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Background
Spinal diseases, such as low-back pain (LBP), are common chronic diseases and are 
harmful to human health. LBP is a common symptom with considerable social and 
economic repercussions [1]. LBP is experienced by 25 to 50 % of the adult population 
in the United States. The healthcare costs for spine pain (mainly for LBP) is increasing 
every year in the United States [2]. The degeneration of intervertebral discs (IVDs) is the 
main factor resulting in chronic LBP and disability [3]. Analysis of magnetic resonance 
imaging (MRI), including disc localization and segmentation, is the main tool to assess 
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degenerative disk disease and evaluate the spinal cord, ligaments, and lesions, as it pro-
vides high-resolution, high-contrast images in serial contiguous slices [4].

Previously, disc localization and segmentation in spine MRI was performed by the 
radiologists manually, and the results depended on the a priori knowledge and experi-
ence. Additionally, manual localization and segmentation is laborious and lacks repro-
ducibility between observers. Therefore, it is necessary to develop methods to localize 
and segment the IVDs automatically. An accurate localization and segmentation with 
computer-aided diagnosis (CAD) for discs in spine MRI would be useful in the quanti-
fication of disc degeneration, diagnosis of the disease, and computer-assisted spine sur-
gery [5–7]. But, the differences in size, shape, appearance, intensity of different IVDs, 
and the ambiguous IVD boundaries and similar intensity with surrounding tissues may 
increase the difficulty of recognition.

Model-based methods are often used to analyze IVDs in past years. Alomari et al. [6] 
proposed a two-level probabilistic model for localization of discs from MRI. Micho-
poulou et al. [7] also presented a semiautomatic approach to segment both normal and 
degenerated lumbar IVDs. Peng et al. [8] used a model-based searching method to local-
ize whole spine discs. Castro et al. [9] segmented the IVDs using active contour models 
and fuzzy C-means. Haq et al. [10] proposed a segmentation approach based on the dis-
crete simplex surface model. Law et al. [11] employed a novel anisotropic-oriented flux 
model to segment the IVDs. These methods are effective for IVDs with CAD, but need 
manual operations or user-controlled manners to refine the results.

Many other methods have attracted attention because of their potential implications. 
Chevrefils et al. [12] used a watershed transform and morphological operations to locate 
regions containing structures of interest. The drawback of this method is the over-seg-
mentation. Neubert et al. [13, 14] proposed an automated approach to extract the 3D 
segmentations and localization of lumbar and thoracic IVDs using statistical shape anal-
ysis and registration of grey level profiles.

Some methods based on machine and deep learning have recently been proposed. 
Oktay et al. [15] proposed a SVM-based Markov random field method to label the lum-
bar discs. However, they only detect six discs with their graphical model and require the 
existence of both T1 and T2 scans to detect the spinal cord. Ghosh et al. [5, 16] achieved 
the localization of lumbar discs using histogram of oriented gradients along with SVM. 
Furthermore, a method is proposed to segment all the tissues simultaneously in a lum-
bar sagittal MRI, using an auto-context approach, instead of any explicit shape features 
or models. It made strong use of heuristics and information from complementary axial 
scans. Cheng et al. [17] used a machine-learning based technique to localize and seg-
ment the 3D IVDs from MRIs. The IVD localization was done by estimating the image 
displacements from a set of randomly sampled 3D image patches to the IVD center. The 
IVDs were segmented by classifying image pixels around disc centers as background or 
foreground. Kelm et al. [18] combined marginal space learning with a generative ana-
tomical network to detect and label the IVDs. An optional case-adaptive segmentation 
approach was proposed to segment the IVDs and vertebrae in MRI and CT, respectively.

The presence of intensity inhomogeneities may influence the quality of intensity-based 
feature extraction. Extraction of information and its service for localization and segmen-
tation of IVDs is important. Compared with other tissues in spinal MRI, IVD has the 
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distinctly characteristic, relatively regular and similar elliptic structure. The extraction 
of IVD structure information, such as shape and direction, and avoiding interference 
from peripheral tissues is challenging. The Gabor filter, a windowed Fourier trans-
form, derives from the work of Gabor D. Daugman [19] extended the Gabor filter to 
two-dimensional (2D) spatial position. Given the biological background and the opti-
mal space and spatial-frequency localization of Gabor filter [20], it is widely used for 
image process applications [21–23]. When the direction and frequency of the objects in 
an image are consistent with those of 2D-Gabor filters, the wavelet transformation has a 
strong response. Since the IVDs in spinal MRI are regular and ellipse-shaped, the recog-
nition of IVDs is possible by transformation of Gabor filtering.

We propose an unsupervised computer-aided IVD localization and segmentation 
method based on Gabor filter bank, which does not require any training. Among various 
wavelet bases, the 2D Gabor filters provide good resolution both in temporal and fre-
quency domains, and provide the optimal basis to extract local features because of: (1) 
Frequency motivation: both multi-resolution and multi-orientation properties of Gabor 
wavelet are optimal for measuring local spatial frequencies [24]; (2) morphology moti-
vation: it distorts the tolerance space for pattern recognition tasks [24]. The proposed 
method adopts Gabor filters to extract the structural features of IVDs, and localize and 
segment the IVDs. The information from the Gabor filter is capable of increasing the 
accuracy and automation degree for IVD localization and segmentation.

Methods
Flow diagram

The flow chart of the proposed method is shown in Fig. 1. It includes the Gabor filter 
design, detection of spinal curves, localization of IVDs, and segmentation of IVDs. First, 
a set of 2D-Gabor filters, with different frequencies and directions, are used in image 
filtering to get a series of Gabor images. Second, Gabor features of the spine are cal-
culated and the spinal curves are detected. Third, the Gabor features images (GFI) of 
IVDs are calculated and limited by spinal curves. Fourth, the IVD localization is per-
formed by cluster analysis. Correction of localization is done to improve the accuracy of 

Fig. 1  Flow diagram of the proposed method
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localization results. Last, segmentation of IVDs is performed based on the Gabor filter, 
localization results, and an improved self-adaptive threshold.

Setting of the Gabor filter

Effective extraction of the IVD features depends on the setting of the Gabor kernel func-
tion. Due to the elliptic shape of IVDs, the parameter σ of Gabor kernel is different in 
horizontal x and vertical y direction. In addition, there is an angle between the IVDs and 
the horizontal plane. Therefore, the Gabor kernel is defined as [25]:

where, x′ = x cos θµ + y sin θµ, y
′ = −x sin θµ + y cos θµ represent the spatial locations 

of pixels. In spatial domain, the parameters θµ, ων, and σ represent the direction, wave-
length, and Gaussian window of Gabor filter bank, respectively.

The parameters of Gabor are set as follows: to describe the local features of images, a 
Gabor filter bank has S directions and K  scales (usually S = 8, K = 5) [20]. However, the 
IVDs have a relatively uniform size and the differences among their angles are smaller. 
A Gabor filter bank in 16 directions with five scales is used. The upper frequency limit 
ωmax = π

2  is set according to the experience. Since the size of IVDs is relatively uniform, 
the frequency spacing factor f = 4

√
2 is set to obtain the effective center frequency. 

The effective radius of the Gaussian window is expressed as rv = 2
√
2σ

ωv
. According to 

the characteristics of the IVD (the width occupies at least 25 pixels and the thickness 
is about half of the width), σx = 3k

ωv
, σy = 6k

ωv
 (where k =

√
2 ln 2). The symmetric Gabor 

kernel window with the size of 31× 31 is used, based on experiment. Gabor filter bank is 
shown as Fig. 2.

Localization of IVDs

Detection of spinal curves

In order to reduce the impact of background on localization and segmentation, the spi-
nal edges are detected to narrow the searching range. Since the spinal curves are nearly 
vertical, the spinal GFI is obtained by subtracting the GFI of horizontal direction from 
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µ = 0, . . . , S − 1, v = 0, . . . ,K − 1

Fig. 2  Real components of Gabor filter bank in S directions with K  scales (S = 16, K = 5)
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that of vertical direction. Taking Gv,µ as the Gabor-filtered image with direction µ and 
scale v, the spinal GFI Gspine can be described as Eq. (2):

where v ∈ C = {0, 1, . . . , S − 1}, µ ∈ U = {0, 1, . . . ,K − 1}, U1 = {0, 1, 2, 3, 4, 5, 14, 15} , 
and U2 = {7, 8, 9, 10, 11} represent the directions close to the vertical and horizontal 
planes, respectively. Obviously, the negative values in Gspine are not the edge information 
of spine. Then, the Gspine is processed as Eq. (3).

where G(n) is the sum of the GFI for the first n column (Fig. 3b), and N  is the column 
number of the image. Since the middle of the spine is nearly straight, the p rows in the 
middle of the MRI images are selected to detect the spinal edges. As shown in Fig. 3b, 
the curve of G(n) is approximately in the horizontal plane in the middle of the spinal 
region (the middle of the two white lines in Fig. 3a). The process include: first, the cent-
ers of the left and right spinal edges (the white crosses in Fig. 3a) are obtained by search-
ing the crossing points for Gspine and center of spine (the white point in Fig.  3a from 
center to both sides). Second, the search range is limited between the two white lines in 
Fig. 3a. Third, the left and right spinal edges are obtained by searching the correspond-
ing region from above the centers of left or right spinal edges to both sides, respectively. 
The Fig. 3c shows the result of spinal edges.

(2)Gspine =
∑

ν∈C ,µ∈U1

Gν,µ −
∑

ν∈C ,µ∈U2

Gν,µ

(3)Gspine(x, y) =
{

Gspine(x, y), Gspine(x, y) ≥ 0
0, Gspine(x, y) < 0

(4)G(n) =
n

∑

x=1

(M+p)/2
∑

y=(M−p)/2

Gspine(x, y), n = 1 . . .N

Fig. 3  Detection of spinal curves. a Spinal GFI Gspine The white point is the center of the spine, and the white 
crosses are the centers of left and right spinal edges. b The sum of the coefficients of the first n columns G(n). 
c The detection of spinal curves
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Localization of IVDs

The localization of IVDs is based on GFI information. GFI for localization of IVDs is 
calculated similar to the process for spines, but the directions of U1 and U2 are differ-
ent. According to the anatomical knowledge, the angle between the long axis of the 
IVD and the horizontal line of MRI is almost ± 30°. Therefore, U1 = {7, 8, 9, 10, 11} and 
U2 = {1, 2, 3, 4, 5} represent directions close to the long axis of IVDs and close to the ver-
tical directions, respectively. The IVDs information image GMdisc (Fig. 4b) is obtained by 
median filtering (elliptical filter template, long axis: 44 pixels, minor axis: 17 pixels) on 
the IVDs GFI (Fig. 4a). The searching range of IVDs is narrowed by spinal curves.

The process of localization needs some a priori information. The centroid of the 
IVD is the locating point. In order to obtain the coordinate value of the locating point 
(XIVD,YIVD), two aspects of a priori anatomical knowledge are adopted: I)Abscissa x of 
most IVDs is roughly located in the same vertical line, except for the last few ones that 
lean slightly to the right; II) The offsets of vertical y range from 20 mm to 50 mm (25 
pixels to 60 pixels in this study). The information of local maximum of GMdisc, combined 

Fig. 4  IVDs localization information based on the Gabor filter. a IVDs GFI. b IVDs information images GMdisc. c 
Horizontal cumulative curve Gn(n). d IVD areas delineation based on localization results. e IVD edges deter-
mined by Gabor feature shown as the superposition of the original image and the binary image. f Compari-
son of localization result before (cross) and after (circle) correction



Page 7 of 15Zhu et al. BioMed Eng OnLine  (2016) 15:32 

with a priori knowledge, is used for coarse localization. In this process, correction of 
centre-of-gravity shift is also performed to improve the localization accuracy in case of 
severe spinal curvature. The process includes:

Step 1:	  �Calculate the horizontal cumulative curve Gh(n) and the candidate vertical 
coordinate values. Gh(n) is obtained by adding each row with Eq. (5), Where M 
is the number of rows of the image. The coordinates of local maximum values 
are the candidates.

Step 2: 	�Calculate the coarse YIVD. According to the a priori information II, the closer 
points merge into one. The YIVD is achieved after removing the points which do 
not meet the a priori information II.

Step 3: 	 �Calculate the coarse XIVD. The horizontal coordinate XIVD is calculated by a 
process similar to that for YIVD, but the regions of calculation are different. 
The mid-values of adjacent two YIVD are taken as boundaries to intercept the 
IVD part. The same action is performed as Eq. (6) in columns between the two 
boundaries. The XIVD is obtained based on the a priori information I.

Step 4: 	 �Calculate the boxes of IVDs to correct the coarse(XIVD, YIVD). Based on the 
results of Step 3, the rectangular regions of IVDs (Fig.  4d) are found by the 
boundary of the local peak of Gh(n) (Fig.  4c) and Gv(n). The upwards and 
downwards edges of the box in Fig. 4c are calculated by the minimum points 
and zero points of Gh(n). Then the left and right edges of the box are calculated 
by the minimum points and zero points of Gv(n) limited by upwards and down-
wards edges. Figure 4c shows the boxes in GMdisc. Figure 4d shows the boxes 
in the original image. The angles of IVDs are obtained by analyzing the GFIs 
information in the rectangular regions.

Step 5: 	 �Calculate the accurate center of IVDs (XIVD,YIVD). The binary image of GMdisc 
is calculated in the boxes obtained in step 3. Figure 4e shows the superposition 
of the original image and the binary image. Subsequently, the corrected locali-
zation of IVDs is obtained by calculating the centroid of the binary image. As 
shown in Fig. 4f, the white circles are the final localization results (XIVD,YIVD).

Segmentation of IVDs

Combining the localization results and spinal curves,the segmentation of IVDs is per-
formed based on GFIs with an adaptive threshold. The main steps include:

Step 1: 	 �Delineate the candidate region of the IVD. The initial candidate region of 
each IVD for localization is comprised of the spine curves and the rectangular 

(5)Gh(n) =
N
∑

x=1

GMdisc(x, n), n = 1 . . .M

(6)Gv(n) =
M
∑

y=1

GMdisc

(

n, y
)

, n = 1 . . .N
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regions of IVDs (Fig.  4d). In this region, the average of GFIs of different fre-
quencies Ḡµ is calculated in the direction µ. The maximum Ḡµ can reflect the 
boundary of the IVD. The Ḡµ in the direction µ with S different frequencies is 
defined as Eq. (7).

	� The binary image of maximum Ḡµ is obtained using the Otsu method. The up 
and down boundaries of the candidate region are comprised of the spine curves. 
The left and right boundaries are comprised of the fitting curve of the outer 
boundaries of the binary image of maximum Ḡµ.

Step 2:	  �Calculate the adaptive local threshold TIVD. Due to the ambiguous boundary 
and diverse shapes of IVDs, global threshold is not appropriate to segment 
the IVDs. Therefore, the local threshold (TIVD) of each IVD is adopted to seg-
ment the IVDs. As shown in Fig. 5, TIVD is obtained by self-adaption iteration 
and used for segmentation of IVDs. The initial threshold is calculated by the 
Otsu method. A1 is the difference between the area of candidate region of the 
IVD and the area of the binary image of maximum Ḡµ. A2 is 1/2 area of the 
binary image of maximum Ḡµ. T1 and T2 are min(A1,A2) and max(A1,A2) area, 
respectively. The number of iterations is 30.

Step 3: 	�Calculate the coarse segmentation of the IVD. The coarse segmentation results 
of IVDs are used in steps 2 to 5, in Fig. 5, with an adaptive local threshold TIVD.

(7)Ḡµ

(

x, y
)

=
1

S

∑

v∈C
Gν,µ

Fig. 5  Flowchart for the adaptive local threshold based on the iteration
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Step 4:	  �Post-process for IVD segmentation. The coarse segmentation result may con-
tain holes, non-smooth areas, and superfluous portions. In order to obtain the 
accurate segmentation, a morphological operator is used: holes filling, erosion, 
dilation, and five foreground pixels on the background pixel indicate that the 
pixel is the foreground pixel. When a segmentation result has many connected 
regions, the largest region is retained.

Results and discussion
Ethic statement

This study is approved by the Ethics Review Board of the Third Military Medical Univer-
sity, Chongqing, China. All records, information, and images were anonymized and de-
identified prior to analysis. All patients or their legal representatives signed the written 
informed consent.

Image acquisition

This dataset was composed of mid-sagittal T2-weighted (T2WI) images from 37 patients 
with LBP for more than 6 months. In total, 278 IVDs (T11/T12 ~ L5/S1) of MRI images 
were utilized for validating the proposed localization methods. All MRI images were 
supplied by Xinqiao Hospital, The Third Military Medical University, China. MRI was 
performed with a 1.5-T Signa system (General Electric Company, Milwaukee, America), 
and the parameters of the T2WI were: TR: 3000  ms; TE: 100  ms; FOV: 30 ×  30; and 
number of sagittal sections: 9.

Results of localization

In this study, 278 IVDs of MRI images from 37 patients were utilized to validate the pro-
posed method. All methods were implemented in MATLAB R2010b. Of a total of 283 IVDs, 
278 IVDs were located by our method, with only five IVDs seen outside of the localization.

We compared the localization with our method and the manual method. As Fig.  6 
shows, the red squares are the results of our method and the green circles are those of 
the manual method. The four MRIs shown in the Fig.  6a–d contain the typical cases 

Fig. 6  Comparison of the localization results of our method and the manual method. The red squares are 
the results of the manual method, and the green circles are the results of our method. a–d contain the typical 
cases including normal patient, herniation and IVD degeneration, different intensity and interference, and 
different spine curvature
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including normal patient, herniation and IVD degeneration, different intensity and 
interference, and different spine curvature. These figures show that the results of our 
method have good agreement with those of the manual operation.

To evaluate the performance of the method quantitatively, localization accuracy Acc 
was used. Acc is the percentage of automatic IVD centers which visually lie inside the 
IVD. It is defined as:

where DiscAutoTure is the number of correct results of automatic localization of IVDs, 
DiscAutoTure is the number of all results of automatic localization of IVDs. The results 
show that a high localization accuracy Acc of 98.23 % could be achieved with the method 
proposed. The comparison between the number of IVDs with our localization method 
and those with manual method is shown in Fig. 7.

The Euclidean distances between the structure center located by our method and the 
corresponding manual method were also calculated. Three surgical specialists delineated 
the contours of each structure manually. Based on the contours, the computer calculated 
the centers of the IVDs with a snake-based method [26]. The boxplot of the Euclidean 
distances for the spine structures in 37 images is shown in Fig. 8. The median, top, and 
bottom lines of the box represent the 50th, 25th, and 75th percentiles, respectively, and 
the pluses are the statistical outliers. Although there are 14 off-group points from 278 in 
all cases, these points are all in IVDs and not far from the results of the manual opera-
tion. Table 1 shows the average localization error from reference annotation to the local-
ized positions.

In order to test the validity of our method in the other dataset, experiments were 
performed on the publicly available SpineWeb database which is available for public 
access at http://spineweb.digitalimaginggroup.ca/spineweb. The localization results 
of SpineWeb database are shown in Fig.  9. Figure  9a–d are from different databases 

(8)Acc =
DiscAutoTure

DiscAuto
× 100 %

Fig. 7  Comparison of the numbers of localized IVDs between our method and the manual method. The 
green ellipses are the IVDs extra localization

http://spineweb.digitalimaginggroup.ca/spineweb
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and subjects. The mean and standard deviation of localization using Dataset seven of 
SpineWeb was 2.60 ± 1.90 mm.

Results of segmentation

The same cases were used to validate the segmentation. Figure 10 shows the segmenta-
tion results with our proposed method and manual operation. The green contours are 
the results of our method, and the red contours are the results of the manual method. 
The figure shows that the results of the two methods are highly consistent for normal 
cases. Figure  10c–d show the results for cases with higher intensity, herniation, and 

Fig. 8  Boxplot of the Euclidean distances between the structure center localized with our method and the 
corresponding manual method for 37 MR images in the dataset

Table 1  Average localization error (in mm) from  reference annotation to  the localized 
positions

Disc label Mean ± STD Median Max Min

L5-S1 3.2258 ± 2.0326 3.0415 8.5399 0.7835

L4-L5 2.3505 ± 1.0514 2.0809 6.0460 0.6439

L3-L4 2.0117 ± 1.6307 1.6358 8.3857 0.2093

L2-L3 1.6300 ± 0.9993 1.4974 4.3328 0.2453

L1-L2 1.7608 ± 1.0563 1.5384 5.0205 0.0899

T12-L1 1.5694 ± 0.9160 1.5824 3.7216 0.1191

T11-T12 1.8817 ± 1.0163 1.7635 4.1179 0.3896

T10-T11 2.4007 ± 2.6023 1.5336 10.2740 0.3162

T9-T10 2.5622 ± 2.2372 1.3515 6.0186 0.5505

T8-T9 12.3583 – – –

All 2.1327 ± 1.6337 2.0786 12.3583 0.0899
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IVD degeneration. As shown in Fig.  10b, in cases with more serious curvature and 
IVD degeneration, L2-L3 are over-segmented and L3-L4 are slightly under-segmented. 
Although the spinal curves were deviated, overall segmentation results of IVDs were 
satisfactory.

To evaluate the performance of the segmentation method quantitatively, Sensitivity 
(Sen), Specificity (Spe), and Dice Similarity Index (DSI) were calculated [12–15]. The Sen , 
Spe, and DSI were defined as:

where M is the area of the manually segmented IVD, A is the area of the segmented IVD 
experimentally, and I is the MRI image.

(9)Sen =
M ∩ A

M

(10)Spe =
I −M ∪ A

I −M

(11)DSI =
2|M ∩ A|
|M| + |A|

Fig. 9  The localization results of the SpineWeb database. a, b and c, d are from different databases and 
subjects

Fig. 10  The comparison between the segmentation results of our method and those of the manual method. 
The red contour shows the results of the manual method, and the green contour shows the results of our 
method. a is the normal case. b is the case with more serious curvature and IVD degeneration. c–d are the 
case with higher intensity, herniation and IVD degeneration
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The index analysis of 37 MRIs is shown in Table 2. The overall average values of the 
DSI with and without GFIs is 0.9237 and 0.8899, respectively. The index values show 
that the results with GFIs restriction have significant improvements compared with 
those without GFIs restriction. The results of the proposed method have good agree-
ment with those of the manual segmentation. There was reduced probability of over- or 
under-segmentation.

Discussion and conclusion
The proposed method achieves high accuracy without the need of user interaction, tech-
nologist point, or coronal or axial slices. This benefit comes from the shape-recognition 
ability of the method based on Gabor filter bank. GFIs reduce the localization error by 
extracting the target information correctly, and correction operation reduces the impact 
of inaccurate IVD localization by taking all candidate points into account. In the seg-
mentation part, the adaptive threshold based on the GFI is proposed. The GFI limits the 
candidate regions, which improves the accuracy of the segmentation results.

The localization and segmentation of the proposed method takes almost 10  s (the 
manual segmentation with a snake-based method [26] takes almost 5 min). Eight sec-
onds are required for one image to complete the localization process, and only 2 s are 
required to complete the segmentation part. The main contribution to the computation 
time is by wavelet transformation (about 7.5 s). With the development of computer tech-
nology, our method is likely to satisfy the requirements of real-time clinical application.

The Gabor filter bank makes use of the direction and morphology of the IVDs. Due to 
the interference in direction and morphology in some MRIs, few IVDs were localized 
outside of the localization results. The results were not significantly affected by the extra 
localization because recognition techniques, such as areas and morphology, were added 
to the segmentation method. However, the localization accuracy is likely to increase 

Table 2  The comparison of DSI, Sen, and Spe with and without GFIs

Methods Labels of IVDs Mean DSI Mean Sen Mean Spe

With GFIs L5-S1 0.9349 0.9513 0.9986

L4-L5 0.9320 0.9304 0.9983

L3-L4 0.9469 0.9541 0.9985

L2-L3 0.9352 0.9652 0.9984

L1-L2 0.9389 0.9608 0.9987

T12-L1 0.9376 0.9558 0.9989

T11-T12 0.9332 0.9451 0.9990

T10-T11 0.8551 0.9150 0.9993

T9-T10 0.8997 0.9107 0.9996

Without GFIs L5-S1 0.8067 0.7708 0.9991

L4-L5 0.8911 0.8667 0.9985

L3-L4 0.9119 0.9269 0.9981

L2-L3 0.9141 0.9658 0.9979

L1-L2 0.8996 0.9475 0.9982

T12-L1 0.9197 0.9774 0.9985

T11-T12 0.9233 0.9662 0.9988

T10-T11 0.8450 0.8755 0.9987

T9-T10 0.8975 0.9908 0.9985
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even further with the use of the texture feature in this method. This method was verified 
with 278 IVDs from 37 patients. Further verification and improvement of the method is 
warranted in future studies. Additional studies with large sample sizes are necessary to 
use GFIs for exploring the characters of IVDs and segmentation. We plan to carry out 
more studies with large sample sizes. Further work also includes classifying the degree 
of IVD degeneration using the segmentation and curvature results. Additionally, the GFI 
information will be used to detect curvature of spines more accurately so diseases of the 
spine can be accurately diagnosed.

In conclusion, we proposed a localization and segmentation method for IVDs based 
on Gabor wavelet. In contrast to traditional methods, Gabor filtering for shape-repre-
sentation is proposed. The results and quantitative evaluation show that this method has 
a high accuracy compared with manual operation. It does not need supervision or train-
ing with large datasets before use. Therefore, this method will be useful in computer-
aided diagnosis of the disease and computer-assisted spine surgery.
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