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Abstract 

Background:  Plasmodium falciparum resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine (SP) has histori-
cally posed a major threat to malaria control throughout the world. The country of Angola officially replaced CQ with 
artemisinin-based combination therapy (ACT) as a first-line treatment in 2006, but malaria cases and deaths have 
recently been rising. Many classic resistance mutations are relevant for the efficacy of currently available drugs, mak-
ing it important to continue monitoring their frequency in Angola.

Methods:  Plasmodium falciparum DNA was sampled from the blood of 50 hospital patients in Cabinda, Angola from 
October-December of 2018. Each infection was genotyped for 13 alleles in the genes crt, mdr1, dhps, dhfr, and kelch13, 
which are collectively involved in resistance to six common anti-malarials. To compare frequency patterns over time, P. 
falciparum genotype data were also collated from studies published from across Angola in the last two decades.

Results:  The two most important alleles for CQ resistance, crt 76T and mdr1 86Y, were found at respective frequen-
cies of 71.4% and 6.5%. Historical data suggest that mdr1 N86 has been steadily replacing 86Y throughout Angola in 
the last decade, while the frequency of crt 76T has been more variable across studies. Over a third of new samples 
from Cabinda were ‘quintuple mutants’ for SP resistance in dhfr/dhps, with a sixth mutation at dhps A581G present 
at 9.6% frequency. The markers dhfr 51I, dhfr 108N, and dhps 437G have been nearly fixed in Angola since the early 
2000s, whereas dhfr 59R may have risen to high frequency more recently. Finally, no non-synonymous polymorphisms 
were detected in kelch13, which is involved in artemisinin resistance in Southeast Asia.

Conclusions:  Genetic markers of P. falciparum resistance to CQ are likely declining in frequency in Angola, consist-
ent with the official discontinuation of CQ in 2006. The high frequency of multiple genetic markers of SP resistance is 
consistent with the continued public and private use of SP. In the future, more complete haplotype data from mdr1, 
dhfr, and dhps will be critical for understanding the changing efficacy of multiple anti-malarial drugs. These data can 
be used to support effective drug policy decisions in Angola.
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Background
Anti-malarial drugs have long been important tools for 
malaria control [1]. However, their efficacy is constantly 

threatened by the evolution of drug resistance in Plas-
modium falciparum [2]. Multiple P. falciparum genes are 
involved in drug resistance, and selection of them varies 
by allele, genetic background, and drug environment [3–
5]. Therefore, frequent monitoring of resistance alleles is 
crucial to predicting the spread of drug resistance. This 
is especially true in the West African country of Angola, 
where malaria cases and deaths are on the rise [6].
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The first anti-malarial drug to enjoy widespread use 
in Angola was chloroquine (CQ) in the 1950s [7]. CQ 
resistance was first confirmed in Angola in the 1980s, 
and by the early 2000s, CQ failure rates exceeded 80% 
[8, 9]. As a result, CQ was discontinued in Angola in 
favour of artemisinin-based combination therapy (ACT) 
starting in 2006 [6]. To discourage the evolution of arte-
misinin resistance, artemisinin is used in combination 
with the longer-acting partner drugs lumefantrine or 
amodiaquine, which is chemically related to CQ [10]. 
Artemisinin resistance has not yet appeared in Angola, 
although many partially resistant kelch13 mutations have 
emerged in Southeast Asia [5, 11]. Nonetheless, occa-
sional ACT failures have been reported in Angola that 
could be due to partner drug resistance [6, 12].

Strong P. falciparum resistance to CQ and amodiaquine 
is caused by crt 76T, a lysine to threonine substitution 
at codon 76 of the chloroquine resistance transporter 
(Table 1). A meta-analysis found this allele to be 7.2-fold 
overrepresented in CQ treatment failures [13], reflect-
ing its selection by CQ and amodiaquine in many clinical 
studies (Table 1). In Angola, 76T is typically found on the 
haplotype crt 72–76 CVIET, which is of Asian origin [14]. 
CQ resistance has also evolved independently through 
the haplotype crt 72–76 SVMNT in South America and 
Papua New Guinea [15].

The 86Y allele of mdr1, or multidrug resistance gene 
1, also confers resistance to CQ and amodiaquine [13]. 
Although this specific polymorphism dominated early 

studies of mdr1 and CQ resistance, the evolution of mdr1 
is complicated by linkage between position 86 and other 
functional polymorphisms [16]. Precise mdr1 haplotypes 
vary among P. falciparum populations and drug settings, 
but in Angola alone, at least six alleles at three mdr1 
positions have been proposed to modulate resistance to 
CQ, amodiaquine, and lumefantrine (Table 1, Additional 
file 1: Table S1).

The drug sulfadoxine-pyrimethamine (SP) has also 
been in widespread use in many African countries since 
the 1960s [17]. Plasmodium falciparum quickly began 
evolving partial resistance to SP, mediated by numerous 
substitutions in dhps and dhfr [18]. The risk of SP treat-
ment failure increases with the number of mutant alleles 
present, with “quintuple mutants” at codons 437/540 of 
dhps and codons 51/59/108 of dhfr of particular concern 
[19–21]. By the early 2000s, these alleles were common in 
Angola and 25–39% of P. falciparum infections failed to 
respond to SP treatment [9]. SP has since been discontin-
ued as a first-line therapy in Angola, but it is still available 
at private pharmacies [22], where it comprised 10–40% of 
all anti-malarial sales in Huambo between 2009 and 2013 
[23]. Intermittent, preventative SP is also recommended 
for pregnant women in Angola [24], although data from 
2015 to 2016 indicate that only 30–40% of pregnant 
women actually received it during prenatal visits [25]. In 
other African countries, additional dhps mutations are 
emerging that appear to threaten the efficacy of SP treat-
ment [26, 27]. It is, therefore, critical to continue moni-
toring genetic variation in dhfr and dhps.

In this work, 50 P. falciparum infections from Cabinda, 
Angola were genotyped for 13 markers of drug resistance 
in the genes crt, mdr1, dhps, dhfr, and kelch13. Similar 
data were also gathered from studies published on Ango-
lan P. falciparum in the last two decades. For every gene 
but kelch13, the observed temporal patterns of allele fre-
quency change are consistent with the current usage and 
availability of anti-malarial drugs. This work can inform 
future decisions on drug administration in Angola.

Methods
Sample collection and ethics statement
Patients reporting to the Hospital Regional de Cabinda 
between October and December 2018 with fever, chills, 
or other malaria symptoms were offered the option to be 
consented to this study. Sample collection followed pro-
tocols approved by Stanford University (IRB #39149) and 
the Medical Ethics Committee of the University 11th of 
November in Cabinda. In all, 8 children under 5  years, 
14 children under 18  years, and 28 adults between 18 
and 55  years were consented to participate. Partici-
pants’ blood was drawn from a vein and screened under 
a microscope for P. falciparum parasites. Parasitaemia 

Table 1  Alleles of P. falciparum genes crt and mdr1 that are 
selected in the presence of chloroquine amodiaquine and 
lumefantrine

Numbers in the header indicate amino acid position. Incomplete haplotypes for 
mdr1 are shown as reported in the literature, though in most cases the causal 
alleles are unclear. Additional details and references are available in Additional 
file 1: Table S1
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was determined for adult participants and ranged from 
1,787–35,424 (mean: 13,617) parasites/uL. All positive, 
whole blood samples were filtered through cellulose 
columns to remove leukocytes [28], and the filtered red 
blood cells were spotted on Whatman FTA cards (Sigma 
Aldrich), dried, and stored for at least 6 months.

DNA extraction and genotyping
To elute DNA, saturated circles were cut out of the 
Whatman FTA cards and incubated in 800 uL TE buffer 
(10 mM Tris–Cl, 1 mM EDTA, pH 8.0) with 20 uL Pro-
teinase K (Invitrogen) for 2 h at 65 °C. DNA was extracted 
from the liquid supernatant using a phenol–chloroform 
protocol with phase-lock gel tubes [29].

PCR amplification of the P. falciparum genes crt, 
mdr1, dhfr, dphs, and kelch13 was performed with previ-
ously published primers [30–32]. Cycling protocols were 
based on manufacturer recommendations for OneTaq 
Hot Start 2X Master Mix (NEB) and/or Phusion High-
Fidelity PCR Master Mix with HF Buffer (NEB) (Addi-
tional file  2: Table  S2). Reactions were visualized in 1% 
agarose gels, and if successful, cleaned with ExoSAP-IT 
(ThermoFisher) and Sanger sequenced (Elim Bio). Sanger 
chromatogram data were compared to PlasmoDB refer-
ence P. falciparum sequences using Benchling. Analysis 
was focused on amino acid substitutions in the following 
positions: mdr1 N86Y, Y184F, and D1246Y; crt CMNVK 
72–76 CVIET; dhfr C50G, N51I, C59R, and S108N; dhps 
S436A, A437G, K540E, and A581E. For kelch13, the 
entire amplified fragment spanning codons 389–649 was 
examined for polymorphisms.

Mixed infections and allele frequency calculations
For each sample, a mixed infection was inferred if the 
sequencing chromatogram showed equally sized, double 
peaks for any of the 13 analysed loci. The frequency of 
each allele was determined based on the total number of 
infections, with single infections contributing one geno-
type and mixed infections contributing two. These calcu-
lations are available in Additional file 5: Table S5. The 43 
samples without missing data at dhfr or dhps were also 
assessed for the presence of seven SP-resistance alleles 
(dhfr-51I, dhfr-59R, dhfr-108N, dhps-436A, dhps-437G, 
dhps-540E, dhps-581G) [33, 34].

Collection of historical data
Publications reporting the prevalence of drug-resistance 
loci anywhere in Angola since 1995 were gathered from 
a recent review [7] and from the Worldwide Antimalarial 
Resistance Network (WWARN) Molecular Surveyor tool 
(http://​www.​wwarn.​org/​molec​ulars​urvey​or/). To avoid 
biases imposed by drug selection, studies were excluded 
if they selected samples for genotyping based on later 

treatment failure. In cases where details on mixed infec-
tions were provided, the original data were used to cal-
culate allele frequencies as described above; other cases 
were treated as having 0 mixed infections. These calcula-
tions are available in Additional file 5: Table S5.

Results
Genotyping success and mixed infections
Each sample was successfully genotyped at an average of 
12 out of 13 loci (Additional file 3: Table S3). The kelch13 
locus had the highest success rate (100%), while crt had 
the lowest success rate (78%). The crt primers used here 
have performed well on other Angolan samples [30], but 
in this cohort, even the nested protocol amplified prod-
ucts of multiple sizes (Additional file 6: Fig. S1). Fifteen 
of 50 samples had sequence diversity (i.e., peaks of two 
bases) in at least one resistance marker site, indicating 
the presence of at least two genetically distinct strains.

Very little polymorphism in kelch13
Across the amplified kelch13 fragment, which spanned 
codons 389–649, only one synonymous polymorphism 
(R471R) was observed in one sample. No kelch13 poly-
morphisms were observed at any sequenced codons that 
have been linked to delayed parasite clearance in the 
presence of artemisinin by a recent meta-analysis by the 
Worldwide Antimalarial Resistance Network (WWARN) 
[35].

Markers of CQ resistance in crt and mdr1
The crt 72–76 CVIET haplotype, which confers strong 
resistance to CQ, was detected in 73% of single isolates in 
this study (Table 2). Using a definition of allele frequency 
that incorporates mixed isolates (Methods; Additional 
file  5: Table  S5), 76T was estimated to occur at 70.7% 
frequency in Cabinda in 2018 (Table 3). In contrast, ear-
lier data from four other Angolan provinces collected 
between 2004 and 2011 indicated 76T at 89–97% fre-
quency (Table 3). Later studies of Chinese migrant work-
ers, sampled from unspecified locations within Angola 
in 2013 and 2014, estimated the frequency of 76T to be 
between 30 and 44%. Overall, despite appreciable varia-
tion across studies and sites, crt 76T appeared to be rarer 
in Angola in the 2010s than it was in the 2000s (Table 3). 

The mdr1 allele 86Y, which also confers resistance 
to CQ, was detected in just 7.8% of single infections in 
Cabinda in 2018 (Table 2) and had an allele frequency of 
6.5% when also considering mixed infections (Table  4). 
Accordingly, the alternate allele N86—which is associated 
with both CQ-sensitivity and artemether-lumefantrine 
(AL) treatment failure (Table 1)—had an allele frequency 
of 93.5% (Table 4). The linked polymorphism mdr1 184F 
was present at 44.0% frequency (Table 4). These estimates 

http://www.wwarn.org/molecularsurveyor/
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are substantially higher than those from all other studies 
conducted in Angola in the last 15 years (Table 4), which 
together suggest an increase of N86 and perhaps 184F 
across multiple sites over time. A single isolate from Cab-
inda in 2018 also contained the additional CQ-resistance 
allele mdr1 1246Y (Table 1), which occurred on an 86Y/
Y184 background (Table 2).

Multiple markers of SP resistance are common in Angola
Over one third (37.5%) of P. falciparum isolates sam-
pled here were “quintuple mutants” for five dhfr and 
dhps alleles that confer strong SP resistance (IRNS-
GEA, Table  2). For comparison, this haplotype was not 
observed among 66 samples collected in Uíge in 2004 
[36], and was present in only 11.6% of samples from 
migrant workers collected between 2013–2016 [37]. A 
different set of five markers (IRNAGKA) was found in 
15.6% of isolates in this study, while 43.7% contained 
four markers (IRNSGKA or ICNAGKA). No infection 
contained three or fewer markers (Table  2). One single 
infection contained six markers (IRNAGKG), as did two 
mixed infections (Additional file  3: Table  S3); however, 
the 436A allele present on these haplotypes is considered 
less important for SP resistance than 540E [34], which 
was observed only in the canonical “quintuple” mutant 
(Table 2).

It was not straightforward to compare the prevalence 
of dhfr and dhps haplotypes across studies, due to incon-
sistencies in which amino acids were reported; how miss-
ing data were treated; and the relatively common practice 
of reporting dhfr and dhps haplotypes separately (Table 5; 
Additional file  4: Table  S4). With these caveats, how-
ever, it was possible to examine the frequencies of indi-
vidual amino acid variants in Angola over time (Table 5). 
Almost every study conducted between 2004 and 2018 
found the mutant alleles dhfr 51I, dhfr 108N, and dhps 
437G at high frequencies (85–99%, Table  5), consistent 
with constant selective pressure from continued use of 
SP. The mutant alleles dhfr 59R, dhps 581G, and espe-
cially dhps 540E were also detected at their highest fre-
quencies within the most recent sample from Cabinda. 
However, only the data for dhfr 59R were consistent with 
the steady rise of the mutant allele over time in multiple 
parts of the country (Table 5).

Table 2  Prevalence of P. falciparum drug resistance marker 
haplotypes in Cabinda, Angola in 2018

Only single infections with complete haplotype data contribute to the 
prevalence estimates shown here. Additional data for mixed infections and 
partial haplotypes are available in Additional file 3: Table S3. For dhfr/dhps, 
amino acids associated with SP resistance [33, 34] are indicated in bold text with 
the total number of resistance alleles per haplotype in parentheses. See Table 1 
for how crt and mdr1 markers correspond to sensitivity to different drugs

N Prevalence

crt 72–76

 CVIET 27 73.0%

 CVMNK 10 27.0%

 Mixed 2 –

 Missing 11 –

mdr1 86-184-1246

 NYD 21 55.3%

 NFD 14 36.8%

 YFD 1 2.6%

 YYD 1 2.6%

 YYY​ 1 2.6%

 Mixed 4 –

 Missing 8 –

dhfr/dhps 51-59-108/436-437-540–581

 IRNSGKA (4) 13 40.6%

 IRNSGEA (5) 12 37.5%

 IRNAGKA (5) 5 15.6%

 ICNAGKA (4) 1 3.1%

 IRNAGKG (6) 1 3.1%

 Mixed 11 –

 Missing 7 –

Table 3  Frequency of the CQ-resistant crt 76T allele in Angola since the early 2000s

Each allele frequency was re-calculated from published prevalence data to include mixed infections whenever possible (see Additional file 5: Table S5)

Year 76T Province Recruitment Notes Ref

2004 93.9% Uíge Children 4–108 months in hospital emergency unit – [36]

2007 93.9% Luanda Children 1–16 years with uncomplicated malaria in hospital Year approximate [54]

2007 97.1% Luanda Adults > 18 years with uncomplicated malaria 76T primarily on SVMNT haplotype [30]

2010 50.7% Bengo Baseline prevalence survey in women and children – [55]

2010–11 88.9% Benguela Random household survey of children < 15 years Mixed infections not mentioned [56]

2012–14 44.4% – Migrant workers returning to China – [57]

2012–15 29.9% – Migrant workers returning to China – [58]

2012–16 38.1% – Migrant workers returning to China Mixed infections not mentioned [59]

2018 70.7% Cabinda Adults and children in hospital – This study
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Discussion
Discontinuation of CQ in several African countries 
including Malawi, the Gambia, Kenya, Ethiopia, Tanza-
nia, and Grand Comore has led to major declines of crt 
76T [38–43], the most important allele for CQ resist-
ance in P. falciparum. Six studies conducted in Angola 
since 2010 similarly found reduced frequencies of crt 76T 
compared to the early 2000s (Table 3). However, precise 
frequency estimates have ranged widely among studies 
(30–89%, Table  3), perhaps because of local differences 
in anti-malarial use or parasite diversity. CQ is still avail-
able in some Angolan pharmacies, although it comprised 
fewer than 1% of sales in Huambo between 2009 and 
2013 [23]. Another important source of selection could 
be the ACT partner drug amodiaquine (Table 1), which 
is found in one of two artemisinin-based combinations 
currently implemented in Angola. More information on 
anti-malarial drug usage across the country, as well as 
continued genetic monitoring of P. falciparum, will be 
useful for understanding the evolution of crt in Angola.

Discontinuation of CQ in Grand Comore and the Gam-
bia also preceded the decline of mdr1 86Y [38, 40], the 
second most important allele for CQ resistance in P. falci-
parum. Several studies from across Angola are consistent 
with a steady decline of 86Y after 2007, with the excep-
tion of a 2011 household survey in Benguela (Table  4). 
One possible explanation for the faster loss of mdr1 

86Y, as opposed to crt 76T, could be that mdr1 N86 or 
its linked alleles are involved in low-level lumefantrine 
resistance (Table  1; Table  S1). Lumefantrine is a com-
ponent of artemether-lumefantrine (AL), the most com-
mon ACT currently implemented in Angola [6, 44]. Since 
2013, three large studies have reported that AL treatment 
efficacy in Zaire or Lunda Sul fell below the WHO stand-
ard of 90% [12, 45, 46]. These treatment failures have 
been interpreted as signs of decreased susceptibility to 
lumefantrine in the parasite population [12], although 
the genetic basis of lumefantrine resistance has yet to be 
conclusively demonstrated and could involve multiple 
loci. Further studies on the mechanisms of lumefantrine 
tolerance in P. falciparum will be key to enabling molecu-
lar monitoring in the future.

In contrast to markers of CQ resistance, markers of 
SP resistance have been on the rise in several African 
countries [40, 41, 47–49] where SP is used for malaria 
treatment and prevention. In Angola, the available data 
suggest a rapid increase in the prevalence of SP-resistant 
“quintuple mutants” in dhfr/dhps between 2004 (0%) 
[36], 2013–2016 (11.6%) [37], and 2018 (Table 2, 37.5%). 
This increase could be partially driven by the rise of one 
particular marker, dhfr 59R (Table  5), although dhfr/
dhps genetic diversity may also vary among sites [50]. 
In Angola, it is likely that unregulated consumer use 
of SP [22, 23] and use of SP for intermittent preventive 

Table 4  Frequencies of P. falciparum drug resistance markers in mdr1 in Angola since the early 2000s

Each allele frequency was re-calculated from published prevalence data to include mixed infections whenever possible (see Additional file 5: Table S5)

Year 86Y 184F Province Recruitment Notes Ref

2003 73.3% – Luanda (+ São Tomé) Travellers returning to Portugal Year approximate; mixed infections 
reported as dominant allele

[60]

2004 51.7% – Uíge Children 4–108 months in hospital emer-
gency unit

- [36]

2007 64.8% – Luanda Children 1–16 years with uncomplicated 
malaria in hospital

Year approximate [54]

2007 65.5% 17.9% Luanda Adults > 18 years with uncomplicated 
malaria

Frequent failures to amplify mdr1 [30]

2010 27.8% 34.8% Bengo Baseline prevalence survey in women and 
children

- [55]

2010–2011 53.7% 14.8% Benguela Random household survey of chil-
dren < 15 years

Mixed infections not mentioned [56]

2010–2013 24.5% – Luanda Adults and children > 6 months with 
uncomplicated malaria in health care 
units

- [62]

2012–2016 14.4% – – Migrant workers returning to China Mixed infections not mentioned [59]

2015 15.3% 31.5% Benguela, Lunda Sul, Zaire Children 6–108 months with uncompli-
cated malaria

Mixed infections reported as mutant [62]

2018 6.5% 44.0% Cabinda Adults and children in hospital - This study
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treatment in pregnancy [51] are sources of selection for 
SP resistance. This situation should continue to be moni-
tored closely to avoid the eventual loss of important SP 
benefits during pregnancy [27, 52]. In the future, com-
plete reporting of haplotype information for all combined 
dhfr/dhps alleles in each P. falciparum infection (e.g. 
Additional file 3: Table S3) will help accomplish this goal.

These interpretations of allele frequency change in 
Angola over time are subject to a number of limitations. 
First, the historical data were drawn from studies con-
ducted in several geographical locations across Angola 
(Tables 3, 4, 5; Additional file 4: Table S4). Because prov-
inces vary in patterns of malaria transmission [6] and 
anti-malarial availability [22, 23], selection on resistance 
alleles is not expected to be uniform across the entire 
country. Second, each study varied in its sampling and 
many also varied in their reporting of mixed infections 
(Tables 3, 4, 5; Additional file 4: Table S4), which has the 
potential to reduce or inflate estimates of mutant allele 
frequencies. Third, several studies (including this one) 
provide data for a relatively limited number of subjects, 
which may also lead to biases in allele frequency esti-
mates. Despite these limitations, however, the appar-
ent trends of drug resistance alleles over time (Tables 3, 
4, 5) are consistent with the common usage of ACT and 
SP and discontinuation of CQ across Angola since the 
mid-2000s.

Finally, we detected no signs of alleles in kelch13 that 
confer partial resistance to artemisinin. This result is con-
sistent with the lack of evidence in Africa for the spread 
of alleles that diminish ACT efficacy, although some 
countries have recently reported the presence of vali-
dated markers [53]. Continued monitoring of kelch13 in 
Africa is important, as artemisinin remains the corner-
stone of anti-malarial drug policy in many countries.

Conclusions
Multiple drug resistance alleles in Angolan P. falcipa-
rum have experienced changes in frequency since CQ 
was officially discontinued in 2006. Markers of resistance 
to CQ appear to be declining, but markers of strong SP 
resistance and potential low-level lumefantrine resistance 
are rising. Continued monitoring and drug policy adjust-
ments will be necessary in the future to regain control of 
P. falciparum malaria in Angola.
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