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Background
Image segmentation is the process of dividing an image into parts defined as areas which 
are homogeneous in terms of selected properties. Today, segmentation is one of the most 
widely used [1, 2] and overused word in the area of biomedical image analysis (PubMed 
database contains 23,202 results—using the search strategy “all fields”, scopus—150,147 
results—using the search strategy “all fields”). Practically everywhere where a region of 
interest (ROI) is separated using any method, the authors call it segmentation [3, 4]. Of 
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course, in some cases, this is justified [5]. Formally, however, segmentation of images is 
divided into four main groups [6–12]:

• • point operations,
• • edge methods,
• • region methods and
• • hybrid methods.

Today, the most developed are region methods which include [13–16]:

• • region growing,
• • region merging,
• • region splitting,
• • split and merge,
• • watershed segmentation.

Not all segmentation methods can be applied in the analysis of medical hyperspectral 
images [17]. The point methods based on the selection of an appropriate binarization 
threshold are the most common. The watershed and hybrid methods are equally popu-
lar. Their application is limited due to two main elements. The first one is segmentation 
of an object whose limit, contour, is a change in the brightness of pixels. It is most often 
calculated for one or three (RGB) brightness levels. The second element is the lack of 
dependence of segmentation on the reference (expected) spectral spectrum. Therefore, 
in comparison to the segmentation of images in grey levels or colour images, hyperspec-
tral imaging gives much more opportunities [18]. However, this excess of data is not, in 
every case, used by the authors of the algorithm (the authors of the article). The main 
limitation is the above-mentioned lack of methods dedicated for hyperspectral image 
segmentation. This type of dedicated methods should use, apart from the conventional 
2D image analysis, spatial information for individual wavelengths. One of the significant 
factors facilitating this type of analysis is organization of data written to *.raw, *.dat or 
*.cube files by a hyperspectral camera. Typical organization of this type of data is shown 
in Fig. 1.

The data are saved in a file by a hyperspectral camera (Fig.  1a) sequentially, start-
ing with the full spectral range for the first (m-th) row of the matrix. In the next steps, 
data for subsequent rows of the matrix of the image LGRAY(m, n, i) are saved in the file. 
Therefore segmentation methods can be easily implemented (minimizing computational 
complexity) using information about the spectral amplitude values stored for each wave-
length for one pixel [19, 20]. In the stored *.raw, *.dat or *.cube file this is one (n-th) 
column (see Fig. 1a). In terms of data organization in a file, access to these data is at the 
beginning (Fig. 1a, b). This type of data organization has a significant influence on the 
access time. Moreover, an additionally favorable element is the organization of particular 
first rows of each image consecutively as the first read data from *.raw, *.dat or *.cube 
files. This specific data organization and specificity of hyperspectral imaging were fur-
ther used in the dedicated methods of hyperspectral image segmentation presented in 
the following sections.
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Materials
The presented segmentation methods are related to the images acquired from differ-
ent hyperspectral cameras (SOC710 Hyperspectral Imaging System, Specim sCMOS-50-
V10E). In total, more than 10,000 2D images were acquired, constituting a sequence of more 
than 700 registrations, for 20 healthy subjects (40 % of women) aged 20–55 years. The test 
area was the area of the left and right hand as well as the forearm. The subjects expressed 
their free and informed consent for the study. The images were acquired in accordance 
with the Helsinki Declaration. Data were obtained retrospectively and no measurements 
or tests were carried out on the subjects as part of this work. This work only describes new 
techniques for image analysis. The discussed methods were tested on hyperspectral images 
from public databases and images described in the authors’ earlier works—for example [5]. 
The processing methods presented in this article were tested on a computer with Intel® 
Core i7 4960X CPU 3.6 GHz. The resolution of acquired images LGRAY(m, n, i), where m-
row, n-column, i-frame number, was standardized to M × N × I = 696 × 520 × 128 pixels 
(where M-number of rows, N-number of columns, I-number of bands). The spectral range 
for 128 bands was from 0.4 to 1.0 µm, dynamic range 12 bit, line rate 33 lines/s, pixels per 
line 520. The test subjects were illuminated by means of halogen lamps with a power of 
100 W and linear radiation in the range of the camera operation.

Methods
The new dedicated methods of hyperspectral image segmentation were divided into 3 
different areas (methods):

• • fast analysis of emissivity curves (absorption) of an object,
• • 3D segmentation,
• • hierarchical segmentation.

The methods were preceded by image pre-processing.

Fig. 1  Illustrative system of data organization in *.raw, *.dat and *.cube (files obtained from a hyperspectral 
camera) and the result of conversion to a sequence of 2D images
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Image pre‑processing

These methods were preceded by image pre-processing. It involved median filtering of 
the image LGRAY(m, n, i) with a mask sized Mh × Nh × Ih = 3 × 3 × 3 pixels. The size of 
the filter mask was selected based on the maximum size of a single artefact which was 
not higher than 4 pixels. The resulting image LMED(m, n, i) was further calibrated on the 
basis of the calibration bar which, at each registration, was located in the upper part 
of the image [5], or on the basis of the recorded images [dark LDARK(m, n, i) and white 
LWHITE(m, n, i)] allowing for conventional calibration and normalization of the image. 
The resulting image after this pre-processing of the image LC(m, n, i) was the basis for 
further transformations.

It should be emphasized here that median filtering for the fixed mask size is one of the 
simplest filtration methods. In a more developed form, median filtering should be adap-
tive. The necessity of applying the adaptive method is caused by the imaging character of 
hyperspectral cameras. For each camera, 2D images acquired for threshold wavelength 
values have the biggest noise [21]. Therefore, one of the possibilities is the application of 
an adaptive filtration method based on enlarging the mask size of the median filter for 
2D images at the band edge. As it was shown in [21], it is the mask size changed depend-
ing on the wavelength in the range from Mh × Nh = 7 × 7 pixels to Mh × Nh = 3 × 3 
pixels. In extreme cases when there is no information which 2D image will be analysed, 
the following mask size can be adopted: Mh × Nh = 7 × 7 pixels, taking into account 
the necessary removal of some minor details for median 2D images (for median wave-
lengths) [22–26].

Fast analysis of emissivity curves

According to the authors, the analysis of emissivity curves should be the most commonly 
used technique of hyperspectral image segmentation. Due to the specific data organi-
sation, it can be used even when reading the beginning of the data in the *.raw, *.dat 
and *.cube file. Therefore, it can be used for the rough, screening test of compliance of 
spectrum amplitudes with the model (the expected waveform). The practical realization 
of such segmentation relates to the analysis of the first row of the matrix LGRAY(m = 1, 
n, i) or, after image pre-processing, the matrix LC(m, n, i). Assuming that the reference 
waveform is LPAT(i), the analysis for the first column n = 1 and the subsequent ones was 
formulated as:

For the adopted tolerance threshold pr of the difference between the reference and 
measured emissivity, the number of individual wavelengths λ (number i) for which the 
values LD(m, n, i) exceeded the adopted threshold pr were calculated—the obtained 
results constitute a new matrix LR(m, n), i.e.:

(1)LD(m, n = 1, i) =
Lc(m, n = 1, i)− LPAT (i)

LPAT (i)

(2)LR(m, n) =

I
∑

i=1

LBR(m, n, i)
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where:

Depending on the needs (speed of calculations), this analysis can be narrowed down 
to the afore-mentioned wavelength values i at m = 1 and i = 1. Table 1 shows the sum-
mary of mean analysis times for different values of m and i for Intel® Core i7 4960X CPU 
3.6 GHz. As shown in Table 1, the mean analysis time depends largely on the value of 
m. It is the result of time needed to read the information from the data files, *.raw, *.dat 
or *.cube (see Fig. 1a). The highest values are obtained at the first reading, and they are 
equal to 2.3 ms. This increased time results from getting access to data on the disk (in 
the tested operating system Windows 7 Professional). The time of reading other data for 
the next values of m and i increases linearly and for i∈(1, 100) and m = 100, it is 1.6 ms. 
For comparison, the time of reading any image LGRAY(m, n, i) for i = 1 or i = 100 is a 
minimum of 10 ms.

The sum of the difference values between the reference and measured waveforms 
LR(m, n) is the basis for changing the colour space and, thus, segmentation. The image 
LV(m, n), as defined below, is reliable for the grey levels:

In this case, interpretation of the results obtained is intuitive. The value equal to “0” is 
the maximum value of the error LV(m, n), the values close to “1” are the minimum error 
values. A sample image LV(m, n) is shown in Fig. 2. Segmentation of an object (objects) 
present in a scene can be performed based on the matrix LV(m, n) or LR(m, n). Sam-
ple segmentation results for various binarization thresholds (values 0.2, 0.4, 0.6 and 0.8) 
were presented in Fig. 3. It should be underlined that the obtained result is for the seg-
mentation based on the first row of the matrix of 2D images for specific wavelengths, 
while the time of segmentation for the processor Intel® Core i7 4960X CPU 3.6 GHz did 
not exceed 2.3 ms.

3D segmentation

A different approach to segmentation is the analysis of the whole sequence of i images 
LC(m, n, i). For this purpose, the ROI containing a fragment of the segmented object 

(3)LBR(m, n, i) =

{

1 if LD(m, n, i) < pr
0 other

(4)LV (m, n) = 1−
|LR(m, n)|

max
m,n

|LR(m, n)|

Table 1  Summary of mean analysis times for different values of m and i for Intel® Core i7 
4960X CPU 3.6 GHz [the values are given in (ms)]

m = 1 m = 2 m = 4 m = 10 m = 100

i = 1 2.3 0.49 0.46 0.53 1.6

i ∈ (1,2) 2.2 0.51 0.46 0.55 1.6

i ∈ (1,4) 2.3 0.50 0.47 0.53 1.6

i ∈ (1,10) 2.3 0.51 0.47 0.56 1.7

i ∈ (1,100) 2.3 0.51 0.47 0.55 1.6
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is marked either manually or automatically in the image LC(m, n, i). On this basis, the 
waveform LPAT(i) is created as:

where: MR and NR—number of rows and columns of the ROI respectively. The image 
LV(m, n) is calculated in the next step:

The image LV(m, n) contains a lot of artefacts resulting from the noise occurring in the 
border images LV(m, n, i) for i ∈ {1, 2, I − 1, I}. Therefore, 3D filtration was proposed, 
which enabled median filtering of each pixel for the 8-neighbourhood system. Schematic 
diagram of the filtration process for a three-dimensional plane of an object (border) is 
shown in Fig. 4a. The process of filtration relates to the 8-neighbourhood system of each 

(5)LPAT (i) =
1

MR · NR

∑

m,n∈ROI

LC(m, n, i)

(6)LV (m, n) = LC(m, n, i)− LPAT (i)

Fig. 2  Sample results obtained for the image of a healthy thumb: a colour image created on the basis of 3 
matrices LGRAY (520, 450 and 650 nm); b matrix LV(m, n) for the artificial colour palette; c reference waveform 
LPAT(i)
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pixel of the matrix Lv(m, n, i) on the basis of which the median value is calculated. A 
median filter is used in relation to the plane formed from the object—in this case sized 
30 ×  30 pixels (see Fig.  4a). On this basis, the filtered image Ls(m, n), after binariza-
tion with the thresholds pr1, pr2 and pr3 equal to 30, 20 and 10 % respectively (threshold-
ing with the upper threshold), is shown using colours (red, green and blue respectively) 
in Fig. 4b. This image, LS(m, n), resulting from binarization with the properly selected 
(manually or automatically) threshold, is the result of segmentation.

As it can be concluded from the above description, due to the specificity of this seg-
mentation method, the time of analysis is at the level of 1949 ms for the processor Intel® 
Core i7 4960X CPU 3.6 GHz.

Hierarchical segmentation

The dedicated hierarchical method gives the best results in segmentation. The word 
hierarchical refers here to the hierarchy in the resolution analysis of the image LC(m, 
n, i). The analysis is associated with the analysis of the resolution of the image LC(m, 
n, i) reduced to M/8 ×  N/8. Then, the analysis of the k-nearest neighbours was pro-
posed. The k-nearest neighbour analysis was implemented for three features, w(1), w(2) 
and w(3). These features are absolute values of differences between the analysed image 
LC(m, n, i) and the reference waveform LPAT(i) for the selected three wavelengths. The 

Fig. 3  Sample results of segmentation (binarization) for a fast method of segmentation for binarization 
thresholds of images LV(m, n) equal to: a 0.2; b 0.4; c 0.6 and d 0.8
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three selected wavelengths are, in this case, the local maxima of the waveform LPAT(i). 
In general, the number of features [local maxima of the waveform LPAT(i)] is arbitrary. It 
can be limited only by computational complexity (the need to determine individual local 
maxima). In this example, due to the facilitated visualization (3D graph), the number of 
sought local maxima was limited to three [three features w(1), w(2) and w(3)]. Therefore, 
the segmentation method starts with classification in 2, 3, 4 and 5 regions, taking into 
account the features w(1), w(2) and w(3)—Fig. 5.

As the number of regions, the number of classes, is not generally known (the number 
of the segmented objects), the value of standard deviation of the mean (std) is used as a 
criterion. The number of classes is increased from 2 to 5 regions. The correct number 
of classes is the one for which the value of the inter-class mean square error (std) is the 
smallest. Figure 6 shows examples of segmentation results for the thumb (Fig. 2a). The 
results were obtained for two, three and four classes and three features [w(1), w(2) and 
w(3)].

Fig. 4  Schematic diagram of filtration for the 8-neighbourhood system: a location of a sample pixel of 
the matrix LV(m, n, i); b sample results, image LS(m, n) for the image of a healthy thumb. Red, green and blue 
indicate the results of thresholding of the image LS(m, n) with the thresholds pr1 = 30 %, pr2 = 20 % and 
pr3 = 10 %
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For the sample results shown in Fig.  6, the smallest value of the mean square error 
(std =  0.21) was for 3 classes. The image LHC(m, n, i) created in this way is the basis 
for increasing its resolution and automatic designation of segmented areas in the source 
image LGRAY(m, n, i) or in the image after pre-processing of the images LC(m, n, i) (Fig. 5).

Hyperspectral images segmentation [27–29] with the hierarchical method is linked 
with yet another new question concerning the variability of size/shape of the object in 
the segmentation for next i-th values taking into consideration the criterion described 
with the formula (4). The segmented object may therefore change its shape fulfilling the 
criterion (4) for the next i-th images. A simple method of binarization conducted for the 
next i-th images does not render satisfying results due to the possibility of adding next 
new objects (not by changing the size of the existing segmented object). Therefore, ero-
sion LE(m, n, i) was proposed with conditional dilatation LD(m, n, i) performed for each 
i-th binary image starting from LBIN(m, n, i = 1), i.e.:

(7)LE(m, n, i = 1) =

{

LBIN (m, n, i = 1) if pc(m, n, i = 1) < pdc
min

mS ,nS∈SE

(

LBIN (m+mS , n+ nS , i = 1)
)

other

Fig. 5  Simplified block diagram of the proposed hierarchical segmentation method
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where:

(8)LD(m, n, i = 1) =

{

LBIN (m, n, n = 1) if pc(m, n, i = 1) > pec
max

mS ,nS∈SE

(

LBIN (m+mS , n+ nS , n = i)
)

other

(9)pc(m, n, i) =
1

MS · NS

MS
∑

mS=1

NS
∑

nS=1

LGRAY (m+mS , n+ nS , i)

Fig. 6  Sample result of segmentation based on the analysis of the nearest neighbours: a, c, e graphs of 
changes in the value for the next features w(1), w(2) and w(3) and b, d, f results of segmentation for 2, 3 and 4 
classes respectively
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and mS, nS the row and column position of the mask SE sized MS  ×  NS depend-
ing on the size of the segmented object. The mask changed in this case has a size of 
MS × NS = 17 × 17 pixels. The values of thresholds pec and pdc are set by the user once 
for all images from the given type of camera. In the present case of SOC710 Hyperspec-
tral Imaging System the value was pec = pdc = 0.5. The results for the segmentation with-
out erosion and conditional dilatation and with erosion and conditional dilatation are 
shown in Fig. 7.

Experimental and discussion
The three new proposed segmentation methods need to be tested in practice in order to 
confirm the accuracy and time of analysis. The basis for the performed experiments is:

• • The three methods described in this article:

•	 fast analysis of emissivity curves (SKE),
• 	 3D segmentation (S3D),
•	 hierarchical segmentation (SH),

• • The three known segmentation methods (for quantitative comparison of the results 
obtained):

•	 method based on brightness thresholding (SPJ)—the binarization threshold is 
selected manually and automatically using Otsu’s formulas [18],

• 	 watershed method (SWS) preceded by filtration with an averaging filter whose 
mask size is in the range from 3 × 3 pixels to 9 × 9 pixels,

•	 method based on mathematical morphology (SMM), especially erosion and condi-
tional dilation,

• • Manual method of object selection considered further as the benchmark (SP).

Fig. 7  Sample segmentation of the objects without and with erosion and conditional dilatation: a the results 
of segmentation in the case of no erosion and conditional dilatation—e.g. as a result of a simplified method: 
b, c sample images for extreme values i = 10 and i = 110 showing the level of noise for extreme wavelengths 
and d the result of segmentation of the same object with the use of erosion and conditional dilatation
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Over 700 complete sequences of images LGRAY(m, n, i) (a total of more than 10,000 
2D images), whose acquisition conditions are given in the “Materials” section, were 
subject to segmentation. Common measures were used to compare the quality of the 
detected objects—FP the number of false-positive detected pixels, FN—false negative 
as well as TP, TN—true negative and true positive respectively. On their basis, sensi-
tivity TPR = TP/(TP + FN), specificity SPC = TN/(TN + FP) and balanced accuracy 
ACC = (TPR + SPC)/2 were determined. The obtained results of mean values of TPR, 
SPC and ACC for the compared segmentation methods are presented in Table 2.

According to the presented Table 2, segmentation based on a hierarchical approach, 
proposed in this article, has the greatest value of ACC (ACC = 92). The other proposed 
segmentation methods are at a similarly high level (of ACC values). Among the known 
non-profiled segmentation methods, the method based on brightness thresholding has 
the largest value of ACC. However, it is a semi-automatic method whose results are 
closely dependent on the method of selecting the binarization threshold. The other fea-
tures of the discussed segmentation methods look slightly different—Table 3.

The results for a PC with Intel® Core i7 4960X CPU 3.6 GHz clearly show the superi-
ority of the method of 3D segmentation (S3D) whose analysis time does not depend on 
the number of detected (segmented) objects. Moreover, this method is not sensitive to 
image rotation. This is due to the idea of its operation shown in Fig. 4 where no direc-
tion is privileged. Of course, fast analysis of emissivity curves is the quickest—its analysis 
time for m = 1 and i = 1 is equal to 2.3 ms (Table 1). The other known segmentation 
methods consume several times more of the CPU time.

Table 2  Comparison of the proposed dedicated methods of hyperspectral image segmen-
tation with the known methods and the benchmark

TPR (%) SPC (%) ACC (%)

SKE 78 79 79

S3D 88 92 90

SH 92 91 92

SPJ 77 82 80

SWS 76 79 77

SMM 66 90 78

Table 3  Comparison of  other features of  the proposed dedicated and  well-known meth-
ods of hyperspectral image segmentation

Analysis time (ms) Sensitivity of segmen‑
tation to image rota‑
tion (yes/no)

Dependence of the 
segmentation time 
on the number 
of objects

Application 
of emissivity 
curves

SKE 2.3 √ – √

S3D 1949 – – √

SH 844 – √ √

SPJ About 2000 (manual method) – – –

SWS 1800 √ √ –

SMM 3499 √ √ –
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As it was mentioned in the “Background” section, numerous similar segmentation 
methods are known from the literature. Hence, the method utilizing emissivity curves of 
a given object (SKE method) is used in many applications such as specim spectral imag-
ing [30, 31], hyperspectral imaging system [5, 18] or imageJ [32]. However, in none of 
such applications the time of preliminary segmentation was obtained taking into account 
the emissivity curve at the level of 2.3 ms. For example in [33] the authors obtain the 
time of analysis equal to 100 ms using Intel® Core i5 CPU M460 @2.5 GHz 4 GB RAM. 
Usually, the time of analysis increases, e.g. in Specim systems, which results from the 
fact that the registered sequence of i-th 2D images is pre-processed. A significant ele-
ment of this processing is lowering the resolution of images. Then, this initially-prepared 
3D image is analyzed. In the case when many different objects are registered, the pro-
cess becomes burdensome unnecessarily increasing the involvement of staff (operator). 
In the case of the second and third method in question (S3D and SH), the situation is 
different. These methods, especially SH based on erosion and conditional dilatation, is 
not used in any commercial applications concerning hyperspectral imaging and it was 
not presented in this use, namely for correction of hyperspectral images. The majority of 
authors, for instance in the articles [4, 6, 8, 11, 13], perform segmentation in the field of 
an image, one selected 2D image from i-th images of a sequence. Another widely tested 
approach is the use of clustering in the space of particular wavelengths e.g. at work [6]. 
Both mentioned types of segmentation do not cope with two elements: variable levels 
of noise of hyperspectral images for band extreme values and with the correction of the 
shape of the segmented image for subsequent i-th images. In particular, the correction 
of the object shape for subsequent i-th 2D images of the series is especially important 
in terms of determining the compatibility of its emissivity curves with the calibration 
curve. Therefore, the methods presented in this paper are new segmentation methods 
which provide a new quality in a considerably shorter period of time when compared to 
the known methods of hyperspectral image segmentation.

Conclusion
The presented three new segmentation methods have the following advantages:

• • they are fully automatic,
• • they enable to use a fast segmentation method
• • they are profiled to hyperspectral image segmentation,
• • they use emissivity curves as the model,
• • they can be applied to any type of objects (not necessarily biological),
• • they are faster and more precise compared to conventional methods known from the 

literature.

Work is currently underway to implement the described segmentation methods, espe-
cially the first described fast method for digital circuits DSP. The aim is the initial, at 
the acquisition phase, object segmentation. This will enable to automatically limit the 
acquired image and, thus, reduce the hyperspectral camera operation time.
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