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Abstract 

Background:  Under-five child malaria is one of the leading causes of morbidity and mortality globally, especially 
among sub-Saharan African countries like Ghana. In Ghana, malaria is responsible for about 20,000 deaths in chil-
dren annually of which 25% are those aged < 5 years. To provide opportunities for efficient malaria surveillance 
and targeted control efforts amidst limited public health resources, the study produced high resolution interac-
tive web-based spatial maps that characterized geographical differences in malaria risk and identified high burden 
communities.

Methods:  This modelling and web-based mapping study utilized data from the 2019 Malaria Indicators Survey (MIS) 
of the Demographic and Health Survey Program. A novel and advanced Bayesian geospatial modelling and map-
ping approaches were utilized to examine predictors and geographical differences in under-five malaria. The model 
was validated via a cross-validation approach. The study produced an interactive web-based visualization map of the 
malaria risk by mapping the predicted malaria prevalence at both sampled and unsampled locations.

Results:  In 2019, 718 (25%) of 2867 under-five children surveyed had malaria. Substantial geographical differences 
in under-five malaria risk were observed. ITN coverage (log-odds 4.5643, 95% credible interval = 2.4086–6.8874), 
travel time (log-odds 0.0057, 95% credible interval = 0.0017–0.0099) and aridity (log-odds = 0.0600, credible inter-
val = 0.0079–0.1167) were predictive of under-five malaria in the spatial model. The overall predicted national malaria 
prevalence was 16.3% (standard error (SE) 8.9%) with a range of 0.7% to 51.4% in the spatial model with covariates 
and prevalence of 28.0% (SE 13.9%) with a range of 2.4 to 67.2% in the spatial model without covariates. Residing in 
parts of Central and Bono East regions was associated with the highest risk of under-five malaria after adjusting for the 
selected covariates.

Conclusion:  The high-resolution interactive web-based predictive maps can be used as an effective tool in the iden-
tification of communities that require urgent and targeted interventions by programme managers and implementers. 
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This is key as part of an overall strategy in reducing the under-five malaria burden and its associated morbidity and 
mortality in a country with limited public health resources where universal intervention is practically impossible.

Keywords:  Malaria, Under-five malaria, Mapping malaria risk, Bayesian methods, Geospatial methods, Geostatistical 
methods, Interactive web-based mapping, Predictors, Sub-Saharan Africa

Background
Malaria is a deadly disease and remains one of the severe 
global public health and development challenge par-
ticularly in sub-Saharan Africa (SSA) where under-five 
malaria infection is the leading cause of under-five mor-
tality (U5M) due to their vulnerability. It is the leading 
cause of illness and deaths in most of the malaria affected 
countries where young children and pregnant women 
are the most affected groups. Notably, malaria is con-
sidered entrenched global health problem and Ghana is 
of no exception due to its significant number of deaths 
associated with the disease in the country [1, 2]. Malaria 
is also a driver of low productivity and poverty on the 
individuals and exerts financial burden on families and 
the economy [3]. An estimated number of 405,000 per-
sons died due to malaria infections out of which major-
ity were young children from SSA in 2018 as against the 
2017 figure of 416,000 deaths and 585.000 deaths in 2010. 
In 2016, there were an estimated number of 216 million 
clinical episodes caused by malaria, an increase of 5 mil-
lion over the previous year [2, 4, 5]. Despite the global 
rapid malaria control efforts that led to malaria mortality 
reduction by 25% from the year 2010 to 2016, the malaria 
prevalence and mortality rates remain high in SSA coun-
tries where 14 out of 15 countries in SSA accounted for 
80% of the world malaria burden with national and sub-
national differences [2, 4, 6].

In 2018, the most vulnerable group hardest hit by 
malaria are children under-five who accounted for 67% 
of all malaria deaths globally [5]. SSA had the highest 
burden of malaria where about 90% of all malaria deaths 
occur with children under-five accounting for about 78% 
of these deaths [7]. This link between malaria and under-
five deaths also poses a great danger to achieving the Sus-
tainable Development Goals (SDG) 3 target 2.1 because 
the U5M rates are among the health indicators of utmost 
importance globally. It is the goal 3 target 2.1 of the SDGs 
that is expected to be reduced to internationally agreed 
targets of at least 25 per 1,000 livebirths by 2030 [8], but 
several countries especially those in SSA like Ghana are 
struggling to meet this target [9, 10]. Thus, addressing 
the problem of under-five malaria will be beneficial to the 
global fight against U5M.

Ghana was among the 10 highest burden countries 
in Africa in 2018 that reported the highest increase in 
malaria cases compared to the previous year [5], where 

about 20,000 children die annually of which 25% are 
those aged < 5 years [7]. In Ghana, malaria is considered 
endemic in all the regions with national prevalence of 
14% in 2019 against the previous prevalence of 21% and 
27% in 2016 and 2014, respectively, among under-five 
children. However, marked regional geographic dispar-
ities exist in the under-five malaria prevalence in Ghana 
with the highest prevalence recorded in the Western 
(27%) and lowest recorded in the Greater Accra (2%) 
regions. Thus, the under-five malaria prevalence across 
the country varied [11], demonstrating the need for 
examining more localized spatial trends in malaria. 
Unfortunately, information on localized spatial distri-
butions and predictors of under-five malaria supported 
with web-based mapping, which are critical for effec-
tive design of intervention strategies that will enhance 
the survival of under-five children amidst available lim-
ited public health resources are not readily available.

At the global level, the United States President’s 
Malaria Initiative (PMI) launched in 2005 led to an 
increased availability of insecticide-treated nets (ITNs), 
anti-malarial treatment and rapid diagnostic tests and 
indoor residual spraying, which led to a significant 
reduction in under-five mortality in SSA [12]. The suc-
cess of the “for a malaria-free world 2008–2015 ini-
tiative”, the Roll Back Malaria Partnership outlined 
an action plan dubbed, “Action and Investment to 
Defeat Malaria (AIM) 2016–2030” [13]. In May 2015, 
the Global technical strategy for malaria (GTSM) 2016–
2030  which sets the target of reducing global malaria 
incidence and mortality rates by at least 90% by 2030 
was adopted by the World Health Assembly. The strat-
egy was updated in the year 2021 to reflect the lessons 
learned in the global malaria response between 2016 to 
2020. It provides a comprehensive framework to guide 
nations in their efforts to fast-track progress towards 
elimination of malaria by emphasizing the need for 
universal coverage of core malaria interventions for 
all populations at risk. At the heart of the strategy is 
the utmost need to use high-quality surveillance data 
for decision-making [14]. The alignment of the time-
frame of the vision of AIM and GTSM to that of the 
SDG underscores the need to address the problem of 
under-five malaria to ensure the realization of SDG 
goal 3. Nonetheless, under-five malaria continues to be 
a significant cause of childhood deaths in SSA which 
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militates against the progress towards the achievement 
of the sustainable development Goal 3 target 2.1.

In Ghana, despite several national policies and inter-
ventions (e.g. Community-based Health Planning and 
Services (CHPS), Child Health Policy 2007–2015 and 
National Health Insurance, 2014–2020 Ghana Strategic 
Plan for Malaria Control) [1, 10, 15] rollout to improve 
and promote health of children, the under-five malaria 
and its resultant under-five mortality rates remain high in 
the country. The focus of the 2014–2020 Ghana Strategic 
Plan for Malaria Control is to scale up preventive inter-
ventions to reduce the malaria morbidity and mortality 
burden by 75% by the year 2020 [16].

There is limited knowledge on localized geospatial 
distribution of under-five malaria risk and how cer-
tain environmental predictors could help explain geo-
graphical differences in under-five malaria risk in Ghana. 
Also, malaria burden is a continuous phenomenon that 
requires high-quality surveillance data and constant sur-
veillance to inform malaria control strategies.

This study, therefore, attempts to fill these gaps. The 
study aims to estimate, predict, and map localized under-
five malaria risk using novel Bayesian geospatial model-
ling approaches while adjusting for critical environmental 
factors, with the goal of identifying communities at high-
risk of malaria burden where control efforts, interven-
tions, and further research can be targeted to address the 
problem of under-five malaria and its associated morbid-
ity and mortality.

Methods
Setting, design and sample
Ghana is in West Africa and covers a total area of 238,538 
km2. It lies between latitude 4  and 12 N and longitudes 
4 W and 2 E. It is bordered in the south by the Gulf of 
Guinea, Côte d’Ivoire to the west, Togo to the east, and 
Burkina Faso to the north. Presently, Ghana has 16 
administrative regions.

Data from the 2019 GMIS of the DHS program was 
used in this study [11]. The 2019 GMIS is the second 
round of the survey with the first round conducted in 
2016 which provides a population-based estimates of 
malaria indicators as a supplement to the routine admin-
istrative data collected in the country that are used to 
inform strategic planning and evaluation of the Ghana 
Malaria Control Programme [11]. Computer-assisted 
personal interviewing (CAPI) was employed to collect 
the data. In the survey, information on malaria preven-
tion, treatment, and prevalence is collected. The data 
is freely available online at DHS MEASURE Program 
website [17]. Parents or guardians consent were sort for 
children aged 6–59  months who were tested for anae-
mia and malaria infection. The study used a biomarker 

questionnaire to record the results of the anaemia and 
malaria testing of the children aged 6–59  months. This 
study used data on under-five children from the bio-
marker dataset which has malaria RDT results on 2867 
under-five children residing in 192 geographical locations 
(clusters). Detailed description of the survey methods 
employed in the 2019 GMIS is available elsewhere [11].

The Ghana Malaria Indicator Survey (GMIS) is based 
on a two-stage sampling design. The sampling was based 
on ten administrative regions. Each region was divided 
into urban and rural areas, resulting in twenty sampling 
strata. Enumeration areas (EAs) were sampled from each 
stratum. In the first stage, 200 EAs (97 in urban areas and 
103 in rural areas) were selected with probability propor-
tional to EA size. In the second stage of selection, approx-
imately 30 households were selected from each cluster to 
make up a total sample size of 6,002 households of which 
5388 were occupied at the time of field work. A total of 
5799 household were interviewed among the occupied 
households, resulting in 99.4% response rate. Of the 5246 
eligible women, about 5181 women aged 15–49  years 
(representing 98.8% response rate) who were either per-
manent residents of the selected households or visitors 
who stayed in the household the night before the survey 
were interviewed. All children aged 6–59  months from 
the interviewed households were eligible for malaria test-
ing upon parental or guardian consent [11].

Outcome variable
The outcome variable of interest is the number of under-
five children with positive test on rapid diagnostic test 
(RDT) kit in each sampled cluster. The RDT malaria test 
was conducted by taking a drop of blood with the SD 
BIOLINE Malaria Ag Pf RDT and tests for one antigen, 
histidine-rich protein II (HRP-II), specific to Plasmodium 
falciparum, the major cause of malaria in Ghana. The 
RDT kit produces result in 15 min [11].

Covariates
Though the main goal of the study is to predict and map 
under-five malaria risk, the study adjusted for selected 
environmental factors to allow for examination of how 
these factors help explain some of the spatial variability 
in under-five malaria risk across Ghana. These factors 
include insecticide-treated nets (ITNs) coverage (i.e., 
proportion of the population protected by ITNs), travel 
time (time required to reach a high-density urban centre), 
aridity (ranging from most arid to most wet), enhanced 
vegetation (ranging from least vegetation to most vegeta-
tion), annual temperature (mean temperature), and pre-
cipitation (average precipitation–per month). A detailed 
description of the methods and procedures employed 
to generate these geospatial covariates and their sources 
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are published elsewhere [18]. The consideration of these 
environmental and climatic covariates was based on the 
available literature on predictors of malaria and other 
health outcomes [19–22]. Following recommended strat-
egy [20, 23], the study accounted for the displacement of 
the GPS coordinates of the sampled cluster locations by 
creating 2 km buffers for urban and 5 km buffer for rural 
settings to ensure that the correct cluster centroids were 
captured in the analysis.

Geospatial analysis

Model formulation
Following a previous modelling approach [20], we 
employed a Bayesian Geospatial model [20, 24] to study 
spatial risk in under-five malaria while adjusting for envi-
ronmental predictors. Consider Yi to be the number of 
under-five children with positive RDT test out of the total 
Ni under-five children sampled per geographical cluster. 
Given the true malaria risk P(zi) at location zi , the num-
ber of under-five children with positive RDT test out of 
the total number of under-five children sampled follows a 
binomial distribution formulated as:

where β0 is the intercept parameter which by default is 
assigned Gaussian prior with mean and precision to be 
zero (0), d(.) is a vector of observed environmental pre-
dictors of the outcome variable Y  , β is a vector of spatial 
regression coefficients for the covariates which by default 
was assigned Gaussian prior with mean zero (0) and pre-
cision 0.001, and  S(.) is a spatially structured random 
effect and follows a zero-mean Gaussian process with 
variance σ 2 and a given correlation function

where u is the Euclidean distance between locations zi 
and zj . There are various parametric families for ρ(u) as 
outlined by Diggle (2007) [25]. In the current analysis, 
the study use the Matérn class of covariance function[26] 
given by

Here, ||. || denotes Euclidean distance,  σ 2 represents 
the spatial variance, v is the shape parameter which 
determines the smoothness ofS(z) , in the sense that S(z) 

Yi|P(zi) ∼ Binomial(Ni,P(zi)),

logit(P(zi)) = β0 + d(xi)
′
β + S(zi).

ρ(u) = corr
{

S(zi), S(zj)
}

Cov
(

S(zi), S
(

zj
))

=
σ 2

2v−1Ŵ(v)

(

k||zi − zj||
)v
Kv

(

k||zi − zj||
)

.

is v − 1 times mean-square differentiable and the scale 
parameter κ > 0 is related to the practical range ρ =

√
8v
k

 , 
the distance at which the spatial correlation approaches 
0.1 or is negligible, κv(.) is the modified Bessel function of 
second kind and orderv > 0.

The model was implemented under the Integrated 
Nested Laplace Approximation (INLA) approach [27] 
with Stochastic Partial Differential Equation (SPDE) 
strategy [28]. Based on a previous study [20], a mesh for 
inference and prediction was created for the SPDE strat-
egy because the data (i.e., geostatistical data) points in 
this study do not have explicit neighbours required by 
the SPDE strategy unlike areal data. The description of 
the mesh creation is provided in Additional file  1. The 
detailed procedures for mess creation are published else-
where [20, 29].

In this study, nine (9) models were set up: two (2) 
non-spatial models with different set of covariates 
included, one spatial model without covariates, and five 
(5) spatial models with different set of covariates. The 
Watanabe-Akaike information criterion (WAIC) was 
employed to investigate how well each of these nine (9) 
models fits the data, and to select the model that rela-
tively fits the data well among the competing models. 
The level of uncertainty in the fitted model estimates 
were quantified by estimating the 95% credible intervals 
and the standard errors and map these uncertainties 
continuously across the whole of Ghana. Furthermore, 
the study compares the predictive maps for the spatial 
model with covariate and spatial model without covari-
ates to examine if the included covariates in the spatial 
model explained some differences in malaria preva-
lence predictive maps. The study investigated how well 
the predictive model performs in the presence of new 
data via cross-validation procedure by splitting the data 
into training and validation sets, a common and gen-
erally accepted model validation approach in this area 
[30]. The R-INLA package [29, 31] was used for all the 
analyses.

Model validation
It is critical to examine how well the predictive model 
performs, especially in the presence of new data. This 
study employed cross-validation approach to assess the 
predictive performance of the model under out of sam-
ple procedure. First, the data was split into training and 
validation sets, and set a seed of 123 to make the parti-
tion reproducible. The model was trained on 75% of the 
samples and tested on 25% of the samples. The study 
assessed the model predictive performance by plotting 
the observed and the predicted malaria prevalence and 
estimated the resultant correlation.
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Interactive web‑based mapping of the predicted malaria 
prevalence
To support policymakers with readily available qual-
ity data for targeted policy and intervention strate-
gies, especially for malaria surveillance amidst limited 
public health resources in these settings, the study 
produced interactive web-based maps for the pre-
dicted malaria prevalence to improve visualization and 
identification of higher risk communities for urgent 
intervention and further research in this setting where 
universal intervention is practically impossible due to 
limited public health resources. The spatsurv, rgdal, 
leaflet, and sp packages in R version 4.2.0 and RStudio 
[32, 33] were used to support the development of the 
interactive web-based predicted malaria prevalence 
maps.

Ethical consideration
Permission was granted by DHS MEASURE Program to 
use the 2019 GMIS data for the study. The data is freely 
available after a simple, registration-access request at the 
link  https://​dhspr​ogram.​com/​data/​datas​et_​admin/​index.​
cfm. The protocol for the 2019 GMIS was approved by 
the Ghana Health Service Ethical Review Committee and 
ICF’s Institutional Review Board [11].

The role of the funding source
The present study did not receive any support from any 
funding source. Also, the funders of the original survey 
played no role in the design, data collection, analysis, 
interpretation, writing of the manuscript, and the deci-
sion to submit this manuscript. The author confirm that 
he has full access to all the data in this study and accept 
responsibility to submit for publication.

Results
The study analyzed data on 2867 children aged below 
5 years residing in 192 clusters (communities). A total of 
718 (25%) children under-five had malaria in the study in 
2019.

Model selection results
To select a good model among the competing models 
we fitted to predict the malaria prevalence, this study 
employed the Watanabe-Akaike information crite-
rion (WAIC). The model with the smallest WAIC value 
is preferred. In all, nine (9) competing models were fit-
ted and Model 6 which contained aridity, ITN cov-
erage, and travel time had the smallest WAIC value 
(WAIC = 689.79) compared to all other models fitted, 
an indication of a better model fit for the study (Table 1). 
Thus, the study present and discuss the results based on 
the full spatial model (i.e., Model 6, Table 1) presented in 
Table 2.

Predictors of malaria prevalence from the Bayesian spatial 
models
The study presents the results based on the full spatial 
model (Model 6) in Table  2 and Fig.  1. ITN coverage 
(log-odds 4.5643, 95% credible interval = 2.4086–6.8874), 
travel time (log-odds 0.0057, 95% credible inter-
val = 0.0017–0.0099) and aridity (log-odds = 0.0600, 
credible interval = 0.0079–0.1167) were found to be pre-
dictive of under-five malaria risk. The estimated spatial 
variance ( σ 2 ) is 0.8772 (95% credible interval = 0.5061–
1.2915) and the estimated range is 0.2917 (95% credible 
interval = 0.1250–0.4886) while the kappa ( κ ) is 10.8059 
(95% credible interval = 4.6372–18.1236) (Table 2).

Figure 1 shows the posterior (marginal) distributions of 
the fixed and random (hyper) parameters of the Bayesian 

Table 1  Model selection for the fitted Bayesian Geospatial models

WAIC Watanabe-Akaike information criterion

Lower values of the WAIC indicate better model fit

Parameters WAIC

Full non-spatial model

 Model 1: Aridity, ITN coverage, Travel times, Precipitation, Vegetation, Temperature 903.38

 Model 2: Aridity, ITN coverage, Travel times 905.18

Spatial models

 Model 3: Null spatial model 698.39

 Model 4: Aridity 696.63

 Model 5: Aridity, ITN coverage 692.34

 Model 6: Aridity, ITN coverage, Travel times 689.79

 Model 7: Aridity, ITN coverage, Travel times, Precipitation 692.00

 Model 8: Aridity, ITN coverage, Travel times, Precipitation, Vegetation 690.64

 Model 9: Aridity, ITN coverage, Travel times, Precipitation, Vegetation, Temperature 691.91

https://dhsprogram.com/data/dataset_admin/index.cfm
https://dhsprogram.com/data/dataset_admin/index.cfm
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Geospatial model (i.e., full spatial model—Model 6) pre-
sented in Table 2, which provides a fuller understanding 
of the posterior distributions of the model parameters 
and the appropriate quantification of uncertainty around 
the estimates unlike the frequentist approaches.

Geospatial analysis and interactive web‑based mapping
This study analyzed data on children residing in 192 
communities which are geographically indexed. In Fig. 2, 
we showed the location (centroid of clusters) of commu-
nities used in this study and their respective empirical 
(observed) malaria prevalence (coloured) at the sam-
pled locations. Communities with red highlighted circles 
had observed malaria prevalence of between 75 to 100% 
while those with blue highlighted had observed 0–25% 
prevalence.

Model validation results
Presented in Fig.  3 is the model validation results to 
determine the predictive ability of the final model, espe-
cially in the presence of new data. Given the high corre-
lation of 0.95, the fitted Bayesian geospatial prediction 
model is very good for predicting malaria prevalence 
spatially.

Table 2  Predictors of malaria prevalence in the non-spatial and 
spatial Bayesian models

Parameter Mean log odds (95% Credible 
intervals)

Full non-spatial model

 Intercept − 4.9129 (− 5.7024, − 4.1390)

 ITN Coverage 4.0385 (3.1535, 4.9407)

 Travel time to health facility 0.0037 (0.0020, 0.0054)

 Aridity 0.0476 (0.0271, 0.0681)

Spatial model

 Null spatial model

  Intercept − 1.1943 (− 1.4532, − 0.9415)

  σ 2(spatial variance) 1.3218 (0.8211, 1.8869)

  Range nominal 0.2738 (0.1365, 0.4271)

  κ(kappa) 11.1711 (5.6585, 17.6613)

 Full spatial model

  Intercept − 2.9184 (− 4.0083, − 1.9530)

  ITN Coverage 4.5643 (2.4086, 6.8874)

  Travel time to health facility 0.0057 (0.0017, 0.0099)

  Aridity 0.0600 (0.0079, 0.1167)

  σ 2(spatial variance) 0.8772 (0.5061, 1.2915)

  Range nominal 0.2917 (0.1250, 0.4886)

  κ(kappa) 10.8059 (4.6372, 18.1236)

Fig. 1  Posterior distribution of the effect of the predictors of malaria prevalence and the hyper parameters in the Bayesian spatial model in 2019 
among under-five children in Ghana. *Denotes significant covariates
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Fig. 2  Empirical (observed) malaria prevalence in study locations in Ghana, 2019. Each circle represents a study location
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The study found significant geographical differences 
in the predicted malaria prevalence in the country. The 
overall predicted malaria prevalence was 16.3% (stand-
ard error (SE) 8.9%) with a range of 0.7% to 51.4% in 
the spatial model with covariates and overall prevalence 
of 28.0% (SE 13.9%) with a range of 2.4 to 67.2% in the 
spatial model without covariates. Thus, inclusion of the 
covariates contributed to explaining some of the geo-
graphical differences found in the predicted malaria 
prevalence. Here, the focus is on the interpretation of the 
results from the spatial model that included the covari-
ates. Residing in parts of Central (> 41.3 to 51.4%), Bono 
East (> 41.3 to 51.4%) and Upper East (> 31.1 to 41.3%) 
regions was associated with highest risk of under-five 
malaria after adjusting for the selected covariates. Other 
relatively high-risk regions include Upper East, Oti, 
Bono, Ahafo and Western North that recoded a preva-
lence of > 31.1 to 41.3% whereas parts of Greater Accra, 
Eastern, Northern, Volta, Upper West, Savannah, and 
Ashanti regions showed some of the lowest prevalence of 
0.7 to 10.9% (Fig.  4). The interactive web-based version 
of Fig.  4 can be found in Additional file  2: Fig. S1. The 
standard errors (SEs) were presented in Fig. 5 to quantify 
the uncertainty associated with our estimates presented 
in Fig. 4. The interactive web-based version of Fig. 5 can 
be found in Additional file 2: Fig. S2. The estimated mean 
SEs is 8.9% with a range of 0.67 to 20.3%, suggesting 
low level of uncertainty for the estimates, hence reliable 
estimates.

Presented in Fig.  6 is the width of the 95% credible 
interval for the predicted malaria prevalence presented 

in Fig. 4, and the interactive web-based version of Fig. 6 
can be found in Additional file  2: Fig. S3. The width of 
the 95% credible interval ranges from 2.2 to 74.3% with 
the highest observed in parts of Bono East (59.8 to 74.3%) 
and the lowest in parts of Greater Accra (2.2 to 16.7%) 
regions.

Comparing spatial model with covariate and spatial model 
without covariates
To permit better comparison and understanding between 
the malaria predictive maps, we fixed the scale for both 
the predictive maps for the spatial model with covariate 
and spatial model without covariates. The results showed 
that the inclusion of these covariates helped explain some 
of the differences in malaria prevalence across the whole 
of Ghana, especially in the Central, Bono East, Oti, and 
Bono regions (Fig. 7).

We presented the SEs for the estimates presented in 
Fig. 7 to examine the level of precision of the estimates 
for the two models. We observed a lower level of uncer-
tainty (i.e., better precision) for the estimates in the spa-
tial model with covariates compared to the spatial model 
without covariates (Fig. 8). The mean SE associated with 
the spatial model with covariates was 8.9% compared to 
the SE of 13.9% for the spatial model without covariates.

Discussion
This study utilized novel and advanced Bayesian Geospa-
tial models which is often the preferred approach to dis-
ease mapping [30] to characterize under-five malaria risk 
spatially in this study. The need to link health outcomes 
like malaria to residential location of people is of utmost 
importance globally and is increasingly being recognized 
by the international health community and develop-
ment partners for disease surveillance, monitoring, and 
control efforts [6, 20, 30, 34–36]. Under-five malaria is 
among the leading causes of under-five mortality in sub-
Saharan Africa. Malaria monitoring and control pro-
grammes could heavily benefit from timely, relevant, and 
accurate high resolution predictive malaria prevalence 
maps at a more localized levels supported with interac-
tive web-based mapping tools that identify communities 
with highest burden of malaria risk to inform optimal 
preventive and targeted control efforts aimed at reducing 
malaria related morbidity and mortality, especially in set-
tings where universal intervention is practically impossi-
ble due to limited public health resources.

Of particular interest in this study is quantification of 
geographical differences in under-five malaria risk con-
tinuously over the whole of Ghana as indicated in the 
predicted spatial maps. The 5 × 5  km high resolution 
predictive maps showed substantial geographical differ-
ences in the predicted malaria prevalence and identified 

Fig. 3  Model validation for the final Bayesian geospatial model for 
predicting malaria prevalence among children under-five in 2019 in 
Ghana
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Fig. 4  Predicted malaria prevalence in 2019 among under-five children in Ghana. The interactive web-based version of this map can be found 
online
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Fig. 5  SEs of predicted malaria prevalence in 2019 among under-five children in Ghana. The interactive web-based version of this map can be 
found online
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Fig. 6  Predicted width of the 95% credible intervals of malaria prevalence in 2019 among under-five children in Ghana. The interactive web-based 
version of this map can be found online
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specific communities/towns with highest concentration 
of malaria risk, supporting previous studies that observed 
that health outcomes like malaria, malnutrition, mortal-
ity and other related health outcomes exhibit spatial pat-
terns and that the identification of these geographical 
patterns are of outmost importance urgent and targeted 
public health policy and intervention, especially in pre-
vention and control efforts with the goal of improving 
health outcomes in populations at sub-national, national 
and global levels [6, 7, 20, 35, 37–39]. The overall pre-
dicted national malaria prevalence is 16.3% (SE = 8.9%), 
characterized by substantial localized geographical dif-
ferences with the highest observed in parts of Central 
and Bono East regions (41.3–51.4%) and lowest in parts 
of Greater Accra, Eastern, Northern, Volta, Upper West, 
Savannah, and Ashanti regions (0.665–10.9%). The find-
ings provide critical information to malaria control 
programme managers and other stakeholders in public 
health for urgent and targeted malaria preventive and 
control efforts, where universal intervention is practically 
impossible amidst limited public health resources.

Comparing the predictive maps of the estimates of 
our spatial model which included covariates and the one 

without covariates, this study found that inclusion of the 
covariates helped explain some of the geographical differ-
ences in malaria risk, and with better accuracy compared 
to the spatial model without covariates, suggesting the 
need for researchers in this field to account for environ-
mental and climatic factors that might help explain the 
malaria risk in this population of children for targeted 
preventive and control efforts.

To improve visualization, understanding and target-
ing of scarce available resources to those communities 
who needed it most (i.e., children highest malaria burden 
areas), it is recommended that the programme manag-
ers and readers use the interactive web-based versions of 
the predicted maps published online (see figure titles for 
URL) where they can zoom-in or zoom out on specific 
towns or communities where the predicted malaria risk 
is highest or lowest. Generally, the level of uncertainties 
associated with our estimates are low, suggestive of rea-
sonably accurate estimates. Cross-validation was per-
formed to examine how well our model performs on a 
new data. The results show a very high correlation of 95%, 
suggesting that the model is good for correctly predicting 
malaria risk spatially in this population of children.

Fig. 7  Comparing the predictive maps for spatial model with covariate (left panel) and spatial model without covariates (right panel) from the 
Bayesian Geospatial models for malaria prevalence in 2019 among under-five children in Ghana
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Fig. 8  Comparing the level of uncertainty between maps for spatial model with covariate (left panel) and spatial model without covariates (right 
panel) from the Bayesian Geospatial models for malaria prevalence in 2019 among under-five children in Ghana

The study found environmental and climatic factors 
like ITN coverage, travel times and aridity to be positively 
predictive of under-five malaria prevalence. Increase 
in aridity index ranging from most arid to most wet 
increases the risk of malaria infection [40], while increase 
in travel times to reach a high-density urban centre was 
associated with increased risk of malaria infection, and 
both findings are in the expected direction. Unexpect-
edly, increase in ITN coverage, which is increase in pro-
portion of population protected by ITNs was associated 
with increased risks of malaria infection. This could be 
due to effect of suppressor variable and/or undetected 
multicollinearity [41].

The key strength is the ability of the modelling 
approach to borrow information from sampled locations 
to create predictions and interactive web-based spatial 
maps for both the sampled and the unsampled locations 
in the study over the whole of Ghana, while simultane-
ously adjusting for environmental and climatic factors. 
This study accounted for the displacement of the cluster 
locations, which is typical of the DHS data which ensures 
that similar approach can be applied accurately on other 

countries participating in the DHS program. Also, the 
findings are relevant to the wider population of Ghana-
ian children and similar populations elsewhere due to the 
nationwide coverage and representativeness of the survey 
at the national level. Just like any other study, this study is 
subject to some limitations so the results should be inter-
preted with caution: data on spatially referenced malaria 
data on policy and interventions, distance to the nearest 
water bodies, type of housing which might explain some 
of the geographical differences in malaria risk observed 
were unavailable to be included in the models.

The findings from the present study provide a critical 
tool for malaria surveillance and monitoring and assess-
ing progress in the fight against malaria and served as 
an evidenced base for malaria control programme man-
agers and other stakeholders in public health to direct 
their resources to communities at utmost need, especially 
in countries like Ghana where available public health 
resources are very limited, making it practically impos-
sible to rollout a universal intervention. Unlike national, 
regional or district level estimates that masked real local-
ized differences in risk levels (i.e., ecological fallacy), the 
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modelling and mapping approach enabled more localized 
evaluation of malaria risk as a continuous phenomenon 
on finer scales (both at sampled and unsampled loca-
tions) over the whole of Ghana, allowing for effective and 
efficient allocation of the limited available public health 
resources dedicated to malaria prevention and controls 
efforts to communities at greatest need. Thus, this study 
contributes to better understanding of the issue of under-
five malaria burden in Ghana.

Conclusion
The study investigates, model, predict, and presents pre-
dictive maps of geographical differences in under-five 
malaria risk over Ghana. The Bayesian Geospatial mod-
elling of the environmental, and climatic predictors of 
malaria prevalence and interactive web-based spatial 
predictive maps provided in this study could be benefi-
cial as an effective tool for the Ghana Health Service and 
her partners in the development of frameworks to miti-
gate malaria burden. This study identified communities 
at highest risk of malaria that may require urgent and tar-
geted interventions and further research amidst limited 
public health resources in this and other similar settings 
by public health officers, program managers and imple-
menters, especially where it practically impossible to 
rollout a universal intervention. The modelling and spa-
tial mapping approaches are critical as part of an overall 
strategy in reducing the malaria burden amidst limited 
public health resources available in the country because 
they can promote effective and sustainable malaria public 
health programs among under-five children in the coun-
try and other similar countries. To answer as-yet unan-
swered questions about why children residing in certain 
parts of Central, Bono East and Upper East regions were 
at highest risk while their counterparts in parts of Greater 
Accra, Eastern, Northern, Volta, Upper West, Savannah, 
and Ashanti regions were at lower risk, further research 
in the form of qualitative studies in addition to considera-
tion and examination of further potential predictors left 
out in this study is warranted. The study further recom-
mend that the DHS survey program managers and imple-
menters consider increasing the number of clusters to 
be used in future surveys, and to include all districts in 
Ghana to improve the level of precision of the model esti-
mates and the spatial predictions.
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