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Abstract

Background: Unsupervised lung segmentation method is one of the mandatory
processes in order to develop a Content Based Medical Image Retrieval System
(CBMIRS) of CXR. The purpose of the study is to present a robust solution for lung
segmentation of standard and mobile chest radiographs using fully automated
unsupervised method.

Methods: The novel method is based on oriented Gaussian derivatives filter with
seven orientations, combined with Fuzzy C-Means (FCM) clustering and thresholding
to refine the lung region. In addition, a new algorithm to automatically generate a
threshold value for each Gaussian response is also proposed. The algorithms are
applied to both PA and AP chest radiographs from both public JSRT dataset and
our private datasets from collaborative hospital. Two pre-processing blocks are
introduced to standardize the images from different machines. Comparisons with the
previous works found in the literature on JSRT dataset shows that our method gives
a reasonably good result. We also compare our algorithm with other unsupervised
methods to provide fairly comparative measures on the performances for all datasets.

Results: Performance measures (accuracy, F-score, precision, sensitivity and specificity) for
the segmentation of lung in public JSRT dataset are above 0.90 except for the overlap
measure is 0.87. The standard deviations for all measures are very low, from 0.01 to 0.06.
The overlap measure for the private image database is 0.81 (images from standard
machine) and 0.69 (images from two mobile machines). The algorithm is fully automated
and fast, with the average execution time of 12.5 s for 512 by 512 pixels resolution.

Conclusions: Our proposed method is fully automated, unsupervised, with no training or
learning stage is necessary to segment the lungs taken using both a standard machine
and two different mobile machines. The proposed pre-processing blocks are significantly
useful to standardize the radiographs from mobile machines. The algorithm gives good
performance measures, robust, and fast for the application of the CBMIRS.

Keywords: Chest radiograph, Unsupervised lung segmentation, Fuzzy C-means,
Thresholding, Gaussian derivatives, Medical image processing, Segmentation algorithm
Background
Chest radiography is the most frequently used diagnostic imaging examination for

chest diseases such as lung cancer, pulmonary edema (fluid in the lung), pleural effu-

sion (fluid between lung and chest cavity), pneumonia (infection by bacteria, viruses,
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fungi, or parasites) and tuberculosis (bacterial infection). More than 10 million people

worldwide die annually from chest diseases. Based on the survey done by [1], the mor-

tality rates for chest diseases in 1990 are 6.3 million (ischaemic heart disease), 4.3 mil-

lion (lower respiratory infections), 2.2 million (chronic obstructive pulmonary disease),

2 million (tuberculosis) and 0.9 million (lung cancer). For most diseases, many cures

are only effective in the early stage and symptomless stage of disease. Screening can

help early diagnosis, but a sensitive, side effect-free as well as economical method has

to be used to enable mass usage. Standard chest radiography meets these requirements,

except that current methods have moderate sensitivity. It is still more favourable des-

pite the development of advances radiological exams like Computed Tomography (CT).

The main reason is because the CT exams expose the patient to a higher dose of radi-

ation. By comparing the conventional CXR and CT chest, it is estimated that the latter

is about 400 times higher than the former, which equivalent to 3.6 years of background

exposure [2]. Another reason for the widespread use of conventional chest radiograph

over CT is its economic feasibility. The study on literature and challenges for current

direction of computer aided detection (CADe) system for lung cancer in CT scans are

reviewed by Firmino et al. in [3]. There are some recent works found on analysing

the chest in CT images, including the pulmonary fissure detection and lobe segmen-

tation [4-8]. However, the topic of interest for this research is only on chest radiog-

raphy, thus the previous literature on related work will be discussed thoroughly in

the next section.
Previous work

Medical image segmentation plays a crucial role in many imaging applications by auto-

mating or facilitating the delineation of anatomical structures and other regions of

interest. Segmentation of lung fields in CXR has received considerable attention in the

literature since the past decade. An exhaustive survey on the lung segmentation tech-

niques for chest radiographs has been done for this work, and is summarized in Table 1.

Most of the listed work used JSRT dataset as their image database. JSRT dataset is the

database of chest radiographs (with and without lung nodules) that publicly made avail-

able by the Japanese Society of Radiological Technology (JSRT), with their ground truth

clinical data [9]. This dataset only consists of posterior-anterior (PA) chest radiographs,

taken by stationary X-Ray machine. To the best of our knowledge there are only two

work [10,11] that used chest radiographs from portable device. This shows the lack of

study in mobile chest radiographs that is also relatively important especially for very

sick patients whenever their radiographs will be taken using portable X-Ray machine.

In [12], the early segmentation methods for CXR have been classified into roughly

four categories: rule-based methods, pixel classification-based methods, deformable

model-based methods and hybrid methods. A rule-based scheme consists of a sequence

of steps, tests and rules. The methods used are thresholding (local), region growing,

edge detection, ridge detection, morphological operations, fitting of geometrical

models, functions or dynamic programming. The usage of rule-based scheme is dem-

onstrated in [13], based on Bezier interpolation of salient control points is used in [10]

and based on fuzzy subsets of the image space in [14]. Pixel classification-based scheme

on the other hand is more general and mainly model the intensities of the image and



Table 1 Summary of related work on lung segmentation techniques for chest radiographs

Reference Image database Segmentation method Evaluation
measure

Limitation

[33] - 230 chest radiographs Overlap score:

- ASM with optimal local
features

- ASM right:
0.882 ± 0.074

- Computationally
complex

- find optimal displacements
for landmarks using a non-
linear kNN classifier instead
of linear Mahalanobis
distance

- ASM left:
0.861 ± 0.109

- Suffers the
drawback of ASM

- ASM-OF right:
0.929 ± 0.026

- ASM-OF left:
0.887 ± 0.114

[17] - JSRT dataset (247
images)

Various methods were
compared

Overlap score: - Highly supervised
and required
training

- Hybrid voting - Hybrid voting:
0.949 ± 0.020

- PC postprocessed - PC postprocessed:
0.945 ± 0.022

- Hybrid ASM-PC - Hybrid ASM-PC:
0.934 ± 0.037

- Hybrid AAM-PC - Hybrid AAM-PC:
0.933 ± 0.026

- ASM-tuned - ASM-tuned:
0.903 ± 0.057

- AAM - AAM: 0.847 ±
0.095

- Mean Shape - Mean Shape:
0.713 ± 0.075

[10] - 24 chest radiographs
from portable device, all
with pulmonary bacterial
infections manifested as
consolidations

- based on Bezier
interpolation of salient
control points

Sensitivity: 95.3% - Lack of images

Specificity: 94.3%

[11] - 58 chest radiographs
from portable device,
all with pulmonary
bacterial infections
manifested as
consolidations

- Gray-level selective
thresholding followed
by ASM

Accuracy presented
in a graph, between
92.5% - 94%.

- Lack of images

- Suffers the
drawback of ASM

[15] - 52 selected images
from JSRT dataset

- Gaussian kernel-based
fuzzy clustering algorithm
with spatial constraints

Accuracy: - Lack of images (only
52 were selected
out of 247 images
in JSRT dataset)

- 0.978 ± 0.0213

[13] Dice similarity: - Requires training
and optimization

- 1,130 images - rule-based method
(thresholding, morphology
and connected components)
used to generate a seed
mask

- 0.88 ± 0.07

- 400 from Shanghai
Pulmonary Hospital
(200 normal, 200 with
pneumoconiosis)

- Using optimized canny edge
parameters to detect the
corner (costophrenic angle)

- 730 from different
clinical sites in China
(with normal and
various pulmonary
conditions)
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Table 1 Summary of related work on lung segmentation techniques for chest radiographs
(Continued)

[36] - JSRT dataset (247
images)

Overlap score: - Requires
optimization and
testing- Fusing shape information

with statistical model of
the lungs’ shape

- 22 landmarks:
0.92 ± 0.063

- intensity-based iterative
thresholding

- 28 landmarks:
0.94 ± 0.053

- optimization using ASM

[34] - JSRT dataset (247
images)

- ASM for the lung
segmentation, with bone
detection algorithm

- Sensitivity: 0.956 - Suffers the
drawback of ASM

- Specificity: 0.984

[14] - JSRT dataset (247
images)

Accuracy:

- based on spatial relationships
between lung structures,
represented as fuzzy subsets
of the image space

- Left axillary: 82.1% - Need to label the
lung structures

- segment the lung
structures

- Right axillary:
85.2%

- Accuracy or
overlap score of
whole lung is not
provided- Left parahilar:

84.4%

- Right parahilar:
82.8%

- Left Paracardiac:
68.8%

- Right Paracardiac:
86.5%

- Left Basal: 81.5%

- Right Basal: 81.7%

[35] Accuracy: - Requires shape-
learning stage

- JSRT dataset (93
normal images)

- Global edge and region
force (ERF) field based
ASM (ERF-ASM)

- JSRT left: 0.952 ±
0.013

- CXR from University of
Alberta Hospital
dataset (50 images
with tuberculosis)

- PCA analysis to learn the
lung fields’ shape

- JSRT right:
0.955 ± 0.014

- CXR left:
0.946 ± 0.015

- CXR right:
0.953 ± 0.017

[37] 3 stages: Overlap score:

- JSRT dataset (247
images)

1. CBIR approach to identify
small set of lung CXR
using Radon transform
with Bhattacharyya
similarity measure

- JSRT: 0.954 - Need to be highly
trained

- Montgomery dataset
(138 images – 80
normal, 58 with
tuberculosis)

2. Construction of patient-
specific lung atlas

- Montgomery:
0.941

- Computationally
complex

- India dataset (200
images – 100 normal,
100 abnormal)

3. Lung segmentation using
graph cuts discrete
optimization approach

- India: 0.917

Column ‘Reference’ refers to the citation of previous work; column ‘Image database’ describes the image database used
in the cited work; column ‘Segmentation method’ summarizes the methods used in the cited work; column ‘Evaluation
measure’ listed all the performance measures available in the cited work; and column ‘Limitation’ gives the known
limitation related to the cited work.
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classify the pixels into lung field or background. [15,16] employed the scheme based on

fuzzy clustering method (FCM) and [17] tested the post-processed pixel classification

method as one of their comparative results.

The FCM algorithm is the best known, although it has many drawbacks in applying into

finding appropriate groups in data analysing problems. Many researchers have tried to

modify the basic objective function to have more robust FCM [18-23]. However, the ideal

segmentation of an image is usually application-dependent; and FCM has been used with

some success in the soft or fuzzy segmentation in medical imaging of chest CT [7,23-28],

chest MRI [18] and brain MRI [16,19-22,25,29]. In CT and MRI images, the edges of the

lung or brain can be easily distinguished due to the distinct bone and cell tissue, thus mo-

tivated the authors to apply the FCM in their work. For CXR, Shi, et al. [15] has imple-

mented FCM with spatial constrains to segment the lung, and Rastgarpour, et al. [16] has

also integrated a local region-based level set method with a variation of fuzzy clustering in

their work in order to segment a few modalities and body parts including lung. A few

works on other applications using FCM in CXR has also been found in the literature.

Parveen et al. in [30] implemented the algorithm for detection of pneumonia, [31] used

for segmentation of heart information (size, contour and shape) and lastly the application

is for clustering feature vectors data for atypicality detection by [32]. Lack of work on lung

segmentation for CXR using FCM is mainly due to the inhomogeneities of the X-Ray

imaging [16]. Furthermore, the strong edges at the rib cage and clavicle region as well

as intensity variation around the lung area make it challenging to use FCM as segmen-

tation tool.

A relatively new scheme which have been extensively studies and used in medical image

segmentation is the deformable model-based methods. This shape-flexibility model,

namely Active Shape Model (ASM) and Active Appearance Model (AAM), have been suc-

cessfully applied to lung region segmentation [17,33-35]. However, they both have several

limitations and shortcomings including requires supervision to adjust certain parameters

which produces highly variable solutions, requires shape learning to train the model, as

well as manual initialization. The invention of hybrid scheme is to produce better segmen-

tation results by fusing the previous said schemes. It is very interesting to note that most

of the hybrid methods found in the literature is combining rule and shape based schemes

to their algorithms [11,36,37]. Still, the methods fused with ASM suffer the drawbacks

and the shape scheme on the other hand needs to undergo the optimization process,

learning, training and usually are computationally complex.

Computer aided evaluation of CXR needs complex image processing algorithms where

the images should be pre-processed prior to the detection of abnormalities. The first step

for the development of an automatic system for digital chest radiographs is the segmenta-

tion of the CXR to extract the area of the lungs before suppressing the thoracic cage (the

bones). By doing this, there is a chance to eliminate shadows of these parts, cleaning the

area of the lung field from the anatomical noise and making it possible to look behind the

bones. Thus, this paper will focus on the lung field segmentation.
Proposed segmentation algorithm

The proposed image segmentation method is a rule-based approach that consists of sev-

eral algorithms applied sequentially. Images collected from mobile and stationary X-Ray
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machines produce different kind of radiographs. Thus, a robust algorithm has been pro-

posed to overcome this issue that consists of two stages: the pre-processing stage and the

segmentation stage. A schematic of the image processing flow is shown in Figure 1.
Pre-processing

The radiographs produced by both stationary and portable machines have diverse pur-

poses, settings and configurations. Their varieties in position views and properties are

among the main challenges to develop a robust algorithm to extract the lung. Figure 2

shows few examples of various CXR images obtained from three different machines

and their respective histograms. It is obviously shown that histograms of different CXR

images have different intensity distribution from each other. Figure 2(a) is an example

of normal PA radiograph from a stationary machine, which is the output of common

CXR machines. In this work, this type of CXR image is set as the standard image where

no pre-processing step is needed.

In addition, Figure 2(b) and Figure 2(c) are examples of CXR images taken from two

different mobile machines, where the positions are usually in sitting or lying, as well as

standing if a patient is able to do so. Images from the first mobile machine (i.e. Figure 2

(b)) are identified ‘with unnecessary background’, thus the chest area has to be cropped

out from the images. The second mobile machine generates another type of images,

such as Figure 2(c) in which is considered as ‘inverted image with unnecessary back-

ground’. Therefore, its image histogram has to be inverted before cropping the chest

area. The contrast of the inverted image is then corrected by stretching the histogram

and eliminated 2% of the outliers. Figure 3 illustrates examples of original radiographs

and their corresponding inverted images from two different datasets.

The radiographs produced by the portable machines have extra backgrounds such as

in Figure 3 due to the nature of the mobile x-ray detector. Thus, cropping block is im-

portant to remove the unwanted backgrounds or regions. The radiographs are firstly

converted to binary images in which their threshold value are obtained using Otsu’s

thresholding method and followed by morphological dilation to preserve as much

coverage as possible. Then, any wordings or unwanted regions outside the chest area

are removed before cropping out the remaining background. Figure 4 shows some out-

put images obtained from these step-by-step procedures.

Figure 1 clearly illustrates these pre-processing steps during the first stage of the pro-

posed lung segmentation method.
Segmentation

The proposed lung segmentation consists of a scheme that based on Gaussian derivatives

(GD) filter, global thresholding and fuzzy C-means (FCM) clustering method, as clearly

presented after the pre-processing stage in Figure 1. This fully automated method has

adapted the oriented Gaussian filter to obtain responses in several directions so that a

rough lung outline can be identified. The lung outline is then filled using global threshold-

ing, and the final output is refined using a few different clusters of FCM. In addition, a

new algorithm to get an automatic threshold value for all Gaussian filters responses has

also been proposed.
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Figure 1 Image processing flow for the proposed lung segmentation method. The diagram is divided
into two main sections: the pre-process (with contrast adjustment and cropping block) and segmentation
(with Gaussian Derivatives, global thresholding and Fuzzy C-Means algorithms).
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Estimated lung outline using oriented derivatives of Gaussian filters

In this experimental work, an estimated outline of the lung borders is obtained by com-

bining thresholded pixels from the output responses of oriented GD order 1 in seven

directions that are θ=0°, 30°, 60°, 90°, 120°, 150° and 180°, at a scale of σ=3. Based on

distributions of the gradient values, different threshold values are generated for each

output responses. With a correct threshold value, the output responses of each



Figure 2 Example of different projection and positioning in chest radiographies with their respective
histograms. (a) PA erect from standard machine; (b) AP sitting; and (c) AP Supine from portable machines.
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direction may successfully depict different details of the lung outlines. For instances, at

θ=0° and θ=30° , details of the outer right lung and inner left lung are highlighted, and

the opposite directions (θ=150° and θ=180°) represent the details of the outer left lung

and inner right lung. In addition, the response at θ=60° highlights the hemidiaphragm

of the right lung and the inner-lower details of the left lung; while the other side of the

lung can be highlighted by the response at θ=120°. For θ=90°, most of the normal PA

radiographs have both right and left hemidiaphragms highlighted, whilst some of the

radiographs (especially with fluid or infection) lost this feature due to the high intensity
Figure 3 The outputs of the contrast adjustment block. The two images are from different portable
machines (a) to (c) and (d) to (f). (a) and (d) are the original images, (b) and (e) are after inverting the
image and (c) and (f) are the results after correcting the contrast.



Figure 4 The outputs of the cropping block. (a) – (f): original image, thresholded image, after dilation,
outside wordings removal, mapped to original image, final output (cropped).
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of the consolidations around the diaphragm area. Some examples of the thresholded re-

sponses are shown in Figure 5.
Novel algorithm to get automatic threshold value for each Gaussian responses

A new method is proposed to automatically compute a threshold value for each differ-

ent response by analysing its histogram obtained from the Gaussian filter.

The algorithm has been designed to obtain a threshold value that is located at the

end of the histogram peaks. This is to ensure that only important gradient intensity is

highlighted after the thresholding process, with as much noise reduction as possible.

Equation 1 mathematically represents the histogram number of occurrences for each

pixel value, called histogram numbers, HN. The input of this algorithm is the Gaussian
Figure 5 Output of the GD responses after thresholding. (a) – (g) thresholded responses for
θ=0°,30°,60°,90°,120°,150° and 180°, and (h) output of the combined responses after the ‘cleaning’ processes
with rule-based algorithms.
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response, Rσ, with floating point pixel values where its range is varying from negative of

thousands to positive thousands. The first step is to round these values to the closest

integers, and the minimum and maximum values are denoted as mn and mx. The num-

ber of occurrences, N, for each pixel value is recorded, where each single value in the

histogram is considered without discretizing it into any number of bins, and the result

is called histogram numbers, HN.

HN ið Þ ¼
Xmx

i¼mn

N Rσ ið Þð Þ ð1Þ

The peaks of the HN are calculated based on the local maxima with the minimum

peak height (mph) is set to the mean of HN. For each peak found, PHN (x), its location

inside the vector HN is denoted as LP-HN (x), where x=1,2,..m; and m is the total num-

ber of peak found.

PHN xð Þ ¼ HN ið Þ; ð2Þ

if HN(i − 1) <HN(i) >HN(i + 1) and H > HN

N ið Þ mx−mn

The PHN (x) are then analysed to get the chosen peak values, PHN (c), which fulfil

these criterion:

– LP-HN (x) has to be located after the maximum HN

– PHN (x) has to be at least 3 times of mph and at most 8 times of mph. This is to

ensure that the values are to be ‘true peaks’ and above average, but not too high to

exclude the ‘oddly high peaks’.

The locations of the chosen peak, LP-HN (c) are mapped to the original pixel values, and

a list of possible threshold values, LTH, is created. Lastly, the maximum value of LTH that is

located at the end of the histogram peaks is chosen as the output of this algorithm.

Rule-based algorithms

The rule-based algorithms are important steps before the lung area is segmented from

its radiograph. They involve border cleaning, noise removal, clavicles elimination, and

removal of body and sides’ artefacts for each thresholded response. The unwanted details

that are located along the image margins are contributed by noise from the acquisition

system. Some radiographs contain clavicles or body artefacts. These unnecessary details

are eliminated by removing the pixels connected to the borders. The connected pixel

areas which are less 0.5% of the image size are also eliminated. The three proposed rules

are presented below to get the most optimum lung outlines, and clear output responses.

To eliminate clavicle

The clavicles are located at the top-side of the lungs; top-right for right lung and top-

left for left lung, and often located close enough to the image top and sides margins.

To eliminate the clavicle for the right side, a rule to filter the regions is proposed where

the area with the connected pixels located between 0% and 35% of the image height, r0,

are removed. The location of minimum row has to be at most 20% of the r0; and the

pixels that are located between 0% and 50% of the image width, c0, are removed, where

the location of minimum column has to be at most of 25% of the c0. The clavicle
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normally has a broad width; hence the width of the area has to be at least 15% of the

image width, c0. Same rules are applied to the left side, except the pixels has to be located

between 50% and c0, where the location of maximum column has to be at least 75% of c0.

To eliminate sides’ artefacts

These noises are normally caused by shadows inside the radiographs and they are lo-

cated at the right or left sides of the image. The rule is carefully defined in such a way

that only the most minimal side regions are removed. For the right side, the region has

to be at most only 15% of c0, with the location of minimum column at 5% of c0 or

lesser. Same portion of limit is applied to the left side, with the location of maximum

column at least 85% of c0.

To eliminate body artefacts

This rule is proposed mainly to tackle the remaining body artefacts that are not re-

moved during the image margin cleanings. These noises are not connected to the

border, but they are located very close to the bottom image’s margins. Based on these

characteristics, a rule such that, the minimum row has to be located at 25% of the r0 or

more, and location of maximum row has to be at least 90% of the r0 is defined. Area of

the connected pixels is set to be at least 2.5% of the image size to preserve important

lung outline such as the hemidiaphragm which is normally located at the bottom of the

image and very close to the margin .The limit for minimum column for the right side

is set to be at most 5% of the c0 and the limit for maximum column for the left side is

set to be at least 95% of the c0.

After the noise elimination steps, the output of each response is then combined to form

a rough lung outline. The last rule is to eliminate small region so that only clean lung out-

line information is stored. The area of each connected region found in the image is calcu-

lated, and the value of largest area, Amax, is stored. Any region that is smaller than 15% of

the Amax and maximum column located less than 20% of c0 (right side) or minimum col-

umn located more than 80% of the c0 (left side), are discarded. The summary of this pro-

posed rule-based algorithms are summarized in Table 2. At the end of this process, the

estimated lung outline, Loutline, as in Figure 5 (h) is obtained, and another simple algorithm

based on thresholding and convex hull is developed to fill in the lung outline.

Fill the lung outline based on global thresholding and convex hull

Figure 6 (a) and Figure 6 (b) show images obtained from previous processing steps de-

noted as Loutline and normalized image using high frequency emphasis filtering (HFEF),

IHFEF, respectively. The IHFEF is smoothed using Gaussian blurring with filter size of 32

by 32 and standard deviation, σ = 10. From our observation the chosen filter size and σ

value are able to successfully smooth out the obvious edge details in IHFEF, and to pre-

serve the important lung region information. A global Otsu thresholding is then ap-

plied to the smoothed IHFEF and the outputs are Ith, Figure 6 (c). A convex hull of

Loutline is obtained and denoted as LCH (Figure 6 (d)), and Ith is combined with LCH to

get the ROI of Ith within LCH (Figure 6 (e)), hence to produce Ith-roi (Figure 6 (f )). The

final estimated lung mask, Lmask (Figure 6 (g-h)), is obtained by combining Loutline and

Ith-roi, followed by basic morphological operations (dilation, filling, erosion and remov-

ing small regions).



Table 2 Summary of the rule-based algorithms for noise removal

Steps Location Area

To remove small connected pixel Anywhere < 0.005 of image size

To eliminate clavicle Near to top: (0 < pixel < 0.35 of r0) and (minimum
row ≤ 0.2 of r0)

≥ 0.15 of c0

Right lung: Top-right (0 < pixel < 0.5 of c0) and
(minimum column ≤ 0.25 of c0)

Left lung: Top-left (0.5 of c0 < pixel < c0) and
(maximum column ≥ 0.75 of c0)

To eliminate sides’ artefacts (region ≤ 0.15 of c0)

Right side: (minimum column ≤ 0.05 of c0)

Left side: (maximum column ≥ 0.85 of c0)

To eliminate body artefacts Near the bottom image’s margins: (minimum
row ≥ 0.25 of r0) and (maximum row ≥ 0.9 of r0)

≥ 0.25 of image size

Right side: (minimum column ≤ 0.05 of c0)

Left side: (maximum column ≥ 0.95 of c0)

To eliminate small region after lung
outline is formed

Right side: (maximum column < 0.2 of c0) ≤ 0.15 of Amax

Left side: (minimum column > 0.8 of c0)
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Refine the lung region using FCM clustering

This work has proposed a rule-based algorithm using FCM clustering to further refine the

lung mask. The FCM method that was improved by [38-40] is used for this purpose because

of its ability to automatically cluster the pixels into the defined number of clusters. FCM

has been used previously in segmenting lung in chest X-Ray [15,16], chest CT [7,23-28],

chest MRI [18] as well as segmenting brain matter in MRI images [16,19-22,25,29].

In this algorithm, input images for FCM are the estimated lung mask, Lmask that is il-

lustrated in Figure 6 (h) obtained from the previous algorithm. Lmask is then mapped to

the original CXR to produce its Imask (Figure 7 (b). FCM with several numbers of clus-

ters, n = 3 to 8, are tested (as shown in Figure 7) to get closest segmented lung areas as
Figure 6 Filling the lung outline based on global thresholding and convex hull. (a) Input image
Loutline (b) smoothed IHFEF, (c) thresholded IHFEF (Ith), (d) convex hull of Loutline (LCH), (e) ROI of Ith within LCH
(f) Ith-roi, (g) Ith-roi + Loutline, and (h) final estimated lung mask, Lmask.



Figure 7 Output of different number of clusters for FCM. (a) highlighted ground truth region (orange)
overlapped with Lmask, (b) Imask, (c) n = 3, (d) n = 4, (e) n = 5, (f) n = 6, (g) n = 7 and (h) n = 8.
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their ground truth lung regions which is overlapped with Lmask and highlighted as or-

ange regions in Figure 7 (a). Figure 7 (c) to Figure 7 (h) shows the experimental results

of FCM thresholding with n = 3 to 8 obtained for a normal patient respectively. From

our observation for all cases, the output image using n = 8 gives the best segmentation

result with the most lung information preserved.

Figure 8 (a) to Figure 8 (h) show cluster images that are to be processed denoted as

Icn where n represents the cluster from 1 to 8. From the figures, it can be seen that

each cluster image has different information in which some of them can be later com-

bined and processed together. The first cluster image, Ic1 only contains the background

information of the lung mask, thus, it will be discarded. Ic2, Ic3, and Ic4 have the ‘inner-

most’ lung information, but in some of the imperfect output of Loutline, these cluster

images also give unwanted details such as the center bones (sternum) and connected

clavicle. Nevertheless, this problem can be overcome by applying a few steps of mor-

phological operations to the fifth cluster image, Ic5, so that the obtained minimum lung

region is then mapped to Ic2, Ic3, and Ic4. Only pixels within the region of processed Ic5
(Figure 8 (i)) are considered. The results from Ic2, Ic3 and Ic4 are combined and denoted

as Ic234 (Figure 8 (k)). The next step is to process Ic6, Ic7, and Ic8, where these cluster

images have the outer lung details, as well as the excess of inner and lower lung noises.

The connected pixels in Ic6 is firstly eroded (Figure 8 (j)), then followed by preserving

the outer lung details for Ic6, Ic7, and Ic8. Any pixel falls between 40% and 60% of image

width are discarded. The results of Ic6, Ic7 and Ic8 are then added to form Ic678 (Figure 8

(l)). Lastly, the refined lung region is obtained by combining Ic234, processed Ic5 and

Ic678 to produce the final segmented lung mask, Lfinal Figure 8 (m).
Experiments and results
This section describes the performance evaluation of the proposed segmentation

method for CXR images in our datasets. Segmentation performance has been assessed

by comparing the output of proposed automated segmentation methods with the



Figure 8 Process of refining the lung region using FCM cluster images for n = 8. (a) – (h) cluster
image Ic1, Ic2, Ic3, Ic4, Ic5, Ic6, Ic7, Ic8, (i) processed Ic5, (j) processed Ic6, (k) Ic234, (l) Ic678, (m) final output, Lfinal
and (n) highlighted ground truth region (orange) overlapped with Lfinal.
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ground truth images prepared by the experts. Pixel-by-pixel analyses are performed to

measure a similarity between the set of non-zero pixels of the two segmentation masks.
Image data

For this experimental work, images from both public (JSRT) and private (SH) image data-

sets have been collected. Images in the former database are the standard PA chest radio-

graphs, 247 in total and collected from 13 institutions in Japan and one in the United

States. The images are a collection of normal images (93) and with exactly one nodule

(154). The images were scanned from films to a size of exactly 2048 by 2048 pixels [9].

The latter database is our own private database collected from Hospital Serdang (SH),

Malaysia. It contains both PA and anterior-posterior (AP) radiographs produced by three

different machines: one is stationary machine to produce PA radiographs and two mobile

(portable) machines specifically for ill patient which can produce both PA and AP radio-

graphs. The database collection consists of 86 normal images and 42 images with various

types of consolidations such as but not limited to fluids, infections and cavitation. The

image resolutions vary and they are in DICOM file format with 12-bit grey levels.

The image projection and patient positioning in SH datasets consists of three posi-

tioning: PA erect, AP sitting and Supine. The commonly used projection in CXR are

from posterior to anterior (PA), with the X-ray source situated posterior (behind) to

the patient and the X-ray plate positioned immediately anterior (frontal) to the patient’s

chest. If the patient is ill and unable to stand or suffers with general immobility, the

CXR may be taken anterior to posterior (AP) in sitting or supine (lying) position. Only

mobile machine is able to take CXR images in sitting and lying position.
Performance measure/evaluation

The performance of the proposed segmentation algorithm is measured using a ‘good-

ness’ index. For two class segmentation problems such as lung and background in this

work, one can distinguish true positive (TP) area (correctly classified as lung), false
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positive (FP) area (background incorrectly classified as lung), false negative (FN) area

(lung incorrectly classified as background) and true negative (TN) area (correctly classi-

fied as background). Measures such as sensitivity, specificity, accuracy and overlap

score can be computed using these values. In this work, the analyses have been per-

formed to both right and left lungs using the following formulas:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

OverlapScore ¼ AreaOfInter section;TP
AreaOfTheUnion;TP þ FP þ FN

Sensitivity=Recall;R ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

Precision; P ¼ TP
TP þ FP

F−score; F ¼ 2� P � R
P þ R

Accuracy defines the amount of true results (both true negatives and true positives)

[14]. Overlap score is defined as the agreement between the ground truth and the esti-

mated segmentation mask over all pixels in the image [37]. This measure is well ac-

cepted and has been used widely in the lung field segmentation of chest radiographs

[17]. Sensitivity or recall is corresponds to the proportion of true positives relative to

the lung field that should be segmented. Sensitivity tends to 1 (or 0) if there is little (or

many) false negatives [14]. Specificity is the proportion of true negatives relative to the

lung field that should be segmented. Specificity tends to 1 (or 0) if there is little (or

many) false positives [14]. Precision is corresponds to the proportion of true positives

relative to the segmented lung field (true positives and false positives). F-Score is de-

fined as a weighted average of both precision and recall. The best value is 1 and vice

versa. Standard deviation (for all measures) is defined as the amount of disparity of the

measure from its average value. The lower the standard deviation value means that the

measured values are very close to their expected value. Whilst a high standard devi-

ation value means that the measured values are varied over a large range of values.

Minimum value (for all measures) defines the lowest value of the measure. A good

measure shall produce a high minimum value. Maximum value (for all measures) de-

fines the highest value of the measure. A good measure shall produce a high maximum

value.

Execution time of the proposed methods

Table 3 presents the obtained computational speed of each level in the proposed seg-

mentation method. Different stage of level may use different image sizes, thus their re-

spective sizes are also portrayed in the table for comparison. All algorithms are

developed using Matlab 7.10 as the software tool on a desktop personal computer with

a 3.10-Ghz Intel i5 CPU and 8 GB memory as a testing platform. The total execution

time per dataset is slightly different; where it depends on the pre-processing steps (level



Table 3 Average execution time for each proposed level with the respected image size

No Level (image size) Average execution time (s)

1 Contrast adjustment block (original size) 0.68

2 Cropping block (original size) 0.15

3 Get spine axis (512 by 512 to get the spine, then reduced 256 by
256 when using HT)

0.29

4 Segmentation using GD, thresholding and FCM 13.71

- Estimate lung outline (GD) (512 by 512) (9.79)

- Fill the lung outline (thresholding) (256 by 256) (0.96)

- Refine lung region (FCM) (256 by 256) (2.96)
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number 1, 2 and 3) before the segmentation stage (refer Figure 1). Comparing the three

segmentation stages (level number 4), GD stage takes the longest time, with more than

70% of the time is taken to estimate the lung outline and to generate the threshold

value for each Gaussian orientation (total of 7 orientations). However, the main seg-

mentation processes are relied on the GD method, thus, the relatively high execution

time is still tolerable because the main crucial issue is to achieve high segmentation ac-

curacy. Furthermore, the retrieval system for medical image application consists of two

stages: the offline feature extraction stage and the online retrieval stage. During the off-

line stage, features are computed for all database images; while during the online stage,

only the FV of the query image is computed. It is important to take note that the un-

supervised method is mandatory for a robust retrieval system.
Experiments, results and discussion

Performance of our unsupervised method will be separately evaluated for each public

and private datasets in term of average (mean), standard deviation (std), minimum

(min) and maximum (max) values for recall, precision and F-score performance mea-

sures. All performance measures range from 0 to 1.

Experiment on public image dataset (JSRT)

The JSRT dataset consists of standard PA chest radiographs from stationary machine.

The radiographs are inverted images (refer Figure 3(d)), thus they have to undergo con-

trast adjustment process during the pre-processing stage. Table 4 presents the perform-

ance measures for this dataset. It can be seen that most performance measures are

above 0.90, except the rounded overlap measure is 0.87, which is still above satisfactory.

The standard deviations for all measures are also very low, which indicates the low

variation of the performance measures from the mean values. The lowest value is
Table 4 Lung field segmentation for standard PA chest radiographs using the public
image database (JSRT)

Overlap Accuracy F-score Precision Sensitivity Specificity

mean 0.8695 0.9577 0.9289 0.9332 0.9279 0.9707

std 0.0599 0.0240 0.0414 0.0327 0.0628 0.0147

min 0.3156 0.6873 0.4798 0.7997 0.3255 0.9041

max 0.9365 0.9800 0.9672 0.9886 0.9905 0.9958
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corresponding to the specificity (0.0147) and the highest is only 0.0628 of the sensitiv-

ity. The minimum value is however quite low for certain measures, due to a few images

that are difficult to segment.

The quantitative results for this standard PA dataset are tabulated in a scattered graph

as in Figure 9. The accuracy and F-score of almost all images (98% and 92% of all cases re-

spectively) are higher than 0.90. 24% of the images achieve above 0.90 overlap score, 78%

are above 0.85 and 95% are above 0.80. From the experimental work, four cases obtained

about 0.60 and one case of 0.32, where the method failed to get suitable automatic thresh-

old value when thresholding the GD responses. For these cases, the outputs led to the loss

of lung outline information, thus affecting the rest of the segmentation process. This prob-

lem is due to the difference in the responses intensity, where their fit threshold values are

located slightly to the centre of the histogram peaks.

Figure 10 shows the qualitative segmentation results that are the lung contours gen-

erated by the proposed method superimposed on the original images ((a) to (c) and (g)

to (i)), together with the confusion matrix ((d) to (f ) and (j) to (l)), corresponding to

the best and worst three segmentation outputs.

Performance comparison on JSRT dataset with existing methods

Several studies have reported their lung segmentation results on various chest radio-

graphs as comprehensively presented in the literature. In this work, we had compared

the performance measures between the proposed method and previous studies as sum-

marized in Table 5. We only chose the quantitative results that were achieved using all

247 images of JSRT dataset. By comparing the overlap score with the supervised

hybrid-based methods in [17,36,37], our method performs reasonably well with the

overlap difference of 0.07 to 0.084 and 6 to 8.5 times faster execution time. In addition,

our proposed method is an unsupervised and fully automated where no training or

learning stage is necessary. The proposed method also performs favourably with the su-

pervised model-based method in [34] with the sensitivity and specificity difference of

0.028 and 0.013, respectively. Comparing with the rule-based method presented in [14],

where the segmentation was done based on the lung structures and extensive
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Figure 9 Performance measures of the proposed method for each image using the public JSRT
dataset (247 images).



Figure 10 Segmentation outputs (contours and confusion matrix) using the public JSRT dataset.
Results are shown for the best ((a) to (f)) and worst ((g) to (l)) 3 of 247 images. TN pixels are dark grey,
TP are light grey, FP are white and FN are black.

Table 5 Segmentation methods for comparison (for 247 images in JSRT database)

Reference Method Complexity Overlap Sensitivity Specificity Accuracy Execution
Time

Proposed
method

Rule Unsupervised
and fully
automated

0.870 ± 0.059 0.928 0.971 0.958 10-15 s (512
by 512)

[14] Rule Labelling N/A N/A N/A 0.816 N/A

[34] Model Supervised N/A 0.956 0.984 N/A N/A

[17] Hybrid:
Model + pixel

Supervised 0.949 ± 0.020 N/A N/A N/A N/A

[36] Hybrid:
Model + rule

Supervised 0.94 ± 0.053 N/A N/A N/A N/A

[37] Hybrid:
Rule + Shape

Supervised 0.954 ± 0.015 N/A N/A N/A 85-90s (512
by 512)
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knowledge was needed to label each structure, our method performs much better with

the accuracy difference of 0.142. The proposed approach is unsupervised, low complex-

ity and computationally tolerable, yet provides satisfactory results.

Experiment on private datasets (SH)

To test the robustness of our unsupervised segmentation method, we have tested the algo-

rithm using a private chest radiographs database collected from Hospital Serdang,

Malaysia. Images in the private SH database contains both PA and AP chest radiographs,

obtained from three different machines: one standard stationary machine (Siemens FD-X)

and the other two are the mobile machines (ADC5146 and CR0975). The images from

Siemens FD-X machine are the standard radiograph and do not need any pre-processing

prior to the segmentation. Whilst the images from the two mobile machines have very dif-

ferent properties: CR0975 are with unnecessary background, thus need to be pre-

processed by the cropping block; and ADC5146 are inverted image with unnecessary back-

ground, and need to be pre-processed by both contrast adjustment and cropping block.

The performance measures for standard PA chest radiographs from the private data-

set (Siemens FD-X) are shown in Table 6. The segmentation results using the JSRT

dataset outperforms the private dataset by 0.06 of the overlap measure. This is due to

the homogenous intensity appearance of JSRT dataset, especially after pre-processed by

the contrast adjustment block, whilst Siemens FD-X dataset performs above average

despites not being pre-processed.

The quantitative results for the private PA datasets are shown in Figure 11. Perform-

ance measures for this dataset can be loosely compared with those obtained from the

JSRT dataset. Strict comparison is not possible since they were applied on different sets

of data. It can be seen that the accuracy for 85% of the images are higher than 0.90,

and the F-score gives 58% of measure above 0.90 and 92% are above 0.80. The overlap

score achieves above 0.80 for 71% of the whole image, thirteen images having scores

between 0.70 and 0.79, nine images with 0.60 to 0.69 and one with the lowest score of

0.59. The same cause as JSRT dataset can be deduced as the culprit of the low overlap

measures. Besides, the overall performance of the private dataset is affected by the het-

erogeneous intensity of the images, while the public dataset contains images of good

technical quality. The segmentation results are visually presented in Figure 12, with the

lung contours generated by the proposed method superimposed on the original images,

together with the confusion matrix, corresponding to the best and worst three segmen-

tation outputs.

Table 7 presents the performance measures for mobile images obtained from two

portable machines which contain both PA and AP radiographs from the private image

database (CR0975 and ADC5146). The overall performances of both datasets are below
Table 6 Lung field segmentation for standard PA chest radiographs using the private
image database (SH: Siemens FD-X)

Overlap Accuracy F-score Precision Sensitivity Specificity

mean 0.8084 0.9381 0.8922 0.8607 0.9340 0.9395

std 0.0723 0.0297 0.0468 0.0626 0.0765 0.0379

min 0.5931 0.8540 0.7446 0.6594 0.6491 0.7890

max 0.9071 0.9750 0.9513 0.9493 0.9986 0.9868
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Figure 11 Performance measures of the proposed method for each image using the private SH:
Siemens FD-X dataset (79 images).

Figure 12 Segmentation outputs (contours and confusion matrix) using the private Siemens FD-X
dataset. Results are shown for the best ((a) to (f)) and worst ((g) to (l)) 3 of 79 images. TN pixels are dark
grey, TP are light grey, FP are white and FN are black.
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Table 7 Lung field segmentation for mobile PA and AP chest radiographs using the
private image database (SH: CR0975 and ADC5146)

Overlap Accuracy F-score Precision Sensitivity Specificity

SH: CR0975

mean 0.6902 0.9020 0.7958 0.8149 0.8393 0.9258

std 0.2049 0.0642 0.1795 0.0996 0.2532 0.0604

min 0.1227 0.7287 0.2186 0.5527 0.1310 0.7458

max 0.8827 0.9677 0.9377 0.9910 0.9985 0.9989

SH: ADC5146

mean 0.6977 0.9195 0.8121 0.8555 0.8095 0.9501

std 0.1472 0.0442 0.1252 0.0841 0.2004 0.0532

min 0.2841 0.8183 0.4424 0.6773 0.3021 0.8047

max 0.8328 0.9698 0.9088 0.9543 0.9978 0.9928
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average, due to most abnormalities present in the radiograph. The former dataset con-

tains 14 abnormal cases (out of 34 images), and 9 from 12 images in the latter dataset

are abnormal. However, the segmentation outputs show that almost all images from

both datasets have their bottom lung border (at least one side of the lung) around the

costophrenic angle are detected. A normal chest has almost symmetry shape (except

the heart area in the left lung) with same level of costophrenic angle, thus, this infor-

mation can be used to detect the consolidations.

Figure 13 illustrates the quantitative results of the segmentation performance using

the private database. The three best and worst segmentation outputs are qualitatively

presented in Figure 14. The lung contours are superimposed on the pre-processed

image instead of original image. From the results, we can see that 16 images achieve

overlap score above 0.80, 28 images are above 0.70, and the worst 6 are below 0.50,

generated from AP radiographs. It is interesting to note that the top 13 scores are

mostly from mobile PA radiographs, and the last 15 scores are all AP images. This

shows that the proposed method is more suitable to segment out the lung field in PA

radiographs, either acquired by mobile or standard X-Ray machine.

Performance comparison on all datasets with other unsupervised methods

In this section, we compare the proposed unsupervised method with other commonly

used unsupervised segmentation methods: the Fuzzy C- Means (FCM) clustering and

Otsu thresholding. Clustering using FCM is widely used for lung segmentation in CT

thorax because of the distinct bone and cell tissue. For lung segmentation in CXR, we

use four clusters FCM with combinations of several morphological operations. This

work has applied Otsu’s thresholding with slope information based on the pixels distri-

butions. In addition, it is also combined with few sequential morphological operations

to clear the image from the remaining noises and refine the lung edges. The results are

compared with the proposed method using both datasets (public and private) to see the

effectiveness of all unsupervised methods. The results are presented in Table 8.

From the overall results of both FCM and thresholding, we can see that FCM performs

better for all datasets. The differences of the overlap measures between these two methods

are 0.060 for JSRT, 0.078 for Siemens FD-X, 0.091 for CR0975 and 0.044 for ADC5146

datasets. The accuracy and specificity of all datasets are above 0.90 when using FCM,



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Images

P
er

fo
rm

an
ce

 M
ea

su
re

overlap
f-score
accuracy

Figure 13 Performance measures for each image of both private mobile datasets (CR0975 and
ADC5146) with 46 images in total.

Figure 14 Segmentation outputs (contours and confusion matrix) on combined private mobile
dataset (CR0975 and ADC5146). Results are shown for the best ((a) to (f)) and worst ((g) to (l)) 3 of 46
images. TN pixels are dark grey, TP are light grey, FP are white and FN are black.
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Table 8 Lung field segmentation using other unsupervised methods (FCM and
thresholding)

Overlap Accuracy F-score Precision Sensitivity Specificity

FCM on JSRT

mean 0.7896 0.9334 0.8783 0.9202 0.8514 0.9652

std 0.1031 0.0277 0.0734 0.0475 0.1175 0.0257

min 0.2513 0.8239 0.4017 0.6417 0.2589 0.7669

max 0.9048 0.9723 0.9500 0.9897 0.9882 0.9982

FCM on SH: Siemens FD-X

mean 0.8011 0.9396 0.8865 0.8796 0.9044 0.9530

std 0.0904 0.0250 0.0626 0.0813 0.0869 0.0309

min 0.4459 0.8312 0.6168 0.5071 0.4672 0.8224

max 0.9082 0.9804 0.9519 0.9707 0.9822 0.9896

FCM on SH: CR0975

mean 0.7282 0.9146 0.8353 0.8243 0.8661 0.9316

std 0.1282 0.0448 0.1041 0.0871 0.1540 0.0413

min 0.2725 0.7511 0.4283 0.6013 0.3326 0.8295

max 0.8724 0.9618 0.9318 0.9739 0.9879 0.9932

FCM on SH: ADC5146

mean 0.4941 0.8601 0.6464 0.6062 0.7245 0.8895

std 0.1581 0.0627 0.1547 0.1721 0.1823 0.0675

min 0.2045 0.7227 0.3396 0.3398 0.3021 0.7340

max 0.6571 0.9250 0.7931 0.8571 0.9108 0.9733

Thresholding on JSRT

mean 0.7293 0.8963 0.8396 0.7876 0.9117 0.8875

std 0.0980 0.0443 0.0686 0.0944 0.0853 0.0648

min 0.3865 0.7381 0.5575 0.4352 0.4738 0.6374

max 0.9206 0.9682 0.9587 0.9526 0.9973 0.9815

Thresholding on SH: Siemens FD-X

mean 0.7232 0.8993 0.8361 0.7514 0.9539 0.8789

std 0.0908 0.0364 0.0624 0.0993 0.0422 0.0522

min 0.4931 0.8017 0.6605 0.4981 0.7510 0.7499

max 0.8953 0.9665 0.9448 0.9304 0.9967 0.9741

Thresholding on SH: CR0975

mean 0.6376 0.8479 0.7667 0.6738 0.9294 0.8167

std 0.1578 0.0862 0.1290 0.1505 0.1278 0.1200

min 0.2182 0.6509 0.3582 0.3444 0.2526 0.5813

max 0.8810 0.9687 0.9367 0.9306 0.9999 0.9770

Thresholding on SH: ADC5146

mean 0.4502 0.8209 0.6075 0.5233 0.7777 0.8271

std 0.1423 0.0676 0.1492 0.1711 0.1949 0.0796

min 0.1346 0.6709 0.2373 0.1884 0.3206 0.7339

max 0.6230 0.9150 0.7677 0.7306 0.9548 0.9647
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except the second mobile CXR machine (ADC5146), which is considerably high at above

0.86. Other performance measures are more than 0.80 for all datasets except the same

ADC5146. This is due to the poor image quality in the dataset and most of the images

contain severe diseases that cause lung shape deformation. The results from thresholding

method give similar pattern, where poorer results are obtained for ADC5146 dataset.

By comparing the overlap measures for FCM and the proposed method, most of the

datasets perform better with the proposed method, except on mobile machine CR0975

where FCM is higher by 0.038. For other datasets, our method is higher by 0.08 for

JSRT, 0.007 for Siemens FD-X, and significantly higher on ADC5146 which is by 0.204.

The accuracy and specificity of the method are above 0.90 for all datasets, and other

performance measures are above 0.80, including the rounded F-score measure for

CR0975 dataset. The proposed method also recorded low standard deviation measure,

and high minimum and maximum measures on most datasets. This portrays that our

unsupervised algorithm is more robust and perform reasonably better with any CXR

dataset, either the standard PA or mobile PA and AP radiographs.
Conclusions
This paper has realized a novel lung segmentation algorithm for chest radiographs in-

cluding the image pre-processing stages with contrast adjustment and cropping blocks

to standardize the images especially for the radiograph acquired by the mobile ma-

chines. The main contribution of this paper lies in the use of fully automated proposed

segmentation method to isolate the lung field from PA and mobile AP chest radio-

graphs for the application of CBMIRS. The technique is based on Gaussian oriented

derivatives filter with integration of FCM and thresholding to refine the lung outline.

Another novel algorithm to generate an automatic threshold value for each orientation

responses was also proposed. Our proposed method is fully automated, unsupervised

and no training or learning stage is necessary.

We also compared the proposed method with the existing methods from the litera-

ture on the public JSRT dataset, and applied other unsupervised methods based on

FCM and Otsu thresholding to compare the results with both public and private data-

sets. Our method gives better performance measures on standard PA radiographs, with

overlap score and accuracy of 0.870 and 0.958 respectively for JSRT dataset, and 0.808

and 0.938 for Siemens FD-X dataset. The measures from JSRT compares satisfactorily

with the existing methods from the literature. For mobile PA and AP radiographs, both

datasets performs below average with any of the unsupervised methods, due to the

most abnormalities present. For CR0975 dataset, highest overlap score and accuracy

are obtained using FCM based approach, where the measures are 0.728 and 0.915 re-

spectively. Whilst for ADC5146 dataset, the performance measures are significantly

higher using our proposed method; 0.698 and 0.920 for both overlap and accuracy.

Even though the algorithm fails to accurately segment the lung field in mobile radio-

graphs, information on general lung outline can still be used to detect the consolida-

tions in the lung field, which will be studied in our next work. In addition, the ultimate

goal of this work is to incorporate the proposed method in the Content-based Medical

Image Retrieval System (CBMIRS) for Chest X-Ray. It is important to take note that

the unsupervised method is mandatory for a robust retrieval system.
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