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Background
Electromyography (EMG) signal provides important information on muscle physiol-
ogy and function, and has a variety of applications. When surface electrode is placed on 
muscles close to the heart (such as trunk muscles), the recorded EMG signals are con-
taminated by electrocardiography (ECG) interference. The ECG interference overlaps 
with EMG in both time domain and frequency domain, making it difficult to be removed 
with conventional filters. To remove ECG interference from EMG signals, a high-pass 
filter [1, 2] is often used with a cutoff frequency of approximately 30 Hz to 60 Hz, or 
even higher. Such a setting will unavoidably distort useful EMG signal components due 
to the frequency overlapping. Other more complicated methods have also been devel-
oped including ECG template subtraction, wavelet thresholding, adaptive filtering, etc. 
[3–7] With the development of blind source separation techniques, independent com-
ponent analysis (ICA) has been used for ECG interference removal from surface EMG 

Abstract 

Background:  Multi-channel recording of surface electromyographyic (EMG) signals is 
very likely to be contaminated by electrocardiographic (ECG) interference, specifically 
when the surface electrode is placed on muscles close to the heart.

Methods:  A novel fast independent component analysis (FastICA) based peel-off 
method is presented to remove ECG interference contaminating multi-channel surface 
EMG signals. Although demonstrating spatial variability in waveform shape, the ECG 
interference in different channels shares the same firing instants. Utilizing the firing 
information estimated from FastICA, ECG interference can be separated from surface 
EMG by a “peel off” processing. The performance of the method was quantified with 
synthetic signals by combining a series of experimentally recorded “clean” surface EMG 
and “pure” ECG interference.

Results:  It was demonstrated that the new method can remove ECG interference 
efficiently with little distortion to surface EMG amplitude and frequency. The proposed 
method was also validated using experimental surface EMG signals contaminated by 
ECG interference.

Conclusions:  The proposed FastICA peel-off method can be used as a new and practi-
cal solution to eliminating ECG interference from multichannel EMG recordings.

Keywords:  Independent component analysis, Multi-channel EMG recording, ECG 
interference elimination

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

Chen et al. BioMed Eng OnLine  (2016) 15:65 
DOI 10.1186/s12938-016-0196-8 BioMedical Engineering

OnLine

*Correspondence:   
xuzhang90@ustc.edu.cn 
1 Department of Electronic 
Science and Technology, 
University of Science 
and Technology of China, 
Hefei, China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-016-0196-8&domain=pdf


Page 2 of 11Chen et al. BioMed Eng OnLine  (2016) 15:65 

or other bioelectrical signals [8, 9]. A widely used method is the well-known FastICA, 
which can be combined with other techniques (such as adaptive filter and wavelet analy-
sis [10, 11]) for ECG artifact removal. Most of the ICA studies viewed ECG interference 
as an independent component instantaneously superimposed with the EMG signal. The 
ICA was usually applied to extract the ECG component from the mixed signals, which 
can be used in subsequent processing for the purpose of noise removal. By treating the 
contaminated signals as an instantaneous mixing model, the ECG waveform variation 
across different channels was not considered. In this study, we proposed a more complex 
and realistic shift invariant convolutive data mixing model to describe ECG contami-
nated EMG signals [12]. Based on such a model, a novel FastICA peel-off technique was 
developed to remove the ECG interference from multi-channel surface EMG signals. 
The developed method is designed to allow precise estimation and subtraction of ECG 
waveforms for individual channels, thus enabling improved ECG interference removal 
with little distortion to the useful EMG signals. The performance of the novel technique 
was validated by both synthetic and experimental approaches.

Methods
Data model

An ECG contaminated multi-channel surface EMG signal can be described by the shift-
invariant convolutive model. For a specific channel i,

where EMGC
i  represents the ith channel surface EMG signal contaminated by ECG 

interference; EMGi represents the clean EMG signal; ECGi represents the ECG interfer-
ence; and ωi represents all the other noise in addition to the ECG interference. M is the 
number of recording channels. In more details, we can represent the ECG interference 
in the form of convolution:

where Ai is the vector denoting ECG waveform in the ith channel, and L represents the 
length of the waveform. S is a binary pulse sequence (i.e. either 0 or 1) along the time 
line, where “1” indicates an occurrence of the ECG spike. In this study we focus on how 
to separate ECG interference from surface EMG, more information about nature of the 
EMG signal (i.e. EMGi) in terms of different motor unit action potential trains can be 
found in literature [1–4, 6–8, 12].

FastICA

FastICA is one of the most popular and effective methods for blind source separation 
[13]. For the pre-whitened signal x, to find one independent component y = wTx, the fol-
lowing optimization problem needs to be solved:

(1)EMGC
i (t) = EMGi(t)+ ECGi(t)+ ωi(t); i = 1, . . .M
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where G is a nonquadratic function [a default use can be G(x) =  log (cosh (x))], υ is a 
standard normal random variable. Then an updating rule based on a fixed-point algo-
rithm is presented below [13]:

In order to facilitate the application of FastICA and improve the numerical condition-
ing, the data model (1) can be extended in the channel direction by K − 1 delayed repeti-
tions of each observation [12]:

where the delay factor K denotes the total number of time intervals to be delayed. A 
greater K value helps to improve FastICA performance by taking a wider range of time 
shift in the convolutive model into account, and therefore results in larger burden of 
computation. Considering this trade-off, the delay factor K was determined to be 5 (e.g. 
5 ms under a sampling rate of 1 kHz) after some pretests. It was also found in the cur-
rent study that the FastICA performance was insensitive to a slight variation of K. After 
applying FastICA on EMGC , a rough estimate of S can be extracted through a threshold-
ing method applied on an appropriate output independent component corresponding to 
the ECG interference, which simply makes values as 1 at spike occurrences and values 
as 0 beyond individual spikes. Note that the spike morphology across the independent 
components (which are just the filtering output derived from different channels along 
with their delays) does not deliver meaningful information and therefore is ignored.

Constrained FastICA

In this study, we use signal to interference ratio (SIR) to describe the degree of ECG con-
tamination for a specific channel i. The SIR is defined as:

It is obvious that the lower SIR of the signal, the easier FastICA can estimate the ECG 
spike train precisely. In some cases, especially when the SIR is high, false or missing 
spikes may take place in the estimated spike train. We propose the use of constraint Fas-
tICA [14] to further assess and validate the result. More specifically, we use the rough 
estimate of the ECG spike train (i.e. S) identified from the initial FastICA output as a 
constraint to process the contaminated signal again using FastICA. Such a constraint is 
able to drive FastICA to converge toward an independent component mostly similar to 
the estimated spike train, so the output of constrained FastICA can be used to correct 
possible false or missing spikes from the initial FastICA processing. This process allows 
S to be updated, and can be repeated until reaching a convergence.
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Compared to FastICA, the optimization problem of the constrained FastICA is 
described below. For the pre-whitened data x,

where g(y) is a measure of closeness between output y = wTx and reference ECG spike 
train S in the sense of correlation. ξ (0 ≤ ξ ≤ 1) is a preset lower bound of the optimum 
correlation.

The updating rule of w is presented as [14]:

where μ and γ denote the Lagrange multiplier and the penalty factor introduced in the 
augmented Lagrangian method, respectively. Please refer to [14] for more details on its 
implementation. Similar to the FastICA without a constraint, the constrained FastICA 
can also be applied on the extended form (i.e. EMGC ) as described in Eq. (5). As com-
pared with the FastICA, its constrained version requires a relatively larger value of K for 
improved performance. Therefore, the delay factor K used for the constrained FastICA 
process was set to be 20 in this study.

ECG interference subtraction

After obtaining a reliable estimation of ECG firing spike train S, we utilize this informa-
tion to estimate the ECG waveform in ith channel by solving the following least squares 
problem:

where Xi denotes the vector containing all the sample points of EMGC
i , Ai is the wave-

form of ECGi to be estimated, Ai ∗ S denotes the convolutive vector containing all the 
samples as in (2). The analytical solution can be expressed as [12]:

where 
⌢

S  is a toeplitz matrix formed by all the elements of S, which satisfies 
⌢

SAi = Ai ∗ S.
The solution A∗

i  is the least squares estimation of ECG waveforms in the ith channel. 
Given the solution, the surface EMG signal of the ith channel can be estimated by sub-
tracting the ECG interference, i.e. Xi −
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Evaluation data description

Both synthetic and real EMG signals were used to evaluate the performance of the pro-
posed method in ECG interference removal. The synthetic signals were obtained by 
combining “pure” ECG signals with “clean” surface EMG recordings free of ECG arti-
facts. In this study we focus on ECG interference and do not concern about other types 
of noise (e.g. power interference). The signals were recorded by a 128-channel Refa EMG 
system (TMS International BV, Enschede, Netherlands) at a sampling rate of 1 kHz per 
channel, with a band pass filter setting at 10–500 Hz. Each channel was recorded using 
an individual electrode 10 mm in diameter. The dataset used in this study was chosen 
from recordings of two amputee subjects (one at the transhumeral level, the other at the 
transradial level, both male, 24 and 25  years, respectively). All the experiment proce-
dures were approved by the institutional ethics committee, and the subjects’ informed 
consent was given before the experiment. In this study, the following three types of sig-
nals were selected and used.

I.	 “Clean” EMG signals. Such signals were recorded via 128 individual electrodes placed 
on the left forearm of the transradial amputee (left side) subject. The subject was 
asked to (or imagine to) stretch his left arm forward, backward, and laterally in three 
trials, respectively. For each trial, six repetitions of the same movement were per-
formed with a resting period in between. Approximate 1-min data recordings were 
obtained for each trial. Since the electrode positions were far from the heart, the sig-
nals can be viewed free of ECG interference.

II.	ECG contaminated EMG signals. The EMG signals with ECG interference were 
recorded via 128 individual electrodes placed on the left chest and shoulder of the 
transhumeral amputee (left side) subject. The subject was asked to perform the same 
three movements as the transradial amputee subject. Since the electrode positions 
were placed close to the heart, the recorded EMG signals were seriously contami-
nated by ECG interference.

III.	“Pure” ECG signals. With the same electrode position on the transhumeral amputee 
subject, we also recorded signals when the subject was asked to maintain completely 
relaxed without any voluntary muscle contraction. These signals were considered as 
“pure” ECG interference.

By directly mixing each trial of “clean” surface EMG signals and the “pure” ECG sig-
nals, we obtained three trials of 128-channel synthetic EMG signals contaminated by 
ECG interference. These signals were used to quantitatively evaluate the ECG removal 
performance. To minimize possible power interference, a low pass filter with cutoff fre-
quency of 40 Hz was used to process the “pure” ECG signals. Such a process was not 
applied to the “clean” EMG signals.

Note that in the FastICA processing, the ECG interference is treated as the target sig-
nal to be extracted. It follows that a lower SIR (i.e. ECG interference is relatively more 
evident in the signal) makes it easier to detect the ECG firing spike train. To further 
demonstrate the effectiveness of the developed method in high SIRs (with relatively 
smaller ECG spike appearance), a special dataset consisting of 22 channels in total with 
SIR larger than 5 dB in each channel were purposely chosen from the synthetic EMG 
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during backward movement for performance evaluation. In these channels the EMG 
amplitudes are much higher than ECG interferences.

Finally, the developed method was also tested with experimental surface EMG signals 
contaminated by ECG interference (i.e. II).

Performance evaluation

In order to evaluate the ECG removal performance of the proposed method, we calcu-
lated three indices: the SIR [as defined in Eq.  (6), also equivalent to the common sig-
nal to noise ratio], correlation coefficient (CORR) and median frequency variation ratio 
(MFVR) between original “clean” EMG and the contaminated/filtered signals before and 
after the denoising process, respectively. For the filtered signal, the residual from the 
“clean” EMG was viewed as the noise/interference in the SIR calculation. The median 
frequency variation ratio (MFVR) was defined to specifically measure the influence of 
the interference/residual on the frequency of EMG component:

where MFEMGi denotes the median frequency of the “clean” EMG signal in ith channel, 
and MFEMGCi denotes the median frequency of the contaminated EMG signal (before 
denoising) or the filtered EMG signal (after denoising). Here, median frequency is 
defined as a frequency at which 50 % of the total power of a signal segment is reached.

Results
Figure 1 shows an example of ECG removal on synthetic EMG signal. One specific chan-
nel of synthetic contaminated EMG signal in Fig. 1c is composed by the “clean” EMG 
(Fig. 1a) and “pure” ECG (Fig. 1b). After the denoising processing, the estimated ECG, 
the filtered EMG, and the residual between the “clean” EMG and the filtered EMG are 
shown in Fig. 1d–f, respectively. Figure 1g presents the power spectrum comparison of 
the “clean” EMG and the filtered EMG signal after the denoising. It was observed that 
the FastICA based peel off method imposes little distortion to the EMG component in 
both amplitude and frequency.

Table 1 reports results for quantitative evaluation of ECG interference removal per-
formance tested on synthetic surface EMG signals. As can be seen, different channels 
of synthetic ECG contaminated EMG signals had a large range of variation for each of 
all the three indices before the denoising processing, which can be used to evaluate the 
performance of the proposed ECG removal method under different interference lev-
els. After the processing, the ECG interferences were separated and then subtracted 
from synthetic contaminated EMG signals. The significantly increased SIR values and 
CORR values (approximating to 1), with a reduced range of variations, illustrate the 
good performance of ECG interference removal. The significantly reduced MFVR values 
(approximating to 0) further demonstrate the proposed method has little damage to the 
frequency of EMG.

Figure 2 shows the main process of applying the proposed method to the special test-
ing dataset consisting of a total of 22 channels with relatively large SIRs (SIRs vary from 

(11)MFVR(i) =

∣

∣MFEMGi −MFEMGCi

∣

∣

MFEMGi

× 100%
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7.8 to 19 dB). Figure 2a shows one channel of the contaminated EMG signal (SIR = 13.2). 
ECG interference in the signal is marked by bold line. In this case, FastICA was difficult 
to converge to the ECG interference with a random initial value. However, the mean-
ingful result was obtained by using the sample at a specific ECG firing instant as the 
initial value of FastICA, which is shown in Fig.  2b. After applying a threshold on the 
appropriate FastICA output (Fig. 2b), the ECG spike train was identified (Fig. 2c), but 
with false spikes (as indicated by red circle) and missing spikes (indicated by red trian-
gle). Figure 2d shows the output of constrained FastICA (using the spike train shown in 
Fig. 2c as a constraint). With these procedures, the ECG spike train was correctly esti-
mated, as shown in Fig. 2e.

The proposed method was also tested on real ECG contaminated surface EMG signals. 
An example of satisfactory performance is shown in Fig. 3.

Fig. 1  a One channel of the “clean” EMG (lateral movement, channel 90); b the same channel of the “pure” ECG 
interference; c synthetic EMG signal by adding a and b; d the estimated ECG interference; e the estimated 
EMG signal; f the residual signal between the “clean” EMG and the estimated EMG; g the spectrum of the 
“clean” EMG (left) and the spectrum of the estimated EMG (right)

Table 1  A summary of ECG interference removal performance tested on synthetic surface 
EMG signals

Indices The synthetic EMG with ECG contamination The filtered EMG

Forward Backward Lateral Forward Backward Lateral

SIR (dB) −3.3 ± 7.7 −0.70 ± 8.1 −0.74 ± 7.9 12.6 ± 2.1 13.4 ± 1.4 12.9 ± 1.2

MVFR (%) 61.4 ± 25.9 63.7 ± 26.5 56.9 ± 27.3 2.7 ± 3.0 1.1 ± 1.3 1.4 ± 1.3

CORR 0.545 ± 0.248 0.620 ± 0.227 0.622 ± 0.228 0.970 ± 0.017 0.976 ± 0.009 0.973 ± 0.009
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Discussion
In this study, we developed a novel FastICA based method to remove ECG interference 
from multi-channel surface EMG signals. There are three key components or steps in 
the design. First, FastICA is used to produce a rough estimate of the firing spike train of 
the ECG interference. Then, constrained FastICA is applied to strengthen the reliability 

Fig. 2  a One channel of the contaminated EMG signal (SIR = 13.2). ECG interference in the signal was 
marked by bold line; b the output of FastICA; c the ECG spike train estimated from b, which has false spikes 
(as indicated by red circle) and missing spikes (indicated by red triangle); d the output of constrained FastICA 
(using the spike train shown in c as a constraint); e the ECG spike train estimated from d, which is perfectly 
match the real ECG firing spike train

Fig. 3  a An example of the contaminated EMG (backward, channel 108); b the estimated ECG interference; c 
the EMG after ECG removal
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of the estimated ECG spike train. Finally, the ECG interference waveforms in different 
channels are estimated and subtracted straightforwardly from the contaminated signals.

The proposed method in this study can be viewed as a special case of our recently 
developed progressive FastICA peel-off (PFP) framework for high density surface EMG 
decomposition [12]. To overcome the local convergence of FastICA, PFP uses the fir-
ing information of the already identified motor units through FastICA to estimate their 
motor unit action potential waveforms and then subtract them from original EMG sig-
nal through a peel-off step. Such a strategy is applied progressively on the residual signal 
to expand the set of the motor unit spike trains (or to decompose more motor units). 
PFP has demonstrated much higher decomposition yield as compared with previous 
ICA applications for high density surface EMG decomposition. In the current study, 
we similarly treat ECG interference as an independently and continuously firing action 
potential train and focus on extraction of this particular component.

Compared with EMG or superimposed motor unit action potential trains, ECG inter-
ference is more sparse and usually has relatively large amplitude. Therefore, ECG spike 
train often emerges as the first component identified by FastICA. Furthermore, if the 
recording during muscle relaxation is available, the observed ECG firing spikes can be 
used to help set appropriate initial values in FastICA thus facilitating the algorithm’s 
convergence toward ECG interference in the presence of surface EMG.

Compared with other ICA-based ECG removal methods, the present study provides 
a new perspective to solve the problem. For example, both [9] and [11] simply regarded 
the output of FastICA as proportional to ECG interference. Then the “ECG interfer-
ence” was used as a reference signal of an adaptive filter [11] or directly subtracted from 
the original ECG contaminated signal [9]. Similarly, the outputs of ICA without ECG 
interference were simply viewed as the denoised EMG signals, which are actually dif-
ferent from the original EMG components [15]. As mentioned earlier, such applications 
assume that the waveforms across multiple channels are consistent (e.g. ECG waveforms 
in [9, 11]; both ECG and EMG waveforms in [15]). Unfortunately, such an assumption is 
not always true due to different volume conductor effects between the signal source and 
the recording channels. By contrast, the FastICA applied in our method acted as a tool 
for detecting and pre-estimating an ECG spike train (which is consistent across chan-
nels), whereas their corresponding ECG waveforms across the output independent com-
ponents are probably distorted through the FastICA filtering and therefore discarded. 
Based on the instants of ECG spike train further identified by subsequent constrained 
ICA, the true waveforms of ECG in different channels can be estimated accurately and 
then subtracted straightforwardly. Note that in [9], the temporally constrained ICA 
technique was also used to facilitate estimating ECG artifacts, which required to incor-
porate the priori information of all the possible firing instants of ECG. However, this 
priori information is not always accessible when processing EMG signals with less signif-
icant ECG contamination (such as the signal demonstrated in Fig. 2). In our study, this 
information can be roughly (usually precisely in practice) pre-estimated by the FastICA 
filtering first, and then the constrained FastICA is performed to further improve the pre-
cision of the ECG firing spike train estimation.

Thus, a primary feature of the developed method is the two-step combination of the 
FastICA and the constrained FastICA in order to automatically and reliably estimate the 
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ECG spike train directly from the original multichannel surface EMG recordings, which 
allows improved performance of ECG interference removal even over a wide range of 
ECG contamination levels. The performance of the developed method was tested with 
both synthetic and experimental surface EMG signals contaminated by different levels of 
ECG interference, and satisfactory performance was actually demonstrated.

It is also noteworthy that the proposed method requires to work on multiple channels 
of surface EMG signals, specifically suitable for filtering high-density surface EMG array 
data. However, since implementation of both the ICA approach and the “peel-off” step 
need a bulk of data with sufficient time duration, the proposed method is recommended 
for offline data processing. By temporally dividing a signal stream into consecutive data 
blocks (each with a time duration of at least a few seconds), the proposed method may 
also be used in some time-insensitive circumstances.

Conclusions
A novel FastICA-based peel-off method for ECG interference removal from multi-chan-
nel surface EMG signals is proposed in this study. In the proposed method, a two-step 
FastICA processing is employed to accurately estimate a train of ECG firing instants, 
which is used for subsequent ECG waveform estimation and separation from individual 
EMG channels. It has been demonstrated that the proposed method is able to remove 
ECG interference efficiently with little distortion to surface EMG in both amplitude and 
frequency, thus offering a new and practical tool for filtering multi-channel EMG signals 
to eliminate ECG interference.
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