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Abstract 

Background  Anopheles stephensi is a malaria-transmitting mosquito that has recently expanded from its primary 
range in Asia and the Middle East, to locations in Africa. This species is a competent vector of both Plasmodium falci-
parum and Plasmodium vivax malaria. Perhaps most alarming, the characteristics of An. stephensi, such as container 
breeding and anthropophily, make it particularly adept at exploiting built environments in areas with no prior history 
of malaria risk.

Methods  In this paper, global maps of thermal transmission suitability and people at risk (PAR) for malaria transmis-
sion by An. stephensi were created, under current and future climate. Temperature-dependent transmission suitability 
thresholds derived from recently published species-specific thermal curves were used to threshold gridded, monthly 
mean temperatures under current and future climatic conditions. These temperature driven transmission models 
were coupled with gridded population data for 2020 and 2050, under climate-matched scenarios for future out-
comes, to compare with baseline predictions for 2020 populations.

Results  Using the Global Burden of Disease regions approach revealed that heterogenous regional increases and 
decreases in risk did not mask the overall pattern of massive increases of PAR for malaria transmission suitability with 
An. stephensi presence. General patterns of poleward expansion for thermal suitability were seen for both P. falciparum 
and P. vivax transmission potential.

Conclusions  Understanding the potential suitability for An. stephensi transmission in a changing climate provides 
a key tool for planning, given an ongoing invasion and expansion of the vector. Anticipating the potential impact of 
onward expansion to transmission suitable areas, and the size of population at risk under future climate scenarios, and 
where they occur, can serve as a large-scale call for attention, planning, and monitoring.
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Background
Malaria remains a critical global health challenge, with 
241 million cases reported by the World Health Organ-
ization (WHO) in 2020 alone [1]. Although the cur-
rent distribution of malaria is largely pantropical, the 
overwhelming majority of cases and deaths occur in 
non-arid regions of Africa, where the WHO estimated 
approximately 600,000 deaths occurred in 2020 [1–3]. 
Malarial transmission throughout sub-Saharan Africa 
is historically attributable to a few key mosquito vec-
tors, most notably those in the Anopheles gambiae spe-
cies complex [1, 4]. However, in 2019 the WHO issued 
a notice to alert public health authorities to the recent 
expansion of invasive Anopheles stephensi into the 
Horn of Africa, identifying this new vector species as a 
major potential threat to malaria control in the region 
[5–8].

The expansion of An. stephensi represents a new 
critical threat, not only to communities in Africa, but 
also to global public health. A competent vector of 
both Plasmodium falciparum and Plasmodium vivax 
malaria, An. stephensi has been implicated in malaria 
transmission throughout much of its native range in 
Asia and the Middle East, including India, Iran, and 
Pakistan [9–13]. In contrast with other Anopheline 
species, An. stephensi is capable of exploiting contain-
ers of standing water for ovipositional habitat, similar 
to container-breeding mosquitoes in the genus Aedes, 
including Aedes aegypti and Aedes albopictus [14]. This 
notable difference in life history has enabled the incur-
sion of An. stephensi into built environments, fueling 
urban outbreaks of malaria and facilitating invasions 
into new geographic areas. In the past decade, An. 
stephensi has successfully expanded its range into the 
African continent, with established populations in Dji-
bouti, Ethiopia, and Sudan [15]. Alarmingly, the arrival 
of this new vector has precipitated epidemics in popu-
lations centrally located in urban areas, where rates of 
malaria have historically been significantly lower com-
pared to rural and peri-urban areas [16]. This shift in 
underlying risk was exemplified by a notable malaria 
outbreak in Djibouti City in 2012, where such out-
breaks have since become increasingly severe, and 
are now an annual occurrence [17, 18]. Other physi-
ological adaptations of An. stephensi, such as acquired 
insecticide resistance [19] and greater range of thermal 
tolerance compared to An. gambiae [20], raise further 
concerns regarding the continued success of this mos-
quito as an invasive species, and its ability to poten-
tially undermine existing vector control strategies [21]. 
Perhaps unsurprisingly, An. stephensi has been identi-
fied as a major risk to malaria elimination targets, with 
global public health organizations calling for increased 

entomological surveillance and vector control in areas 
at imminent risk of invasion [5].

Mapping geographic estimates of transmission suitabil-
ity can provide essential tools for assessing the current 
and future risk of An. stephensi invasions, and subse-
quent malaria transmission. A great deal of research has 
been conducted to delineate the extent of temperature-
dependent malaria suitability in Africa [22, 23] and 
beyond [24–29]. In previous work, malaria transmission 
suitability for Africa was mapped, using a model com-
prised of an array of Anopheles spp. input parameters, 
primarily for P. falciparum malaria transmitted by An. 
gambiae [30, 31]. In a recently updated model, An. gam-
biae and An. stephensi, and the two main malarial para-
sites they transmit (P. falciparum and P. vivax), were 
separately modelled to produce thermal suitability curves 
for transmission [20, 30]. While the potential geographic 
dispersal of An. gambiae is functionally limited by arid 
conditions, An. stephensi is a container breeder that is 
resilient to habitat extremes [5]. Therefore, An. stephensi 
is able to thrive in close association with people, and thus 
potentially able to establish itself everywhere that tem-
perature is not limiting. Thus, understanding the poten-
tial areas for suitability for transmission by this invasive 
mosquito now, and in the future, is important for capac-
ity building and planning control efforts.

In this study, the global suitability of malaria trans-
mission by An. stephensi was mapped using modelled 
thermal limits under current and future climate sce-
narios. Unlike previous studies to map the distribution 
of malaria, the projected distributions are not limited to 
non-arid regions, given the life history of An. stephensi, 
and instead make similar assumptions to those for map-
ping Aedes spp. transmitted diseases. Additionally, An. 
stephensi thermal suitability maps were combined with 
projected human population density estimates, enabling 
us to assess not only the areas that are vulnerable to 
malaria transmission through An. stephensi expansions, 
but also the magnitude of threat in terms of people at risk 
(PAR).

Methods
Thermal suitability model
In a previous study (Villena et  al. [20]), used mechanis-
tic modelling to establish thermal suitability curves for 
transmission of P. falciparum and P. vivax by An. ste-
phensi. Briefly, thermal response data for vector and 
parasite pairings were synthesized from published data. 
These data were used to parameterize a formulation for 
R0 , the basic reproductive number, that explicitly incor-
porated temperature-dependent traits for both mosquito 
vectors and malarial parasites,, building on a model for 
P. falciparum malaria transmission initially described in 
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Mordecai et al. [32]. The temperature-dependent compo-
nents of the R0 formulation were used to define a suitabil-
ity metric S(T ) , defined as:

where a is mosquito biting rate; bc is vector competence; 
μ is the mosquito mortality rate; PDR is the parasite 
development rate; EFD is mosquito fecundity expressed 
as the number of eggs per female per day; PEA is the pro-
portion of eggs surviving to adulthood; and MDR is the 
mosquito development rate.

A Bayesian approach was used in Villena et al. 2022 to 
fit unimodal thermal response curves of traits for each 
mosquito or parasite species [20]. Samples from the 
resulting joint posterior distribution of the suitability 
metric were used to calculate overall thermal response, in 
addition to critical temperature thresholds for pathogen 
transmission by species [20].

In this study, the thermal boundaries from Villena 
et  al. [20] were used as the basis for mapping thermal 
suitability, taking values where the malaria transmission 
suitability metric for An. stephensi was greater than zero 
(S(T) > 0), with a posterior probability greater than 0.975 
[20]. The resulting thermal limits for malaria transmitted 
by An. stephensi are temperatures of 16.0–36.5  °C for P. 
falciparum and 16.6–31.7 °C for P. vivax [20].

Climate data
In this paper, baseline and future scenarios for An. ste-
phensi transmitted P. falciparum and P. vivax suitabil-
ity are described. Outputs are presented for a baseline 
climate scenario, and future potential climate driven 
outputs for four General Circulation Models (GCMs), 
following the methodology used in Ryan et  al. [33, 34] 
to describe climate impacts on the global distribution of 
Aedes spp. transmitted diseases.

Baseline and future scenario climate model output data 
were acquired from the research  programme on Climate 
Change, Agriculture, and Food Security (CCAFS) web 
portal (http://​ccafs-​clima​te.​org/​data_​spati​al_​downs​cal-
ing/), part of the Consultative Group for International 
Agricultural Research (CGIAR). The baseline climate 
model from which these are projected is the WorldClim 
v1.4 baseline [35], and thus it serves as the baseline for 
these models. The CCAFS future model outputs were 
created using the delta downscaling method, from the 
IPCC AR5. The GCMs used in this study are the Beijing 
Climate Center Climate System Model (BCC-CSM1.1); 
the Hadley GCM (HadGEM2-AO and HadGEM2-ES); 
and the National Center for Atmospheric Research’s 
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Community Climate System Model (CCSM4). The data-
sets were obtained at a resolution of 5-arc minutes, 
matching the spatial resolution of baseline data.

For visualizations, one of the General Circulation Mod-
els (GCMs) was used: the Hadley Centre Global Envi-
ronment Model version 2, Earth-System configuration 
(HADGEM2-ES) under two scenarios for greenhouse 
gas emissions, or representative concentration pathways 
(RCPs): RCP 4.5 and RCP 8.5. The Intergovernmental 
Panel on Climate Change (IPCC) describes RCP 4.5 as a 
moderate scenario in which emissions peak around 2040 
and then decline, while RCP 8.5 is the highest baseline 
emissions scenario in which emissions continue to rise 
throughout the twenty-first century. Mechanistic trans-
mission models were projected onto climate data in R 
(v. 4.1.2) with the package ‘raster’ [36]. Monthly mean 
temperatures were thresholded according to the thermal 
suitability limits for each malaria species, and the num-
ber of suitable months of transmission summed (0–12) in 
a pixel-wise analysis for the globe.

Population data
In order to establish a population baseline, the 2020 
Gridded Population of the World (GPW4, ver 4.11) was 
used [37]. The decision about how to best match climate 
baselines with population is complex, as baselines rep-
resent climate normal periods around the start of the 
twenty-first century, rather than a ‘current’ climate base-
line. However, in this study, the nearest decade to cur-
rent conditions for population baseline was chosen. For 
the future population, 2050 projections for two Shared 
Socioeconomic Pathways (SSPs) [38, 39] were chosen, 
best matched to the chosen RCPs. As the combinations 
of RCPs and SSPs are not all realistic, CMIP5 RCP 4.5 
and RCP 8.5 for SSP2 and SSP5, respectively, were mod-
elled. SSP2 represents a “middle of the road” scenario, 
assuming patterns of social, economic, and technologi-
cal growth that do not appreciably deviate from historical 
trends. SSP5 assumes significant investments in health, 
technology, economic, and social development, coupled 
with simultaneous exploitation of fossil fuel resources 
and the adoption of resource-intensive lifestyles. All geo-
graphic layers in the analyses were aggregated to a 0.25° 
grid cell for consistency.

Suitability mapping
Monthly suitability maps were produced for baseline 
and future climate scenarios (i.e., RCP 4.5 and RCP 8.5), 
using one GCM (HADGEM-ES) at a near-future time 
horizon (i.e., 2050), for illustration (Fig. 1). Following the 
approach of Ryan et al. [34, 40] Maps for figures were cre-
ated using ArcGIS (ver. 10.1)[41].

http://ccafs-climate.org/data_spatial_downscaling/
http://ccafs-climate.org/data_spatial_downscaling/
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To describe the impact to populations in current and 
future landscapes, the Global Burden of Disease (GBD) 
regions [42] were used to summarize the population at 
risk (PAR). Additional file  1: Tables S1–S4 summarize 
the top 10 regions, and global gain overall, in terms of 
increased (difference between current and projected) 
PAR for both year-round (12  month, endemic), and for 
‘any’ (one or more months), for each of transmission 
suitability of P. falciparum and P. vivax by An. stephensi, 
under the two future RCP x SSP scenarios, averaged 
across the 4 GCMs (also summarized at a global level in 
Table 1).

Results
Baseline suitability and duration of transmission season
Maps of months of An. stephensi malaria transmission 
suitability for P. falciparum and P. vivax are shown in 
Fig. 1. Much of Africa is projected to be suitable at base-
line for nearly year-round transmission for both malaria 
parasites. Beyond Africa, the predicted baseline thermal 
transmission suitability for both P. falciparum and P. 
vivax extends throughout the global tropics, throughout 
the known existing range of the Middle East, extending 
throughout Asia, Central America, South America, and 

marginally in North America. The predicted potential 
range for year-round transmission suitability of P. falci-
parum extends further North and South than P. vivax, 
with notable extension of the transmission season in 
northern Africa, the Middle East, India, and central Aus-
tralia. The narrower thermal suitability bounds for P. 
vivax constrains the baseline potential extent, compared 
to that for P. falciparum. Seasonal transmission suit-
ability at baseline climate conditions is projected to be 
globally widespread for both P. falciparum and P. vivax, 
extending well into temperate regions in North America, 
Europe, and Asia.

Predicted future suitability
Mapped transmission suitability in 2050, for RCP 4.5 and 
RCP 8.5 scenarios is shown in Fig. 1. An expansion of the 
transmission suitability season for P. falciparum is seen 
in both RCPs. Notably, the potential for any transmis-
sion (i.e., one or more months) is predicted to expand at 
northern latitudes, where areas with no current malaria 
suitability will have the potential for transmission, at 
least for one month every year. This includes portions 
of Alaska in the US, northern Canada, Scandinavia, and 
Russia. The length of the P. falciparum transmission 

Fig. 1  Thermal suitability for transmission of P. falciparum and P. vivax malaria by An. stephensi. Transmission suitability is shown under current 
climate conditions, and for the year 2050 at RCP 4.5 and RCP 8.5. The number of months of suitable temperatures are given as shaded areas, where 
the posterior probability of S(T) > 0 is 0.975
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season is expected to increase in temperate regions of 
North America and Europe, southern Africa, and in 
central Australia. Yet, changing climate conditions will 
shorten the length of the P. falciparum transmission 
season in some areas, most notably in northern Africa, 
the Middle East, and northern India. The transmission 
suitability for P. vivax is also predicted to extend further 
North in the future, encroaching on areas that do not 
currently experience malaria transmission. The length of 
the P. vivax transmission season is expected to increase 
in southern Africa and in parts of North America, includ-
ing Mexico and along the Gulf Coast in the US. There 
are also marked decreases in the length of the P. vivax 
transmission season, most notably throughout northern 
Africa, the Middle East, India, Asia, northern Australia, 
and South America. Raster output for additional scenar-
ios of future climate change from this study is available 
on the Harvard Dataverse.

Population at risk
The projections of thermal suitability for transmission 
of P. falciparum and P. vivax by AS for the two future 
scenarios of RCP 4.5 and RCP 8.5, in combination 
with matched population projections SSP2 and SSP5, 
respectively, revealed that in many regions of the world, 
increases in people at risk of transmission suitability will 
occur (Additional file  1: Tables S1-S4). The prediction 
for SSP2 population for the globe is larger than SSP5 in 
2050 (9.17 billion vs 8.56 billion [43]), this reflects the 
combination of potential geographic shifts of suitability 
and the underlying population changes. Perhaps coun-
terintuitively, the RCP 4.5 scenario predicts a larger net 
increase than RCP 8.5, for PAR in both ‘any’ (one or 

more) transmission, and year-round (endemic) trans-
mission scenarios (Table 1). The baseline and net global 
future population at risk (PAR) for transmission suitabil-
ity across the 4 GCMs are given in Table 1, comparing P. 
falciparum and P. vivax suitability.

At 2020 population baseline, 7.45 billion people are 
predicted to be at risk for transmission suitability for 
one or more months for P. falciparum in An. stephensi, 
and 7.38 billion for P. vivax in AS. Under RCP 4.5, the 
net PAR for P. falciparum suitability increases to a range 
of 8.75–8.77 billion, and for P. vivax 8.73–8.76 billion, 
across the 4 GCMs; and under RCP 8.5, the estimated 
PAR for P. falciparum suitability is 8.18–8.19 billion, and 
for P. vivax 8.16–8.18 billion (Table 1).

At baseline, the year-round PAR for P. vivax is 2.13 
billion people, while it is 3.77 billion for P. falcipa-
rum, emphasizing the difference in risk imposed by the 
broader temperature range of suitability for P. falci-
parum. Under RCP 4.5, the net PAR for P. falciparum 
suitability increases to a range of 3.73–4.05 billion, and 
1.98–2.25 billion for P. vivax. Under RCP 8.5 conditions, 
net par for P. falciparum suitability increases to 3.16–
3.36 billion, and 1.53–1.81 billion for P. vivax.

The top 10 largest regional increases in PAR for each 
of P. falciparum, P. vivax, and for year-round and ‘any’ 
transmission are given in Additional file  1: Tables S1-4, 
including the global gains in increases (in contrast to net 
changes). For P. falciparum, for endemic (year-round) 
transmission PAR increases, East and West Sub-Saha-
ran Africa regions are the top two affected, under both 
the RCP 4.5 and RCP 8.5 scenario (Additional file  1: 
Table S1); for P. vivax, while East sub-Saharan Africa is 
also the top affected region, the second place is Central 

Table 1  People at Risk (PAR) for thermal suitability of transmission of malaria (P. falciparum or P. vivax) by Anopheles stephensi, under 
a baseline climate, and under two representative concentration pathways (RCP 4.5 and 8.5), across four global circulation model 
output projections for 2050 (BC: Beijing Climate Center Climate System Model (BCC-CSM1.1); CC: National Center for Atmospheric 
Research’s Community Climate System Model (CCSM4); HD: Hadley GCM HadGEM2-AO; HE: Hadley GCM HADGEM2-ES), paired with 
shared socioeconomic pathway projections of population (RCP 4.5 × SSP2; RCP 8.5 × SSP5), for 2050. These are given for Year-round 
transmission suitability (12 months), and for one or more months of suitability

RCP GCM Year-round One or more months

P. falciparum P. vivax P. falciparum P. vivax

BASELINE BASELINE 2,978,746,847 2,097,002,867 7,449,067,483 7,383,343,414

RCP 4.5 BC 3,774,756,103 2,127,908,652 8,750,860,448 8,728,473,114

CC 4,054,286,646 2,252,417,759 8,753,397,990 8,736,201,422

HD 3,805,562,194 1,974,878,300 8,771,619,653 8,755,597,360

HE 3,736,169,575 2,021,833,976 8,772,921,907 8,757,997,413

RCP 8.5 BC 3,166,706,402 1,743,224,294 8,177,804,060 8,165,124,757

CC 3,307,469,096 1,813,969,917 8,177,578,312 8,163,138,249

HD 3,361,036,908 1,732,882,405 8,181,652,270 8,170,347,061

HE 3,164,609,570 1,530,848,172 8,185,991,009 8,180,851,173
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African Region, indicating a shifted geographic impact 
with the narrower thermal bounds (Additional file  1: 
Table  S2). For ‘any’ (one or more months) transmission 
suitability, South Asia region is the top affected for both 
P. falciparum and P. vivax, ahead of East sub-Saharan 
Africa region, suggesting a shift of seasonal, sub-endemic 
risk into high density population areas in both of the 
future scenarios explored here (Additional file  1: Tables 
S3, S4).

Discussion
Assessing the future risk of An. stephensi expansion 
against the backdrop of changing climate is imperative 
for public health planning and risk mitigation. Its propen-
sity to spread and establish outside of its current range 
is already underway, drawing the attention of the global 
health community [5, 7, 18, 44]. As a malaria transmit-
ting Anopheline capable of exploiting a similar niche to 
the urban adapted Aedes spp. mosquitoes, anticipating 
where the bounds of thermal limits to persistence and 
transmission exist is a step towards understanding where 
it can invade and establish, both now and in the future.

Using a recently published thermal suitability model 
for transmission of both P. falciparum and P. vivax 
malaria by An. stephensi [20], mapped months of suitabil-
ity demonstrated that a large part of the world is already 
suitable for one or more months of the year, putting an 
estimated 7.38–7.45 billion people at risk of that poten-
tial. While the actual arrival, establishment, and onwards 
transmission of malaria may be less risky for areas with 
a low number of months of suitability, this approach 
indicates that a baseline of 2.13–3.77 billion people are 
currently living in places with endemic risk—not sim-
ply in the known existing range for transmission by An. 
stephensi. The potential for future shifts in the range of 
suitable areas was explored, as a function of a changing 
climate and shifting population projections, reflective of 
those potential climate scenarios. The mapped number 
of months of transmission suitability showed a poleward 
expansion of areas becoming suitable, and a shift from 
some lower latitude locations to becoming hotter than 
suitable for transmission during parts of the year, short-
ening the season. While this shift away from suitability 
results in predicted declines in risk to populations, as 
transmission suitability shifts out of hotter regions, other 
health crises are exacerbated at overly high temperatures 
[45–48], and this is thus not cause for less alarm, nor is it 
mitigation for malaria.

This exploration of potential future climate impacts on 
a vector currently expanding its range is based on cur-
rent vector-pathogen biology and thermal limits to the 

life-history of An. stephensi and the malaria parasites. 
The conditions under which parameters in the underly-
ing thermal suitability model were established were ideal-
ized laboratory conditions, and are not yet established for 
An. stephensi undergoing the climate changes modelled 
here. The environment experienced in a changed cli-
mate in 2050 may induce different interactions between 
vectors and their pathogens, but the plastic responses 
of the vector (e.g. urban adaptation, behavioral avoid-
ance of environmental extremes) and the pathogen (e.g. 
rapid evolution under novel environmental pressures, 
or fluctuating temperatures), and how that will impact 
the vector microbiome [49], potentially altering vec-
tor competence, will lead to broader potential tempera-
ture limits to suitability, making the estimates presented 
here conservative. Further, these projections only con-
sider malaria transmission in terms of extrinsic incuba-
tion (i.e., development in the mosquito) and transmission 
to the host. This does not include the human stages of 
malaria development, and some malarial parasites have 
adaptations, such as hypnozoites for P. vivax [50], which 
can leverage human reservoirs beyond the environmental 
bounds of transmission suitability in adult mosquitoes. 
Conversely, these estimates may represent a “worst case” 
scenario. Model output at the global scale may oversim-
plify local effects that protect against mosquito invasion, 
and likewise this study cannot account for the potentially 
mitigating effects of rapid interventions and successful 
malaria control initiatives. This underscores the impor-
tance of expanding surveillance capacity for the early 
detection and rapid elimination of expanding An. ste-
phensi populations to reduce PAR in the future, particu-
larly in countries neighboring current areas of expansion.

A knock-on effect of the potential expansion of a novel, 
urban-adapted, malaria vector into, for example, the 
Americas, is that adding a competent malaria vector to 
areas with existing competent malaria vectors expands 
the competent vector community. This compounds the 
risk in a changing world for facilitating spillover from a 
novel invader experiencing perhaps only a shortened 
suitability season to established Anopheline species (e.g. 
Anopheles quadrimaculatus in parts of N. America).

The ongoing expansion of An. stephensi is troubling, 
given its implication in the shift from primarily rural to 
urban malaria transmission. The mapped risk projec-
tions in this study, though global in extent, will be useful 
to local governments and agencies for planning broad-
scale vector control and resource allocation efforts. 
Potential vulnerability to invasion is useful information 
for decision making and policy formation, particularly 
for countries at the forefront of An. stephensi expansion, 
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neighbouring current locations where the vector has 
been documented. The successful expansion and estab-
lishment of invasive urban mosquitoes is mediated by 
many factors beyond the scope of these models, such as 
introduction pathway, frequency of travel, and individual 
water storage practices [51, 52]. Thus, these results dem-
onstrate the need for increased surveillance activities in 
areas at risk of transmission, but importantly, underscore 
the need for timely sharing and dissemination of known 
distribution data. Although urban malaria transmission 
represents a new threat for many existing vector control 
programmes to manage, there may be opportunities for 
the formation of successful mitigation efforts, given that 
agencies are aware of potential expansion. With enough 
lead time, mosquito control agencies may be able to suc-
cessfully leverage knowledge, experience, and tools for 
controlling other urban container-breeding mosquitoes 
to suppress the proliferation of invasive An. stephensi [6]. 
For example, dengue fever surveillance and control pro-
grammes that target Ae. aegypti may have the capacity to 
expand efforts to include An. stephensi without a major 
investment in novel resources. Though there are still 
challenges in programme adaptation, such as the need 
to address insecticide resistance, it is likely that effective 
control measures will not have to be designed from the 
ground up.

Conclusion
Mapping thermal suitability for malaria transmis-
sion for the invasive urban-adapted An. stephensi for 
baseline and future climate and population projec-
tion scenarios shows that much of the world is suited 
to continued range expansion now and into the future. 
While this work demonstrates that around a third of 
the world’s population lives in areas of potential risk, 
understanding where range expansion is plausible, and 
how that may shift in the future, provides broad scale 
tools for motivating surveillance and opportunities for 
preemptive interventions. Of key importance, the simi-
larity between An. stephensi and Aedes spp, and their 
management as urban container breeders may provide 
an opportunity to leverage existing vector management 
and control for An. stephensi.
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