this problem but will complicate the reconstruction process. As an alternative, a 
low-pass filter can be applied to smooth the reconstruction results [36]. In addition, the 
irregularity of the meshes also distorts the reconstruction results of the implicit shape 
method that it makes the regions restricted by the level set function are divided into 
pieces as shown in Fig. 9. To solve this problem, the results of the implicit shape method 
in Figs.  3, 6, 7 and 8 are obtained with a process smoothing the distributions of level 
set function through the low-pass filter after each iteration. In parallel, the proposed 
method is not influenced by the irregularity of the meshes as shown in Figs. 3b, e, h, k 
and 6b, e, h, k.

The difference between the proposed method and the implicit shape method derives 
from the replacement of the Heaviside function with the cosine function in Eq. (7). The 

Fig. 9  Reconstruction results of implicit shape method without low-pass filter for single target. a Distribution 
of fluorescent yield normalized with maximum. b Distribution of level set function
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primary defect of the Heaviside function is the nonderivability of its derivative the Dirac 
function. It results in the unavailability of second order methods. In parallel, the deriva-
tive of cosine function, sine function, is derivable. Consequently, the second order meth-
ods can be implemented. Moreover, the gradient of the object function for the Heaviside 
function includes the Dirac function which cannot be calculated numerically and has 
to be omitted in reconstruction. The omitted Dirac function in the gradient leads to 
that the reconstruction results are sensitive to the step length so that the step length is 
difficult to be determined. In comparison, the utilization of the cosine function avoids 
this problem. Finally, the Heaviside function fixes the fluorescent yield on two values xb 
and xf, which results in the requirement of the priori information about the number of 
targets. On the contrary, the cosine function makes the fluorescent yield vary between 
xb and xf, hence the priori information about the number of targets is not required any 
more. However, the variable fluorescent yield also results in the blurring of the recon-
structed shapes. This is the disadvantage of the cosine function.

Generally, the proposed method can be considered as a compromise between the 
image-based method and the implicit shape method. Taking advantage of the Newton-
type method, the image-based method is good at fast convergence and stable recon-
struction but suffers from low image clarity. On the contrary, the implicit shape method 
provides high image clarity with the level set function but suffers from a slow conver-
gence speed and unstable reconstruction due to the utilization of first order methods. 
The proposed method implements both the Newton-type method and the level set func-
tion to achieve the advantages of both the two methods. However, the proposed method 
is incapable of obtaining images with explicit boundaries because the cosine function 
blurs the shapes of the reconstruction results.

Conclusions
In conclusion, a shape-based reconstruction scheme of FMT with cosinoidal level set 
method is proposed in this paper. This reconstruction method replaces the Heaviside 
function with a cosine function in the classical implicit shape method so as to take use of 
the Levenberg–Marquardt method. The proposed method provides a faster convergence 
speed than the implicit shape method and higher image clarity than the image-based 
reconstruction method. Furthermore, the proposed method does not need to know the 
number of targets and avoids the choice of step length, which is an intractable problem 
in the gradient descent method. As a result, the proposed method performs more stably 
than the implicit shape method.
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