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Abstract 

Background: The emergence and spread of malaria drug resistance have resulted in the need to understand disease 
mechanisms and importantly identify essential targets and potential drug candidates. Malaria infection involves the 
complex interaction between the host and pathogen, thus, functional interactions between human and Plasmodium 
falciparum is essential to obtain a holistic view of the genetic architecture of malaria. Several functional interaction 
studies have extended the understanding of malaria disease and integrating such datasets would provide further 
insights towards understanding drug resistance and/or genetic resistance/susceptibility, disease pathogenesis, and 
drug discovery.

Methods: This study curated and analysed data including pathogen and host selective genes, host and pathogen 
protein sequence data, protein–protein interaction datasets, and drug data from literature and databases to perform 
human-host and P. falciparum network-based analysis. An integrative computational framework is presented that 
was developed and found to be reasonably accurate based on various evaluations, applications, and experimental 
evidence of outputs produced, from data-driven analysis.

Results: This approach revealed 8 hub protein targets essential for parasite and human host-directed malaria drug 
therapy. In a semantic similarity approach, 26 potential repurposable drugs involved in regulating host immune 
response to inflammatory-driven disorders and/or inhibiting residual malaria infection that can be appropriated for 
malaria treatment. Further analysis of host–pathogen network shortest paths enabled the prediction of immune-
related biological processes and pathways subverted by P. falciparum to increase its within-host survival.

Conclusions: Host–pathogen network analysis reveals potential drug targets and biological processes and pathways 
subverted by P. falciparum to enhance its within malaria host survival. The results presented have implications for drug 
discovery and will inform experimental studies.
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Background
Plasmodium falciparum malaria is a common infec-
tious disease in Africa, and arguably the most important 
parasitic disease in the world, posing a significant pub-
lic health burden as compared to other World Health 

Open Access

Malaria Journal

*Correspondence:  gmazandu@gmail.com; emile.chimusa@uct.ac.za
1 Division of Human Genetics, Department of Pathology, Institute 
of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, 
University of Cape Town, Cape Town, South Africa
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8846-2047
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-021-03955-0&domain=pdf


Page 2 of 20Agamah et al. Malar J          (2021) 20:421 

Organization (WHO) disease-endemic regions. For 
instance, Africa contributed to about 93% (213 million of 
228 million) and 94% (380,000 of 405,000) of global cases 
and deaths, respectively in 2018 [1].

The use of anti-malarial drugs has been the opti-
mal avenue for controlling the disease. Currently, arte-
misinin-based combination therapy (ACT) is used as 
the first-line option for malaria treatment globally [2]. 
ACT was adopted in Africa after the decline in efficacy 
of previous widely used anti-malarial drugs, including 
chloroquine and sulfadoxine-pyrimethamine (SP) [2]. 
This was to ensure that, each component of the combi-
natorial drug acts through different mechanisms within 
the parasite, aiming to significantly reduce the likeli-
hood of the emergence of multi-drug resistant parasites. 
Unfortunately, the parasite has shown tremendous ability 
to develop resistance and tolerance to these artemisinin 
derivatives and the long half-life partner drugs in some 
countries of the Greater Mekong Sub-region [2–4]. With 
several reports supporting parasite recrudescence and a 
significant decrease in their sensitivity to ACT, there has 
been continuous surveillance to monitor the emergence 
and spread of artemisinin-resistant parasite strains in 
Africa and elucidate whether it will follow a similar pat-
tern observed for chloroquine and SP resistance where 
resistant strains originated from Southeast Asia [2, 4–7]. 
Interestingly, a study conducted by Uwimana et  al. [7] 
has demonstrated the independent emergence and local 
spread of artemisinin partial resistance in Rwanda driven 
by R561H mutation in kelch gene. Another study con-
ducted in Northern Uganda has also reported independ-
ent emergence and local spread of artemisinin-resistant 
parasite driven by mutations in the A675V or C469Y 
allele in the kelch13 gene [8]. These pieces of evidence 
suggest that artemisinin resistance has emerged indepen-
dently in Eastern Africa.

Researchers have proposed that the emergence of arte-
misinin parasite-resistant strains in Africa would result 
in about 78 million additional cases [4] and over 100,000 
deaths annually [9]. Evidence abounds to the fact that a 
major challenge to controlling, eliminating, and eradicat-
ing malaria is drug resistance. It is the principal reason 
for the expansion of this life-threatening disease.

The architectural framework of the parasite’s genome 
constitutes a major framework influencing variations 
in the levels of the drug susceptibility, particularly hav-
ing elucidated that P. falciparum anti-malarial drug 
resistance involves a single major gene effect. Sponta-
neous alterations in the form of single nucleotide vari-
ation and multiple mutations in different genes within 
the parasite genome capacitate the pathogen’s ability to 
develop tolerance mechanisms or resist the drug action 
over time thus, yielding the unexpected result. Genetic 

polymorphisms of known drug-resistance genes, such as 
pfcrt, pfmdr1, pfk13, pfmrp1, pfdhfr, and pfdhps generally 
express effects that counteract drugs controlling the dis-
ease [7, 10–12]. Compared to the clinical phenotype of 
resistance to quinolones and SP which usually takes the 
form of reduced accumulation of drugs within the para-
site, particularly targets, artemisinin resistance, manifests 
as slow parasite clearance in patients and is characterized 
by the parasite’s ability to alter intraerythrocytic cell cycle 
with an increased ring stage and a shortened trophozoite 
stage [8, 13].

Falciparum malaria is a multifactorial disease that 
involves the complex interplay between the host, vector, 
and the pathogen [14, 15]. The host–pathogen interac-
tions have been a driving selective force influencing the 
genetic architecture of both species, particularly, on how 
their genes are involved in drug and/or genetic resist-
ance, disease susceptibility, and the infection processes 
[14, 16, 17].

Understanding these interactions requires an in-depth 
analysis of the organism’s proteome which is regarded 
to execute the genetic programme. Proteins execute 
functions mostly through extended networks with each 
other thereby forming a framework of the sensitive and 
complex regulatory system underlying a wide degree of 
post-translational modifications and processes [18]. The 
complex physicochemical dynamic connections formed 
within the system facilitate the structural and functional 
organization of the organism. These connections make 
up the protein–protein interaction network (PPIN).

Recent advances in host and parasite genomics in 
terms of high-throughput proteomics studies, host and 
parasite genome sequencing have led to a corresponding 
increase in biological datasets that describe the transi-
tion of species over time, particularly, the metabolic and 
developmental stages of pathogens. As such, the applica-
tion of computational approaches to efficiently mine the 
inter and intra-species functional interactions to address 
the challenges presented by the disease is critical [19]. A 
systematic and comprehensive study of these complex 
interactions is essential in elucidating relevant pathways, 
signalling, drug resistance patterns, genes-gene products 
inter-relationships, and drug targets as well as developing 
novel hypotheses and models to predict disease causality 
[20].

In this study, a network-based integrative compu-
tational framework was leveraged to predict protein 
targets that may be used to guide the rational design 
of pathogen- and host-directed therapies for malaria 
treatment. Following the target prediction, a seman-
tic similarity approach was implemented to prioritize 
informed potentially repurposable drugs that can be 
engineered for malaria treatment. Further analysis of 
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host–pathogen network shortest paths enabled the pre-
diction of immune-related biological processes and path-
ways potentially subverted by P. falciparum to increase 
its within-host survival.

Methods
Study design and procedures
Various open access heterogeneous genomic and func-
tional datasets retrieved from databases and literature 
using text mining techniques were used as inputs for 
analysis. The approach for this study (Fig. 1) consisted of 
five main steps: (1) data curation and pre-processing, (2) 
scoring and integrating functional datasets; (3) biologi-
cal network assembling and structural analysis; (4) gene 
mapping and enrichment analysis (5) implicit semantic 
similarity approaches to predict malaria-similar diseases 
and repurposable drugs. Briefly, the framework uses inte-
grative, scoring, and clustering algorithms coupled with 
statistical methods and biological knowledge to analyse 
and validate results.

Data pre‑processing
The various datasets utilized for this study are described 
in Additional file  4: Table  S1. To achieve uniform iden-
tifiers (IDs) and convenient data manipulation, all genes 
and protein IDs were mapped to only reviewed proteins 
from Swiss-Prot under the non-redundant UniProt iden-
tifier system for harmonization. Human and P. falcipa-
rum genes were mapped to UniProt proteins with taxon 
identifier 9609 and 36,329 (Plasmodium falciparum 

3D7 strain), respectively. Genes with no correspond-
ing UniProt protein ID as at the time of this study were 
discarded.

Human malaria susceptibility-associated single nucleo-
tide polymorphisms (SNPs) were retrieved from GWAS 
summary statistics datasets obtained from Malaria-
GEN [21]. The summary statistics dataset comprised 
of 20,273,529 spanning across chromosome one (1) to 
twenty-two (22). In this study, approximately 690,000 
significant SNPs (p-value < 0.05) were filtered for further 
analysis. These SNPs were then mapped onto 44 genes 
(herein referred to as host candidate genes, Additional 
file 5: Table S2) using the dbSNP annotated data [22, 23].

Scoring and integrating functional datasets
The study performed pathogen-pathogen, pathogen-
host, and host-host protein sequence BLAST using their 
respective protein sequences retrieved from the UniProt 
database [24]. This was followed by implementing an 
information-theoretic based functional scoring scheme 
outlined by Mazandu and Mulder [25] and summarized 
in the Additional file  10: (Eqs.  1–8) to score the func-
tional associations obtained from sequence BLAST and 
the conserved domains interaction datasets from the 
InterPro database [26].

Scoring high‑throughput experimental datasets 
and interologs
To incorporate curated functional interaction datasets 
in the analysis, the following criteria were defined to 

Fig. 1 An overview of the approach implemented in this study
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prioritize and score pair-wise interactions from experi-
mental and interolog datasets retrieved from Reactome 
[27], IntAct [28], MINT [29], BIOGRID [30], and lit-
erature [31–36]. The criteria for scoring were based on; 
(1) the number of experimental methods that have con-
firmed such pair-wise functional interaction, (2) the 
number of databases that have reported such pair-wise 
functional interaction, and (3) the number of times the 
pair-wise functional interaction has been reported in 
the literature. For every pair-wise functional interaction 
supported by one evidence, a reliability score of 0.3 was 
assigned, else, a reliability score of 0.7 if it is supported by 
two or more pieces of evidence.

Biological network assembling and structural analysis
Table 1 describes the number of proteins retrieved from 
each dataset, the number of reviewed proteins/genes 
considered from each input dataset and the pair-wise 
functional interaction implemented for further down-
stream analysis. From the pre-processed scored datasets, 
the functional interactions obtained were categorized, 
as low (scores less than 0.3), medium (scores ranging 
between 0.3 and 0.7), and high confidence levels (scores 
greater than 0.7). Biases may exist in the PPI network 
generated due to relatively high noise related to high-
throughput data or experiments from which interactions 
are derived. In the absence of gold standard PPIs, inte-
grating data from different sources and applying strict 

interaction reliability or confidence score cut-off are used 
to reduce the impact of these biases, leading to a PPI net-
work of high confidence interactions with an increased 
coverage  [37]. Further analyses only used medium and 
high confidence interactions or interactions predicted by 
two different sources. To evaluate the structural features 
of nodes (proteins) and edges (interactions), network 
centrality metrics including node degree, betweenness, 
and closeness (Additional file 10:  Eqs. 9–11) were com-
puted. High degree nodes with low betweenness describe 
degree-based or ‘local’ subnetwork interconnectiv-
ity mostly between functionally related proteins. High 
degree nodes with high betweenness contribute to struc-
tural-based or ‘global’ subnetwork interconnectivity and 
signal transmission thus, promoting system-level func-
tional integration. Node closeness describes the average 
shortest length between neighbouring nodes determin-
ing the proximity to information sharing and biological 
process execution between functionally related nodes 
[38].

Community structure and hub classification
The study aimed to identify hub genes/proteins that 
establish links with multiple functional clusters (com-
munities), thus, characterized by both ‘local’ and ‘global’ 
network interconnectivity, structural, and functional 
features. To predict the hubs, clustering analysis was 
performed to identify network communities of densely 

Table 1 Extracted functional interactions between manually annotated proteins

Interaction
source

Number of
Interactions

Number of 
proteins

Number of 
reviewed 
proteins

Number of pair‑wise 
interactions between reviewed 
proteins

References

A. Functional interactions between annotated Plasmodium falciparum proteins

 LaCount P. falciparum PPI 2864 1308 62 17 [35]

 Wuchty et al. in silico Plasmodium PPI (1) 19,979 2321 85 74 [31]

 Wuchty et al. experimental PPI (2) 1428 361 12 11 [32]

 Wuchty experimental P. falciparum PPI (3) 5458 1986 91 32 [33]

 Wuchty et al. experimental P. falciparum PPI (4) 4918 1872 81 15 [34]

 IntAct 2916 1343 67 26 [28]

 InterPro 1013 256 98 241 [26]

 Scored BLAST sequence similarity 1090 (BLAST) 163 130 231 [85]

 STRING 617 163 114 386 [86]

B. Functional interactions between annotated human proteins

 Reactome 79,619 8059 5029 19,736 [27]

 Score BLAST sequence similarity 3,807,888
(BLAST)

20,395 9611 143,533 [85]

 InterPro 2,646,550 35,928 17,797 231,799 [26]

 Bossi and Lerner 80,922 10,229 8416 54,238 [36]

 STRING 11,759,454 19,354 18,836 5,244,655 [86]

 IntAct 456,263 35,770 16,061 169,627 [28]
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connected nodes using a variant of an integrative com-
putational algorithm that implements the Blondel et  al. 
[39] heuristic method based on modularity optimization. 
This clustering model is a scalable hierarchical agglom-
erative method based on modularity optimization and 
has been shown to outperform all other known commu-
nity detection methods [40], including Smart Local Mov-
ing [41], Infomap [42], and Label Propagation [43], in 
terms of computation time or complexity and the quality 
of the communities detected (modularity). The parasite 
candidate genes (herein referring to known antimalarial 
resistant genes and reported genes expressing signature 
of selection towards drug resistance) retrieved from lit-
erature [2, 6, 10] and host candidate gene-encoded pro-
teins (Additional file 5: Table S2) were mapped onto the 
assembled parasite and host networks to cluster the net-
works. The subnetworks were explored to identify global 
hubs, herein defined as candidate gene/proteins charac-
terized by a high degree and high betweenness score.

Functional annotation analysis
Gene annotation and enrichment analysis were per-
formed to elucidate statistically significant biological pro-
cesses and pathways to which the hub genes are involved. 
Biological processes were inferred from the gene ontol-
ogy database [44], whereas pathway information was 
obtained from PlasmoDB v46 [45] and the KEGG data-
base [46]. By applying the hypergeometric test [47], 
p-values of processes and pathways were estimated, lev-
eraging on their frequency of occurrence. The Bonferroni 
multiple correction test [47] was then implemented to 
estimate the adjusted p-values.

Semantic similarity
The development of human disease ontology terms [48] 
has provided an enriched platform of human disease 
data to evaluate similarities between various diseases of 
different disorder classes based on gene-related molecu-
lar functions. The analysis is based on the hypothesis 
that varying combinations of disease-associated genes 
can influence the pathogenicity of similar diseases [49]. 
To predict repurposable drugs for malaria treatment, 
an in-house python-based semantic model was imple-
mented for disease and drug similarity. The model uses 
host candidate key proteins, disease-target datasets, and 
gene ontology datasets as input data to make predictions 
based on functional similarities inferred from associated 
gene ontology terms. The semantic similarity approach 
was further implemented to identify diseases that are 
biologically similar to malaria. In the analysis, the seman-
tic similarity score between the pair of diseases was 
leveraged to identify and prioritize diseases similar to 
malaria. The similarity score was estimated by computing 

the Kappa statistic, Jaccard, and the Best Match Average 
(BMA) measures (Additional file 10). The score is a quan-
titative measure of the underlying shared biological pro-
cesses among the disease targets. A higher score between 
disease enriched processes suggests that the disease-pair 
and their associated candidate proteins are functionally 
similar thus, the likelihood for similar treatment options. 
A similarity score threshold was defined based on the 
upper quartile and interquartile range of the distribu-
tion given by tr = Q3+ ε ∗ IQR , where ε , tr,Q3 and IQR 
represent the tuning parameter (0 ≤ ε ≤ 1.5) threshold, 
upper quartile, and interquartile range, respectively.

Results
Network clustering and functional annotation analysis
The generated parasite network consists of 662 unique 
interactions among 140 characterized proteins (Fig. 2A). 
The unified host network assembled comprised of 
4,133,136 unique functional interactions between 20,329 
nodes. The host-parasite network consisted of 31,512 
unique functional interactions between 8023 proteins. 
The topology properties of the generated networks were 
explored to investigate the relationships between the 
degree, betweenness, and closeness centrality measures. 
As shown in Additional file 1: Fig. S1, subnetworks were 
classified as either degree-based (subnetworks formed 
from nodes with a high degree but low betweenness) or 
structural-based (subnetworks formed from nodes with 
high degree, high betweenness, and high closeness). The 
nodes forming the degree-based and structural-based 
subnetworks are herein referred to as key proteins.

Network clustering analysis reveals disease candidate key 
proteins/genes as hubs
The purpose of clustering is to partition the complex net-
work into subnetworks and identify essential communi-
ties and critical functional nodes. It is a way of grouping 
nodes in the network into modules sharing functional 
connectivity. The parasite network (Fig.  2A) consists of 
8 clusters of which 5 contained key proteins whereas the 
dense human network consisted of 32 clusters of which 
7 contained key proteins. From the network clustering 
(Additional file  2: Fig. S2A, Additional file  3: Fig. S2B), 
two parasite candidate key proteins were identified as 
hubs, C6KTD2 (SET1) and C6KTB7 (PFF1365c) both 
on chromosome 6. These parasite candidate key pro-
teins are involved in the merozoite developmental stage 
where they invade red blood cells (RBCs), cause disease 
severity, and contribute to the exponential growth of 
the parasite population [50]. Analysis of the host net-
work revealed 6 candidate key proteins as hubs; P22301 
(IL10 [MIM: 124092]), P05362 (ICAM1 [MIM: 147840]), 
P01375 (TNF [MIM: 191160]), P30480 (HLA-B [MIM: 
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142830]), P16284 (PECAM1 [MIM: 173445]) and O00206 
(TLR4 [MIM: 603030]). These proteins are cognate 
host receptors that respond to inflammation by releas-
ing pro-inflammatory cytokines, enhancing adhesion of 

parasitized red blood cells (RBCs), parasite sequestra-
tion in organs rupture, and removal of infected RBCs 
[50, 51]. Most importantly, the identified host candidate 
key proteins are targets for drugs in DrugBank [52] and 

Fig. 2 A Assembled parasite network and B Functional interactions between C6KTD2 and C6KTB7 subnetwork within the parasite network. The 
nodes common to the subnetworks are coloured in yellow
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have been reported to offer higher opportunities for 
drug repurposing, although a smaller proportion of the 
human genome is druggable [53–55]. Additional file  6: 
Table S3 and Additional file 7: Table S4 describe the iden-
tified candidate key proteins prioritized by the degree, 
betweenness, and closeness scores.

Biological processes and pathway enrichment of hub 
genes
The identified hub genes within the subnetworks were 
used for the functional annotation process. The results 
revealed 4 statistically significant essential processes and 
an enriched pathway (Table 2) specific to the parasite key 
hub genes. A total of 23 significant biological processes 
and 21 enriched pathways (Table  3) were identified to 
underly host hub gene’s contribution towards malaria 
infection. From the host perspective, the hub genes are 
mainly involved in immune regulatory biological pro-
cesses within immune-related pathways (47.6%), parasitic 
disease-related pathways (23.8%), bacteria disease-related 
pathways (14.2%), endocrine and metabolic disease-
related pathways (4.7%), viral disease-related pathway 
(4.7%) and transport and catabolism related pathway 
(4.7%)[44, 46]. Most importantly, the malaria pathway 
ranked the most significant pathway with both p-value 
and adjusted p-value of 0. This supports the association 
of these hub genes to malaria. The enriched pathways 
presented the likelihood of similarity between malaria 
and other diseases.

Shortest path analysis between hub genes reveals 
functional insights towards disease progression
The study investigated functional interactions between 
the host and pathogen targets in the context of parasite 
survival, host immune tolerance, and how it can inform 
drug discovery research. The immune tolerance machin-
ery remains to be the natural driving force influencing 
the parasite’s survival when host–pathogen recognition 

receptors sense infection. To contribute to this effort, the 
shortest paths between the parasite and host hub pro-
teins within the host-parasite network were explored to 
gain insight into the most likely routes for innate immune 
response interference by the parasite.

Studies have shown that the shortest path analysis of 
a functional network yields high coverage compared to 
direct neighbours within the network [56]. The shortest 
path between host–pathogen disease-associated can-
didate key genes herein refer to the minimum number 
of edges required to connect these genes. Longer paths 
consist of more nodes (proteins) involved in a cascade of 
signalling processes to trigger innate immune responses 
by inducing the production of chemokines and cytokines 
upon parasite infection. It is, therefore, a measure of 
information relay between the hub genes thus, the shorter 
the path, the quicker the transmission and the relevance 
of the interaction in investigating immune adaptiveness 
and parasite pathogenesis [56]. It is noteworthy that, 
shortest path lengths between the pathogen disease-asso-
ciated genes and human disease-associated genes con-
ferring immunity in the functional network are the most 
feasible routes of parasite invasion of host immunity and 
escaping the contribution of host genetics towards drug 
action [56, 57]. Most importantly, shortest paths would 
trigger excessive activation which may be deleterious as 
it can cause systemic inflammation and disease [50]. This, 
therefore, suggests that developing immune-modulatory 
drugs that target the host targets can induce an immune 
response to avoid the state of been overwhelmed by the 
parasite.

The results showed that the shortest path between 
parasite hub proteins and any of the host hub pro-
teins were between O00206—C6KTB7, and O00206-
C6KTD2 as shown in Table  4. Such paths were 
characterized by mediators. These mediators are mostly 
signal receptors involved in cell regulatory activi-
ties, production of cytokines, transcription processes, 

Table 2 Statistically significant biological processes and pathways of key P. falciparum malaria-associated genes inferred from 
PlasmoDB v46 and gene ontology database

Enriched biological process

Gene Ontology (GO)‑ID Process Gene ontology term name P‑value Adjusted p‑value

GO:0019904 Protein domain specific binding 1.77e−3 7.08e-3

GO:0004842 Ubiquitin-protein transferase activity 5.31e−3 4.25e-2

GO:0019787 Ubiquitin-like protein transferase activity 5.75e−3 4.60e-2

GO:0051568 Histone h3-k4 methylation 0.0103149 0.030945

A. Enriched pathway

 Pathway ID Pathway-name P-value Adjusted p-value

 ec00310 Lysine degradation 3.87e-2 3.87e−2
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Table 3 Statistically significant biological processes and enriched pathways of key human malaria-associated genes inferred from 
gene ontology and KEGG database

Gene ontology
(GO)‑id process

Gene ontology term name P‑value Adjusted
P‑value

Enriched biological process

 Go:0042346 Positive regulation of nfkappab import into nucleus 2.00161e−05 0.00432

 Go:0045348 Positive regulation of mhc
Class ii biosynthetic process

2.40637e−06 0.00052

 Go:0032689 Negative regulation of
Interferon-gamma production

3.10034e−05 0.00670

 Go:0007157 Heterophilic cell–cell adhesion
Via plasma membrane cell adhesion molecules

0.00012 0.02714

 Go:2000352 Negative regulation of endothelial
Cell apoptotic process

2.70760e−05 0.00585

 Go:0032715 Negative regulation of interleukin-6 production 8.99764e−08 1.9434e-05

 Go:2000343 Positive regulation of chemokine (c-x-c motif ) ligand 1.68841e−05 0.00364

 Go:0032729 Positive regulation of
Interferon-gamma production

0.00012 0.02713

  Go:0070374 Positive regulation of erk1
And erk2 cascade

2.8883e−05 0.00623

 Go:0050830 Defence response to gram-positive bacterium 2.65221e−05 0.00572

 Go:0034116 Positive regulation of heterotypic cell–cell adhesion 1.68841e−05 0.00364

 Go:0044130 Negative regulation of
Growth of symbiont in host

6.07930e−06 0.00131

 Go:0030198 Extracellular matrix organization 5.39819e−05 0.01166

 Go:0045416 Positive regulation of
Interleukin-8 biosynthetic process

2.40637e−06 0.00051

 Go:0032755 Positive regulation of
Interleukin-6 production

0.00016 0.03562

 Go:0002740 Negative regulation of cytokine
Secretion involved in immune response

1.00303e−06 0.00021

 Go:0045429 Positive regulation of nitric
Oxide biosynthetic process

1.23374e−07 2.665e−05

 Go:0043032 Positive regulation of
Macrophage activation

1.02165e−05 0.00220

 Go:1904999 Positive regulation of leukocyte
Adhesion to arterial endothelial
Cell

2.00663e−07 4.3343e−05

 Go:0031663 Lipopolysaccharide mediated
Signalling pathway

2.42641e−08 5.2410e−06

 Go:1904707 Positive regulation of vascular
Smooth muscle cell proliferation

0.00016 0.03663

 Go:0032800 Receptor biosynthetic process 6.68766e−07 0.00014

 Go:1900227 Positive regulation of nlrp3 inflammasome complex assembly 2.70759e−05 0.00584

A. Enriched pathway

 Kegg pathway id Kegg-pathway-name P-value Adjusted p-value

 Hsa05144 Malaria 0.0 0.0

 Hsa05310 Asthma 6.52960e−07 7.966e−05

 Hsa04145 Phagosome 1.46003e−06 0.00017

 Hsa05146 Amoebiasis 0.00014 0.01745

 Hsa04640 Hematopoietic cell lineage 1.70661e−06 0.00020

 Hsa05330 Allograft rejection 3.03329e−06 0.00037

 Hsa05133 Pertussis 8.77858e−06 0.00107

 Hsa04940 Type i diabetes mellitus 9.00124e−05 0.01098

 Hsa05162 Measles 8.93218e−05 0.0108

 Hsa04650 Natural killer cell mediated cytotoxicity 0.00014 0.01724
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and regulating cell survival and apoptosis. The short-
est paths identified (Table  4) suggest that inhibition 
or alteration to the proper functioning of each path 
might help the parasite to survive immune responses, 
thus, the aggregation of small effects. The development 
of adaptive immunity is expected to happen when the 
parasite undergoes diversity throughout time such that 
they evade the host system when they become tolerant 
and establish different mechanisms to interfere with the 
host’s response [58]. These interferences can also be in 
the form of the production of effector mechanisms that 
can down-regulate innate immunity [59]. The results 
have shown that the dynamic patterns to parasite sur-
vival and immune adaptiveness are mediated by other 
human-specific genes or proteins conferring immunity.

Importantly, pfk13 is known to be associated with 
artemisinin resistance, but little is known of its interac-
tion with host genes/proteins and how that influences 
drug resistance or parasite survival within the host. 
Further network analysis was performed to explore 
interactions between pfk13 and the host candidate key 
proteins. The results revealed no functional interactions 
between pfk13 and the host hub genes. However, the 
analysis showed interactions between pfk13 and highly 
expressed host kelch-like proteins and regulatory genes 
involved in essential processes such as transcription 
regulation, cell-surface, cell–cell signalling, and regula-
tion of phosphorylation. Among the regulatory genes 
include the transcriptional regulator Kaiso (ZBTB33), 
Zinc finger and BTB domain-containing protein 17 
(ZBTB17 [MIM: 604084]), BTB/POZ domain-contain-
ing protein 10 (KCTD10 [MIM: 613421]), Zinc fin-
ger and BTB domain-containing protein 10 (ZBTB10 
[MIM: 618576]), Myoneurin (MYNN [MIM: 606042]), 

Nucleoprotein TPR (TPR [MIM: 189940]) and Gigax-
onin (GAN [MIM: 605379]).

Predicting repurposable drugs for malaria treatment based 
on Implicit Semantic Similarity
After defining a semantic similarity score threshold (as 
illustrated in Fig.  3A), 1944 (8.04%) out of 24,166 dis-
eases in the DisGeNet platform version 6 were identified 
to be semantically like malaria. The disease hits were fil-
tered by maintaining those whose targets are involved in 
the same pathways of host Malaria hub genes. The dis-
ease hits were further filtered by maintaining diseases 
supported by biological evidence from the literature. 
The final filtered disease hits consisted of 113 diseases 
(Additional file 8: Table S5). These identified diseases fall 
in the category of infectious, inflammatory, and genetic 
neurological diseases which trigger the human immune 
machinery to overproduce cytokines; confirming the fact 
that malaria is an inflammatory response-driven disease. 
Among the top disease hits includes sickle cell anae-
mia [MIM: 603903], liver dysfunction [MIM: 613759], 
fever ([MIM: 142680], [MIM: 614371]), hepatitis ([MIM: 
606518], [MIM: 609532]) and respiratory distress syn-
drome [MIM: 267450]. It is interesting to note that the 
disease hits described have been reported to be gov-
erned by the same pathologic principles as malaria infec-
tion [60, 61].Finally, to predict repurposable drugs, 1426 
approved drugs and their corresponding targets were 
retrieved from the DrugBank database. Next, non-human 
drugs were excluded and were remained with 1282 drugs 
and their targets for further downstream analysis. The 
drugs were further filtered to retain those with target pro-
cesses associated with malaria and the predicted malaria 
similar diseases. Then after, the semantic approach was 
implemented to predict putative repurposable drugs. 

Table 3 (continued)

Gene ontology
(GO)‑id process

Gene ontology term name P‑value Adjusted
P‑value

 Hsa04657 Il—17 signalling pathway 0.00037 0.04624

 Hsa05152 Tuberculosis 1.92895e−10 2.35332e−08

 Hsa05150 Staphylococcus aureus infection 4.40440e−08 5.37336e−06

 Hsa05142 Chagas disease (american trypanosomiasis) 7.77032e−05 0.00947

 Hsa05143 African trypanosomiasis 7.32790e−10 8.9400e-08

 Hsa05140 Leishmaniasis 1.16192e−11 1.41754e−09

 Hsa05321 Inflammatory bowel disease (ibd) 9.68744e−08 1.18186e−05

 Hsa05322 Systemic lupus erythematosus 3.51918e−05 0.00429

 Hsa05323 Rheumatoid arthritis 0.00027 0.03331

 Hsa05320 Autoimmune thyroid disease 9.62632e−06 0.00117

 Hsa05332 Graft—versus—host disease 0.00010 0.01229
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From the identified drugs sharing some similarities in 
terms of processes, those that are over 1.5 of the inter-
quartile range were extracted and ordered. With a 
defined similarity score threshold of 0.31099875 (Fig. 3B) 
based on similarity in terms of processes the drugs are 

involved in, the results revealed 26 potential repurpos-
able drugs (Additional file 9: Table S6).The repurposable 
drugs categorized as known anti-malarial, monoclonal 
antibodies, immunomodulators, herbs, natural products, 
Janus kinase inhibitors, and thrombolytic agents act as 

Fig. 3 A Different distributions of disease similarity scores obtained in terms of frequencies (proportions) of disease matches vs similarity scores 
between disease-associated processes. The bigger rectangular bar indicates the threshold for the similarity between disease pairs of which the 
enriched similarity score (ESS) were used for further analysis. B Distributions of drug similarity scores obtained in terms of the relative frequency 
of drug matches against functional similarity scores between candidate gene and drug. The bigger rectangular bar indicates the threshold for the 
similarity between drug pairs of which the enriched similarity score (ESS) were used for further analysis
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either antagonist, agonists, inhibitors, or precursors tar-
geting genes over-represented in immune response and 
cytokine-mediated signalling processes. Janus kinase 
inhibitors including ruxolitinib, are known for their abil-
ity to effectively inhibit the production of cytokines and 
cause eryptosis contributing to the clearance of eryth-
rocytes infected with malaria, decreased parasitaemia, 
and protection against severe malaria [62]. The results 
showed that drugs involved in regulating host immune 
response to inflammatory-driven disorders target the 
Tumour necrosis factor and inhibit its activity to regulate 
downstream processes such as pro-inflammatory cascade 
signalling. Several of the potentially repurposable drugs 
are used for treating some diseases like malaria including 
rheumatoid arthritis, ischemic stroke, psoriatic arthritis, 
and idiopathic arthritis.

The drug hits include chloroquine, infliximab, hydroxy-
chloroquine, glucosamine, ginseng, minocycline, rux-
olitinib, and natalizumab which can be appropriated for 
malaria treatment. These drug hits have been reported to 
control malaria infection by inhibiting residual malaria 
infection, knocking parasite gene expression, and acti-
vating eryptosis. Furthermore, some of the hits such as 
adalimumab, Natalizumab, etanercept, thalidomide, 
ustekinumab, and canakinumab are anti-TNF monoclo-
nal antibodies and anti-inflammatory agents that could 
modulate the immune response to severe and cerebral 
malaria. The analysis also predicted thrombolytic agents 
such as anistreplase, reteplase, alteplase, and tenect-
eplase which can play an essential role in the treatment 
of coagulopathy in malaria, particularly among severe 
and cerebral malaria infections [63]. Considering malaria 
as an inflammatory-response driven disease presenting 
with multiple manifestations, these putative drug hits can 
undergo both computational and experimental reposi-
tioning for adjunctive malaria therapy, particularly severe 
and cerebral malaria.

Discussion
In this study, an integrative network-based framework 
was implemented on the various heterogeneous experi-
mental and in silico datasets retrieved from databases 
and literature to assemble Plasmodium falciparum, 
human, and human-Plasmodium falciparum functional 
protein–protein interaction network. Using host-malaria 
GWAS summary statistics datasets, host-disease-asso-
ciated genes were identified by mapping nominally sig-
nificant SNPs to their associated genes. The identified 
genes, malaria parasite selective variants, and parasite 
variants under strong signature of selection were mapped 
onto the host and pathogen functional network respec-
tively to identify key subnetworks. The subnetworks of 
each assembled network were evaluated to investigate 

nodes (candidate key proteins) that contribute signifi-
cantly to the stability and integrity of the network. Gene 
annotation and enrichment analysis of the identified 
hub genes were performed to elucidate underlying sta-
tistically significant biological processes and pathways. 
Also, shortest paths analysis was performed to elucidate 
pathways that could account for parasite adaptiveness 
to host response and potential drug resistance develop-
ment. From the parasite assembled functional network, 
the analysis performed predicted C6KTD2 (SET1) and 
C6KTB7 (PFF1365c) as key targets. These targets are 
essential at specific developmental stages of the parasite 
and have been reported as candidates for drug and vac-
cine development. The results confirm the importance of 
these targets. Also, the analysis (Figs. 2B and 4A) showed 
that these targets could be critical for combinatorial 
drug design. There is an accumulation of evidence that 
C6KTB7 is a potential multi-stage target for a malaria 
vaccine and drug development [64–68]. C6KTB7 is 
mainly involved in ubiquitin-protein transferase activity 
(GO:0004842, GO:0019787) through the protein ubiqui-
tination and modification pathway (UPA00143). Studies 
have shown that many biological processes and substrates 
are targeted by the ubiquitin pathway such that instability 
or modification in ubiquitination and deubiquitination 
reactions influences the pathogenesis of many eukaryotic 
system-related diseases [65]. For instance, the dysregula-
tion of ubiquitin ligase is associated with neurodegenera-
tive disorders, such as Parkinson’s disease and infectious 
diseases including tuberculosis [66]. This is usually asso-
ciated with interference with immune response. C6KTB7 
significantly influences the parasite’s development and 
malaria pathogenesis by regulating various cellular pro-
cesses and pathways critical for the pathogen’s survival 
in the human host [69]. This phenomenon usually hap-
pens as a result of post-translational modifications within 
the biological system through processes such as tran-
scriptional regulation and cell cycle progression [66]. 
For example, the protein is responsible for the positive 
regulation of DNA-templated transcription and epige-
netic factors such as histone H3-K4 methylation, essen-
tial for transcription regulation [65]. Interestingly, studies 
have shown that inhibition of the activities of C6KTB7 
and the ubiquitin–proteasome system has the poten-
tial for many disease treatments including P. falciparum 
malaria [65, 68, 69]. Of note, the parasite candidate pro-
teins are essential during specific developmental stages. 
For instance, Aminake et al. [68] explored the role of the 
proteasome of P. falciparum for malaria drug research 
and revealed C6KTB7 as a component of the ubiquitin–
proteasome which could serve as a promising multi-stage 
(liver, blood, and transmission stages of the pathogen) 
target, thus a supporting results presented by Chung 
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et al. [70]. Additionally, Ponts et al. [65] showed that pro-
teins involved in the ubiquitylation pathway including 
the ubiquitin ligases (E3) such as C6KTB7 (PFF1365c) 
influence parasite virulence, thus targeting such a path-
way may represent new therapeutic targets for apicom-
plexan parasites, such as P. falciparum. This suggests 
that inhibiting parasite adaptation to the ubiquitylation 
pathway and the proteins involved (including putative E3 
ubiquitin-protein ligase protein PFF1365c (C6KTB7)) is 
important for malaria drug research [65, 68]. C6KTD2 
is a possible candidate for effective malaria vaccine 
development [67]. The protein plays an essential role in 
chromatin structure, protein domain-specific binding. 
and gene expression in the parasite [35, 71]. Also, it is 
mainly involved in the histone lysine methylation post-
translational modification process (GO: 0051568) which 
usually involves the synergistic effect of histone-lysine 
methyltransferases and histone lysine demethylases [71, 
72]. A gene knock-out study conducted by Jian et al. [73] 
revealed that C6KTD2 is essential particularly during 
the blood stage of the parasite, thus targeting it in drug 
research is important. Interactome analysis on the host 
functional network revealed (P22301 (IL10), P05362 
(ICAM1), P01375 (TNF), P30480 (HLA-B), P16284 
(PECAM1), O00206 (TLR4)) as key targets. These host 
candidate key proteins are involved in immune response 
and resistance against malaria infection including severe 
and cerebral malaria, thus, critical targets for adjunctive 
and antibody-based host-directed therapy for malaria 
control [74–76]. Importantly, studies have shown the 
need to complement artemisinin derivatives with host-
directed therapy involved in immune modulation to help 
effectively control and treat severe malaria and cerebral 
malaria [77]. This may contribute significantly to improve 
treatment efficacy, reduce disease-associated complex-
ity, reduce malaria-associated mortality and morbidity 
as well as slow artemisinin resistance development. In 
both the parasite and host-parasite functional network, 
the functional interactions between hubs formed by 
C6KTD2 and C6KTB7 were identified (Fig.  2B). This 
finding suggests the functional relatedness of these pro-
teins and their modularity within the parasite to jointly 
regulate post-translational modification processes. Hav-
ing established that nodes within a cluster might be 
involved in the same biological process, it is, therefore, 
possible that these key proteins within the clusters con-
tribute significantly to similar processes [78].

23 significantly enriched malaria-related biological 
processes described in (Table  3) were identified. These 
gene ontology groups comprised of those involved in 
cell immune and inflammatory responses, regulation 
and production of transcription factors, biosynthetic 
processes, cell–cell adhesion, cell signalling, and cell 

apoptotic processes. Positive regulation of NIK/NF-kap-
paB signalling (GO:0042346) process responsible for the 
regulation of NF-kappaB importation has been studied to 
be involved in immune and inflammatory responses, par-
ticularly in eukaryotic cells. Down or negative regulation 
of NF-kappaB has been reported to be associated with 
P. falciparum-modulated endothelium transcriptome 
contributing to cerebral malaria [79]. Positive regulation 
of the MHC class II biosynthetic process (GO:0045348) 
process has been shown to regulate immune response to 
malaria [80]. Pre-erythrocytic immunity to malaria (cer-
ebral malaria) is linked to MHC antigens such that vari-
ations in class I and class II in these antigens contribute 
significantly to malaria susceptibility thus, reduced, or 
increased host immune response [80]. Also, other pro-
cesses such as negative regulation of interferon-gamma 
production (GO:0032689), negative regulation of inter-
leukin-6 production (GO:0032715), negative regula-
tion of cytokine secretion involved in immune response 
(GO:0002740), and positive regulation of interferon-
gamma production (GO:0032729) serves as immu-
nological mediating processes that influence disease 
susceptibility by either conferring protection or influenc-
ing disease progress. Activation and regulation of NLRP3 
inflammasomes, immune system receptors, controls 
the activation of caspase-1 and induce inflammation in 
response to infectious pathogens [81]. Due to their influ-
ence on a wide range of diseases, their dysfunction results 
in the initiation or progression of diseases. Endothelial 
cell apoptosis has been studied to contribute to malaria 
severity. For instance, haem-induced microvasculature 
endothelial cell apoptosis mediated by proinflammatory 
and proapoptotic pathways contributes significantly to 
severe malaria.

In addition, the pathways of immune tolerance and 
potential resistance development among the host and 
pathogen key targets were investigated by analysing the 
shortest paths between these genes within the host–P. 
falciparum functional network. The results showed that 
these shortest paths between the candidate genes or pro-
teins are mediated by host genes involved in cell regula-
tory activities and general cell integrity.

Shortest path analysis further revealed human 
immune-related genes and pathways that could be over-
whelmed by the pathogen, knowing that the pathol-
ogy of malaria is immune-mediated and inflammatory 
response-driven. Such inhibition could result in reduced 
anti-inflammatory responses thus limiting the produc-
tion and possible cytopathic effects of cytokines [82]. 
The analysis revealed potential pathways between host 
malaria-associated candidate key protein O00206 (Toll-
like receptor 4, TLR4) and pathogen proteins C6KTB7 
(Putative E3 ubiquitin-protein ligase protein PFF1365c) 
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and C6KTD2 (Putative histone-lysine N-methyltrans-
ferase 1, SET1) that could account for unrestrained par-
asite growth and severe complications. Experimental 
findings have revealed that activation of TLRs induces 
the production of nitric oxide and synthesis of pro-
inflammatory cytokines, such as TNF and IL-1β [50, 83]. 
Of note, activation of TLR4 induces macrophage release 

of pro-inflammatory mediators, such as TNF and nitric 
oxide [50, 83]. It also induces the expression of adhesion 
molecules on endothelial cells [50]. This may suggest that 
PECAM1, ICAM1, and TNF are from the downstream 
signalling cascade generated by TLR4 [83].

Severe malaria is associated with an increased level of 
pro-inflammatory cytokines (T helper 1 (Th1) cytokines) 

Fig. 4 A Functional interactions between C6KTD2 and C6KTB7 subnetwork in the unified host–pathogen functional network. The shared 
host proteins (yellow nodes) are involved in protein ubiquitination, positive regulation of cell apoptotic process, signal transduction, regulatory 
processes, and histone methylation. B Predicted shortest path network that could influence resistance and parasite adaptiveness between C6KTB7 
(green node) and O00206 (bottom sky blue node) via co–targets (central sky blue nodes) in the host–pathogen network. C Predicted shortest 
path network that could influence resistance and parasite adaptiveness between C6KTD2 (green node) and O00206 (bottom sky blue node) via 
mediators (central sky blue nodes) in the host–pathogen network
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such as interleukin (IL)-12, IL-8, and interferon (IFN)-γ 
in the affected person which helps to modulate defence 
against the infection and limit disease progression [59, 
82]. This is attributed to the fact that the severity of 
malaria is proportional to the flawlessness in the host 
inflammatory response.

TLR4, a pathogen-recognition receptor, detects path-
ogen-associated molecular mechanisms in the body and 
initiates immune response through activation of signal-
ling cascades such as nuclear factorkB, mitogen-activated 
protein kinase (MAPK), and Plasmodium antigens [59]. 
TLR4 and its immune-related signalling pathways have 
been reported to contribute significantly to P. falciparum 
growth and malaria pathogenesis, such that dysregula-
tion and dysfunction of the gene increase malaria sever-
ity, symptomatic malaria, severe malaria anaemia, and 
resistance in Africa [84]. This suggests that deleterious 
activation of TLR4 by C6KTB7 and C6KTD2 will signifi-
cantly contribute to parasite survival and disease suscep-
tibility thereby causing severe pathological conditions.

Finally, a semantic similarity approach was imple-
mented to identify 113 diseases like malaria (Additional 
file  8: Table  S5) that facilitated the prediction of 26 
potential repurposable drug hits, spanning across anti-
malarials, monoclonal antibodies, immunomodulators, 
herbs, natural products, Janus kinase inhibitors, and 
thrombolytic agents, that can be computationally and 
experimentally modified for parasite or host-directed 
malaria treatment. Drug hits for each category were 

ranked based on the enriched similarity score. The results 
revealed certolizumab pegol and golimumab as hits for 
the monoclonal antibody category, pomalidomide for 
the immunomodulator category, ginseng for the herbs 
and natural product category, ruxolitinib for the Janus 
kinase inhibitors, anistreplase for the thrombolytic agent 
category, and chloroquine for the anti-malarial category. 
Additional file  9: Table  S6 describes the known activity 
and the original therapeutic purpose of the potentially 
repurposable drugs identified.

Conclusions
With the gradual emergence and spread of malaria drug 
resistance, considering other potential drug targets and 
drug candidates are essential to increase the longev-
ity of existing drugs as well as develop alternative treat-
ment options. In this research, integrative computational 
methods were leveraged to (1) predict potential drug 
targets for both human host and pathogen-directed drug 
discovery, (2) predict drug candidates that could be re-
engineered for malaria treatment and, (3) identify biolog-
ical processes and pathways that could be overwhelmed 
by the pathogen to increase within-host survival.

The analysis revealed that repurposable drugs involved 
in regulating host immune response to inflammatory-
driven disorders and/or inhibiting residual malaria infec-
tion may enable appropriate malaria treatment. Of note, 
the potential to treat malaria using inhibitors or drugs 
that target the proteasome component and/or proteins 

Fig. 4 continued



Page 17 of 20Agamah et al. Malar J          (2021) 20:421  

involved in the parasite’s post-translational modification 
such as C6KTB7 and C6KTD2 have been established. 
However, exploring these targets for drug and vaccine 
development is yet to be fully achieved. Both C6KTD2 
and C6KTB7 proteins have no crystallized structure yet, 
but the availability of other homologs could be explored 
using homology modelling approach to model the pro-
teins. The generated homology models could be the start-
ing point for novel drug discovery and structure-based 
studies to identify potential inhibitors. Additionally, the 
host protein targets predicted have solved structures that 
can be harnessed for structure-based drug discovery to 
identify potential inhibitors for malaria research.

In summary, the uniqueness of the integrative network 
framework lies in the input datasets, scoring metrics/
schemes, clustering algorithm, and the criteria defined 
for the various analysis which translates into the findings 
from this study. The integrative network-based approach 
incorporates interologs, sequence blast interactions, and 
protein–protein interaction data from the literature, as 
well as the STRING, IntAct, MINT, and BIOGRID data-
bases. In addition, the network approach implements 
a scalable hierarchical agglomerative clustering model, 
based on modularity optimization, to cluster the net-
work into communities by leveraging candidate genes. 
This is then followed by network topology analysis to 
evaluate the topological features (degree, betweenness, 
and closeness) of the malaria candidate genes to identify 
hubs genes/proteins. The semantic similarity measures 
implemented coupled with literature evidence helped to 
identify diseases similar to malaria and potential repur-
posable drug candidates.

Like other computational approaches which need 
validation through further functional study, our find-
ings presented can inform functional study for potential 
experimental and clinical validation. Extended computa-
tional analysis of this work would consider incorporating 
non-reviewed protein data, other omics level datasets, 
and drug-drug interaction information.
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