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Abstract 

Background: Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced 
malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, 
pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the 
species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide 
resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used.

Methods: The study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses 
to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed 
resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-
eastern Tanzania and included four insecticide classes.

Findings: At baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and 
deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabien-
sis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one 
village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 
5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, pipero-
nyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility 
of An. arabiensis (> 98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after 
pre-exposure to PBO only exceeded 90% but not 98%.

Conclusions: In south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has 
much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecti-
cides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using 
synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite 
widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and 
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Background
Effective use of long-lasting insecticide-treated nets 
(LLINs) and indoor residual spraying (IRS) has tremen-
dously reduced malaria transmission in sub-Saharan 
Africa [1, 2]. Despite this reduction, malaria transmission 
continues in several areas, driven by mosquitoes that are 
either physiologically [3–5] or behaviourally resistant [6–
10] to current insecticide-based interventions. Resistance 
to commonly used pyrethroids has also necessitated a 
change of insecticide classes for IRS to either carbamates, 
organophosphates or more recently neonicotinoids 
approved by the World Health Organization (WHO) 
[11]. Similarly new insecticide-treated nets (ITNs) are 
being developed that contain either multiple insecticide 
classes [12] or pyrethroids and synergists [13, 14], and are 
expected to improve the control of resistant mosquitoes.

Mosquito resistance involves different mechanisms, 
through which they can withstand exposures to insec-
ticides. These include metabolic resistance, target-site 
resistance, behavioural resistance, and cuticular resist-
ance [15–17]. The discriminating concentration is used to 
evaluate the phenotypic resistance which when detected, 
the level of resistance can be subsequentlly determined 
by using intensity assays. The intensity assays uses the 
5× and 10× discriminating concentration in a stepwise 
manner aiming at providing the information on the range 
of resistance present in a target vector [18]. Mosquitoes 
that express metabolic forms of resistance produce large 
quantities of enzymes or alternate the enzyme catalytic 
centre to efficiently detoxify the insecticide. The spe-
cific enzymes include monooxygenases (i.e. cytochrome 
P450s), which detoxify pyrethroids and carbamates, glu-
tathione-S-transferases (GSTs), which detoxify organo-
chlorides like DDT [17], and esterases, which detoxify 
pyrethroids and organophosphates [19, 20]. The degree to 
which the enzymatic proteins are expressed, and the level 
of resistance can be assessed using quantitative polymer-
ase chain reaction (qPCR). Phenotypic assays use syner-
gists, such as piperonyl butoxide (PBO), which enhance 
the potency of an insecticide by inhibiting the enzymes 
responsible for the insecticide metabolism [21]. On the 
other hand, some mosquitoes may have one or multi-
ple target-site mutations due to modification of protein 
receptors usually targeted by insecticides (e.g. the volt-
age-gated sodium channels targeted by pyrethroids and 
organochlorides), thereby blocking or reducing the effec-
tiveness of the insecticides [22–24]. Recently, scientists 

have also demonstrated that a sensory appendage protein 
(SAP2) enriched in the legs of malaria-carrying mosqui-
toes can also confer resistance to insecticides, thus allow-
ing these mosquitoes to survive contact with ITNs [25].

Different Anopheles species have diverse levels of com-
petencies in pathogen transmission, and also respond 
different to interventions based on their behaviour and 
physiology [26, 27]. With the rise of insecticide resistance 
in the vector populations, the choice of interventions will 
depend on characteristics of the local vectors. Compre-
hensive understanding of the distribution and underly-
ing mechanisms of insecticide resistance is, therefore, 
important for planning and implementing vector control 
interventions.

In the villages of south-eastern Tanzania, where 
Anopheles funestus have been reported to be implicated 
in most of the ongoing malaria transmission [28–30], 
signs of resistance to most public health pesticides have 
been observed. Anopheles funestus also appears to sur-
vive longer than other co-existing vector species (parity 
rates are higher than Anopheles arabiensis) [28]. How-
ever, since the species is highly anthropophagic (prefers 
to blood-feed on humans over that of other vertebrates) 
[31, 32] and endophilic (prefers to bite indoors) [33], one 
would expect its populations and transmission activity to 
have been significantly reduced by ITNs now widely used 
in Tanzania for more than one decade [34–37]. Indeed, 
historical evidence from both East and Southern Africa 
suggests that effective insecticide-based indoor interven-
tions can eliminate An. funestus on a local scale [38, 39]. 
Anopheles gambiae sensu stricto (s.s.), which is generally 
considered the most competent malaria vector, shares 
similar behaviours with An. funestus, i.e. high degree of 
anthropophily and endophilly [31, 32, 40]. However, An. 
gambiae s.s. unlike An. funestus has been highly impacted 
by ITNs in Kenya and Tanzania [41–43].

An important question, therefore, is why and how An. 
funestus, despite being highly anthropophagic and endo-
philic, survived the ITN onslaught, and why it continues 
to mediate most malaria transmission in rural south-
eastern Tanzania despite co-occurrence with a different 
malaria vector species, An. arabiensis. One hypothesis 
has been that An. funestus expresses higher intensities 
of resistance to most of the commonly used insecticides 
in comparison to other malaria vectors and is, therefore, 
far less impacted by insecticidal interventions. A meta-
analysis of various datasets has verified this phenomenon 

medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still 
susceptible.
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at global scale [44], but specific field tests comparing 
resistance intensities in the different vector species are 
limited. As shown by Kaindoa et al. in a study conducted 
in south-eastern Tanzania, An. funestus was resistant 
to pyrethroids, organochlorides, and carbamates [28]. 
Another study from the same study area demonstrated 
that resistance of An. arabiensis to diagnostic insecti-
cide concentrations varied between nearby locations and 
seasons [45]. However, the intensity and mechanisms of 
these resistance phenotypes were not compared between 
species.

This study, therefore, compared the intensities and 
knockdown time of insecticide-resistance between the 
two main malaria vectors, An. funestus and An. arabi-
ensis, in rural south-eastern Tanzania. Potential involve-
ment of metabolic resistance and insecticide potency 
enhancement by Piperonyl Butoxide (PBO) synergists 
was also assessed.

Methods
Study site
Mosquito collections were done in three different vil-
lages, namely; Ikwambi (7.98033°S, 36.81701°E) and 
Sululu (8.00324°S, 36.83118°E) in Kilombero district, and 
Tulizamoyo village (8.35747°S, 36.70664°E) in Ulanga 
district, south-eastern Tanzania (Fig.  1). The main 
malaria vectors in this area include An. arabiensis and 

An. funestus, with the latter driving more than 80% of 
the malaria transmission [28, 29]. This area has had high 
coverage of pyrethroid-treated nets for several years, but 
no IRS is implemented. The villages are all in low altitude 
areas, rising not more than 500 m above sea level. Mean 
daily temperatures are 20–33  °C, annual rainfall, 1200–
1800  mm and relative humidity ranged between 24 and 
97% [46, 47]. Most community members here are farm-
ers, cultivating rice, maize and other crops in the Kil-
ombero river valley.

Mosquito collection
The WHO protocol for insecticide susceptibility tests 
[18] was used with slight modifications to conduct the 
basic bioassays and the resistance intensity assays. Since 
An. funestus mosquitoes were difficult to find as lar-
vae across all the study villages, young nulliparous adult 
females of both An. funestus and An. arabiensis were 
used instead of larval collections. Mosquitoes were col-
lected from September 2018 to November 2019 using 
CDC light traps [48]. Collections were done from 07.00 
p.m. to 07.00 a.m. each night. To maximize probabilities 
of getting young unfed nulliparous females, houses near 
the edges of the villages and near potential habitats were 
selected for collections, based on previously-described 
heterogeneity of malaria transmission [49].

Fig. 1 Locations of the study sites in Kilombero and Ulanga districts, where adult mosquito collections were performed
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The traps were hung beside human occupied bed nets 
[50], but with extended catch bags to improve survival 
of the mosquitoes for subsequent assays. Each morning, 
after collections, the mosquitoes were transported to the 
Ifakara Health Institute’s mosquito biology laboratory, 
VectorSphere, in Ifakara and maintained at 27 ± 2  °C 
and 80 ± 10% relative humidity for 24  h to acclimatize 
as previously described [45]. During the acclimatization 
period, mosquitoes were supplied with 10% glucose solu-
tion. The mosquitoes were identified morphologically 
using the Gillies and Coetzee identification key [51], and 
non-target species were discarded. Tests were conducted 
using only non-blood-fed An. funestus and An. arabiensis 
females.

Bioassays
This study involved three steps: (i) susceptibility assays to 
examine phonotypic resistance against standard insec-
ticide doses, (ii) tests to assess intensity of resistance 
against chemicals to which resistance had been detected 
at baseline level, and (iii) tests using synergists to assess 
possible mechanisms of the observed reistance.

Baseline insecticide susceptibility bioassays were done 
according to WHO guidelines [18]. Candidate insecti-
cides were selected from four classes as follows: organo-
phosphate (0.25% pirimiphos-methyl), organochloride 
(4% DDT), carbamate (0.1% bendiocarb), pyrethroid type 
I (0.75%, 3.75 and 7.5% permethrin) and pyrethroid type 
II (0.05%, 0.25 and 0.5% deltamethrin). In each test, 120 
mosquitoes were exposed to the insecticide-impregnated 
papers, and oil-impregnated papers as controls. Each test 
comprised six replicates (four treatments and two con-
trols) with the total of 120 mosquitoes. Mosquitoes were 
exposed for 1 h and the knockdown time recorded at an 
interval of 10, 15, 20, 30, 40, 50, 60 min. They were then 
transferred to holding tubes, provided with 10% glucose 
solution, and their mortality recorded after 24 h.

Where resistance was observed in the baseline assays 
with standard diagnostic doses (i.e. 1×), additional tests 
were done to assess intensities of the resistance using 
5× and 10× multiplicative doses of the insecticides. 
These included tests against 3.75% and 7.5% permethrin, 
and 0.25% and 0.5% deltamethrin. The procedures were 
similar to the baseline tests to assess the mortality.

Lastly, 4% Piperonyl Butoxide (PBO), a synergist, was 
used to assess the possible resistance mechanism by 
attempting to reverse the observed mortality outcomes 
[18]. Each test had four groups, each with 80 mosqui-
toes (in groups of 20), treated as follows: the first cohort 
was exposed to 4% PBO for one hour and immediately 
exposed to deltamethrin or permethrin for 60 min, a sec-
ond group was exposed directly to the respective insec-
ticides (i.e. deltamethrin, permethrin), a third group 

was exposed to the PBO only and the fourth group was 
exposed to control papers impregnated by silicone oil but 
no insecticide nor synergist. Given test kit limitations, 
the PBO tests were done only for pyrethroids.

Molecular identification of sibling species of the tested 
mosquitoes
Up to 10% of the mosquitoes from each bioassay were 
packed separately and labelled with information about 
experimental date, village name, type of insecticide, 
insecticide dose used, species of mosquito, replicate 
number and sample ID. The packed mosquitoes were 
sent to the laboratory for molecular species identification 
of sibling species in the An. funestus and An. gambiae s.l. 
complexes, using DNA extracted from the mosquito legs. 
Polymerase chain reaction assays were conducted based 
on species-specific nucleotide sequences of the ribo-
somal DNA (rDNA) by relying on the intergenic spacer 
regions (IGS) for An. gambiae sensu lato (s.l.) members 
and the non-coding internal transcribed spacer 2 region 
(ITS2) for An. funestus [52, 53]. DNA bands were pho-
tographed under ultraviolet light using Kodak Gel Logic 
100 imaging system [54].

Data analysis
The data on insecticide susceptibility was interpreted 
based on the WHO-specified thresholds for resistance 
determination [18]. Susceptibility was confirmed when 
mortality was ≥ 98%, possible resistance was determined 
when mortality ranged from 90 to 97%, in which case 
the tests were repeated for confirmation, and resistance 
was confirmed when mortality was < 90%. When mortal-
ity greater than 10% was observed in controls, the test 
mortality was corrected using Abbott’s formula to avoid 
the biased estimations [55]. Tests were discarded and 
repeated, whenever control mortality exceeded 20% [18]. 
Final results were plotted in graphs using R software ver-
sion 3.0 [56]. Log-probity analysis was used to calculate 
mean duration at which 50%  (KDT50) and 95%  (KDT95) 
of mosquitoes exposed to specific insecticides were 
knocked down.

Results
Phenotypic resistance at baseline insecticide 
concentrations
Both species were resistant to the pyrethroids (perme-
thrin and deltamethrin) and the organochloride (DDT), 
but susceptible to the organophosphate (pirimiphos-
methyl) at standard baseline doses (1×). There was gen-
eral susceptibility to the carbamate (bendiocarb) by 
both species across the study area, except in one of the 
villages, Tulizamoyo, where An. funestus were resistant 
to this insecticide. Anopheles funestus generally showed 
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lower mortalities to the insecticides in the baseline tests 
compared to An. arabiensis (Fig. 2).

Phenotypic resistance at 5 and 10 times baseline 
concentrations
Anopheles funestus populations from Ikwambi and Tuli-
zamoyo are resistant to both 5× and 10× concentrations 
of permethrin, but the same species from Sululu were 
susceptible to 10× permethrin concentrations (Fig.  3). 
For An. arabiensis on the other hand, resistance inten-
sity declined with increasing insecticide concentrations. 
Their resistance to pyrethroids was already overcome at 
5× doses in Ikwambi and Tulizamoyo villages, while the 
ones from Sululu village, which survived 5× doses, were 
overcome at 10× doses. At 10× doses, An. arabiensis 
from all the villages were completely susceptible to the 
two pyrethroids (Fig.  3). Because of the observed sus-
ceptibilities at baseline doses (Fig. 1), no intensity assays 
were done against pirimiphos-methyl or bendiocarb on 
either of the species.

Knockdown times (KDT)
Knockdown time for both mosquito species varied 
between insecticide and study villages. Consistently, the 
knockdown time slowed as the concentration increased 
for pyrethroid-exposed mosquitoes. Prolonged  KDT95 
(51–245  min) was observed to An. funestus exposed to 
pyrethroids compared to An. arabiensis (16–76  min), 
similar trend was observed on  KDT50. Furthermore, 
the lowest knockdown time was observed when the 

mosquitoes were exposed to bendiocarb both at  KDT50 
and  KDT95 for An. funestus and An. arabiensis (Table 1).

Effects of pre‑exposure to the synergist, PBO
Pre-exposure to the synergist, PBO, significantly reversed 
the pyrethroid resistance in both An. arabiensis and An. 
funestus. The PBO assays achieved mortalities > 98% in 
most cases, except for An. funestus populations from 
Sululu and Tulizamoyo villages, for which permethrin-
associated mortalities were reversed past 95%, but not 
98%. The synergist assays on An. arabiensis from all study 
areas demonstrated highest restoration of susceptibility 
(Fig. 4).

Molecular identification of species
After the bioassays, a total of 305 An. funestus and 144 
An. arabiensis were sent to the laboratory for sibling spe-
cies identification. Of all the An. funestus assessed, suc-
cessful PCR amplification was 76% (n = 233). Of those 
that amplified, 99% were An. funestus s.s. (n = 232), while 
one was amplified as Anopheles leesoni. For An. gam-
biae s.l. successful amplification was 92% (n = 132), all of 
which were identified as An. arabiensis. The rest did not 
amplify in the PCR assays (n = 12).

Discussion
In this study, both An. arabiensis and An. funestus were 
resistant to pyrethroids and DDT. However, An. funestus 
exhibited far lower mortalities when subjected to pyre-
throids at either the baseline concentration, five times 
concentration or the ten times concentration in the 

Fig. 2 Percentage mortality of Anopheles funestus (right) and Anopheles arabiensis (left) exposed to baseline concentrations of candidate 
insecticides. Red-dotted and blue-dotted intercepts represent 90% and 98% mortalities indicative of resistance or susceptibility, respectively
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intensity bioassays. This suggests that while An. funestus 
is strongly resistant to the pyrethroids, the level of resist-
ance in An. arabiensis was either low or moderate. This 
is the first study to directly compare resistance intensi-
ties of these two vectors in the area, and therefore pro-
vides important information on potential performance 
of current or future interventions against malaria. Given 
the differential contribution of the two vectors to overall 
transmission, their responsiveness to insecticidal inter-
ventions is an important factor for consideration in the 
elimination efforts.

Initial findings from standard WHO susceptibility 
assays by Kaindoa et  al. [28] and Matowo et  al. [45] on 
the two malaria vectors in the same study area observed 
that the baseline mortalities were higher in An. arabiensis 

than An. funestus. This was the initial indication that the 
intensity of resistance would be different between the 
two species, and necessitated additional tests accord-
ing to standard WHO assays [18]. The duration at which 
either 50% or 95% of mosquitoes would be knocked-
down varied between species, insecticides and study vil-
lages (Table 1).

Knock-down time was high when mosquitoes were 
exposed to standard concentrations of pyrethroids, but 
slowed as the concentrations increased. Since no kdr 
mutation tests were done, it is not possible to determine 
whether these observations were associated with the 
voltage-gated sodium channel protein mutation [57]. The 
slowest knockdown time was observed when the mos-
quito species were exposed to bendiocarb, these findings 

Fig. 3 Resistance intensity of Anopheles funestus (right) and Anopheles arabiensis (left) under 5× and 10× baseline concentration. Red-dotted and 
blue-dotted intercepts represent 90% and 98% mortalities, respectively
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still support the potency of the insecticide (Table  1). 
The new findings clearly demonstrate that An. funestus 
populations, despite being the more dominant vector of 
malaria in the area, would be much more difficult to con-
trol using current pyrethroid-based interventions, in par-
ticular the LLINs.

As demonstrated by Matowo et al. for both An. arabi-
ensis and Culex mosquitoes [45, 58], there were signs of 
fine-scale spatial variations in insecticide resistance. For 
example, An. funestus populations from Tulizamoyo were 
resistant to bendiocarb but populations of the same spe-
cies from the other two villages were susceptible to the 
same chemical (Fig.  2). Similarly, the mortality percent-
ages observed at 5× and 10× doses varied between the 
villages (Figs. 2, 3). This might be attributed to differences 
in the use of agricultural pesticides for crop protection 
in these villages [59]. Surprisingly, An. arabiensis from 
Ikwambi were 100% susceptible to DDT, against which 
both species from the other study villages were resistant 

(Fig.  2), which further suggests fine-scale spatial differ-
ences in resistance profiles.

The currently observed dominance of An. funestus is 
likely to be contributed by their well-documented resist-
ance to commonly used insecticides [28, 60–64], their 
high survival probabilities in the wild [28, 30] and high 
levels of anthropophily [28, 31, 33]. Its dominance in 
areas where insecticidal interventions such as ITNs are 
widely implemented is particularly surprising given that 
scale-up of ITNs has coincided with significant declines 
in populations of other anthropophilic vectors such as 
An. gambiae s.s. [41–43]. Today, in rural south-eastern 
Tanzania, An. funestus co-exists with other Anopheles 
species, namely An. arabiensis, An. leesoni, Anopheles 
coustani, Anopheles squamosus, Anopheles rivulorum 
and Anopheles pharoensis [28]. However, it is known to 
carry most of the ongoing malaria transmission, some-
time implicating to nearly nine in every ten new cases, 
even in areas where it occurs in lower densities than An. 

Table 1 The knockdown times of An. funestus and An. arabiensis mosquitoes at different insecticide concentrations

SE standard error, KDT50 time taken for 50% of the tested mosquitoes to be knocked-down, KDT95 time taken for 95% of the tested mosquitoes to be knocked-down

Insecticide Village Concentration An. arabiensis An. funestus

(Fold) KDT50 ± SE (min) KDT95 ± SE (min) KDT50 ± SE (min) KDT95 ± SE (min)

Deltamethrin Ikwambi 1× 40.87 ± 12.55 76.68 ± 30.88 77.35 ± 50.19 128.13 ± 111.12

5× 8.65 ± 6.70 23.34 ± 11.67 59.03 ± 22.43 99.19 ± 54.25

10× – – 39.06 ± 12.85 77.21 ± 32.73

Sululu 1× 38.81 ± 10.05 66.76 ± 21.76 86.39 ± 71.94 132.00 ± 146.02

5× 11.61 ± 13.10 47.08 ± 23.83 68.15 ± 39.38 124.38 ± 97.13

10× 8.63 ± 8.84 29.22 ± 15.50 45.94 ± 15.73 87.10 ± 41.42

Tulizamoyo 1× 31.30 ± 8.82 56.48 ± 18.01 152.37 ± 388.44 245.22 ± 702.53

5× 16.16 ± 5.75 29.99 ± 12.05 50.54 ± 19.60 96.49 ± 52.42

10× – – 52.53 ± 16.60 88.72 ± 40.44

Permethrin Ikwambi 1× 42.19 ± 10.82 71.25 ± 24.19 104.11 ± 124.69 177.35 ± 257.04

5× 6.97 ± 5.17 16.15 ± 7.61 37.62 ± 11.07 70.12 ± 25.75

10× – – 33.21 ± 11.87 71.14 ± 29.92

Sululu 1× 25.35 ± 9.05 52.67 ± 19.02 82.76 ± 61.03 130.09 ± 127.92

5× 4.05 ± 11.16 25.13 ± 15.64 33.26 ± 10.01 63.31 ± 22.11

10× 7.83 ± 5.64 18.93 ± 8.92 20.21 ± 10.21 51.82 ± 21.66

Tulizamoyo 1× 42.80 ± 11.56 73.95 ± 26.67 70.76 ± 41.28 124.31 ± 97.84

5× 6.98 ± 8.14 24.26 ± 13.34 38.32 ± 13.87 80.67 ± 37.66

10× – – 29.16 ± 8.61 53.82 ± 17.50

Pirimiphos-methyl Ikwambi 49.06 ± 9.51 70.40 ± 20.85 32.31 ± 6.62 46.15 ± 11.89

Sululu 1× 57.12 ± 10.92 75.62 ± 26.77 48.30 ± 7.54 64.09 ± 15.25

Tulizamoyo 53.08 ± 14.22 83.01 ± 33.48 34.03 ± 4.70 40.42 ± 7.92

DDT Ikwambi 44.82 ± 9.38 67.70 ± 19.65 97.77 ± 116.62 146.48 ± 222.68

Sululu 1× 55.00 ± 11.41 76.66 ± 27.24 72.33 ± 37.37 119.73 ± 82.09

Tulizamoyo 61.06 ± 23.07 99.04 ± 54.65 69.53 ± 35.24 113.72 ± 80.51

Bendiocarb Ikwambi 14.86 ± 4.43 24.27 ± 9.45 26.32 ± 6.75 42.21 ± 13.04

Sululu 1× 19.29 ± 4.37 27.23 ± 9.40 25.18 ± 4.92 33.00 ± 8.65

Tulizamoyo 16.74 ± 3.36 22.85 ± 7.14 40.42 ± 7.61 57.80 ± 14.09
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arabiensis [28, 29]. It was thus hypothesized that its dom-
inance may at least be partly driven by stronger insecti-
cide resistance levels to insecticides commonly used for 
public health, notably the pyrethroids used on bed nets.

As insecticide resistance increases across Africa, some 
populations have been observed to withstand up to 1000 
times the standard concentrations [65], making it an 
urgent need to find new classes or combinations of insec-
ticides [3–5, 17]. In areas where An. funestus is domi-
nant, such as in south-eastern Tanzania, the decisions 
on which insecticides to be implemented in vector con-
trol measures should reflect intensity of resistance in this 
species, even if it is difficult to find its larvae. Anopheles 
funestus were resistant up to ten times the WHO-recom-
mended concentration of pyrethroids, clearly indicating 
that this class of insecticides can no longer be useful in 
the area and must be urgently replaced by other classes 
such as organophosphates, against which resistance is 
not yet detected.

The synergist tests in this study showed complete 
or almost complete restoration of susceptibility in the 
malaria vector mosquitoes nearly from all study areas. 
This full restoration is a likely indicator of metabolic 
resistance [58, 66] and suggests that ITNs which have 
both PBO and pyrethroids, such as PermaNet 3.0 [14] 
and Olyset Plus [13], may be suitable for malaria pre-
vention in these areas, and could potentially provide 
better protection than standard LLINs [67]. Synergist 
pre-exposure combined with deltamethrin had a greater 
restoration in An. funestus than when the synergist was 
combined with permethrin (Fig.  4), but in both cases 

there was still substantial restoration. This could be likely 
due to different resistance levels against the two pyre-
throid classes as observed by Rakotoson et al. [68] when 
An. arabiensis were pre-exposed to PBO. Partial restora-
tion of susceptibility observed in An. funestus mosquitoes 
might be a sign of multiple metabolic resistance forms 
or other resistance mechanisms including the target-site 
mutation [69]. This could also be a manifestation of the 
demonstrated high intensities of pyrethroid resistance 
(Fig. 3). These findings are in line with the previous stud-
ies on the resistance of malaria vectors to pyrethroids and 
organochlorides and incomplete susceptibility restora-
tion after the synergist pre-exposure to pyrethroids [68]. 
Nonetheless, further exploration is needed to identify the 
specific metabolic enzymes responsible for the observed 
resistance under biochemical tests. Additionally, the level 
of these resistant enzymes needs to be assessed using 
quantitative PCR assays in both An. arabiensis and An. 
funestus.

Despite largely achieving the stated aims, the find-
ings of this study should be considered only as indicative 
and not in any way conclusive. This is due to the various 
methodological limitations faced during the study. First, 
the overall collection of the specimen was distributed 
over several months, and may bave been influenced by 
seasonal variations in resistance, as previously demon-
strated [45]. Besides, given the scarcity of An. funestus 
specimen in some of the villages, the tests used just 120 
mosquitoes. Third, this study was the use of wild mosqui-
toes which may have varying ages, which is an important 
factor long-demonstrated to impact resistance [70–72].

Fig. 4 Proportion mortality of Anopheles funestus and Anopheles arabiensis to pyrethroids when pre-exposed to synergist. Red-dotted and 
blue-dotted intercepts represent 90% and 98% mortalities, respectively
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While this way of testing gives a true representation 
of the natural mosquito population in communities and 
their ability to withstand insecticidal interventions, it 
makes it difficult to compare the tests in a conclusive 
manner. The WHO guidelines recommend the use of 
age-synchronized  F1 generation, 3–5 days old [18]. In this 
study the challenge was minimized by: (a) collecting the 
adult female mosquitoes at the edges of the village near 
potential aquatic habitats, thus maximizing the chances 
of getting young nulliparous mosquitoes [49], (b) adding 
an acclimatization period of mosquitoes for 24 h between 
the actual mosquito collection and the resistance tests, 
and (c) using the CDC light trap for mosquito collec-
tion, thereby capitalizing collection of nulliparous host-
seeking mosquitoes [73–75]. In addition, the tests did 
not combine collections from multiple days, but instead 
used synchronized days for each replicate, thus ensur-
ing that the mosquito ages were approximately similar. It 
is recognized however that these improvements slightly 
improved the tests but are not adequate to enable con-
clusive determination or comparison of resistance levels.

Another limitation was the non-amplification of the 
samples where 8% (n = 12) of An.arabiensis and 24% 
(n = 62) of An. funestus complex were unidentifiable. It 
is possible that either there were polymorphisms in the 
ITS2 region of rDNA amplified in these assays, which 
might have been the main contributor of the observed 
non-amplification (Mapua et  al., unpublished data), or 
there were a few other sibling species for which no prim-
ers were available in the assay. Future studies should 
involve a larger sample size, and possibly individual anal-
ysis of specimen to distinguish between species.

Conclusion
Overall, this study has demonstrated that other than the 
differential importance of malaria vector species and the 
multiplicity of malaria transmission in different settings, 
the responsiveness of these vectors towards different 
insecticides may also vary. In rural south-eastern Tan-
zania, An. funestus, which now dominates malaria trans-
mission, also indicate stronger resistance to pyrethroids 
commonly used on ITNs than its counterpart, An. arabi-
ensis. Despite its rarity at aquatic stage, collection meth-
ods must endeavour to find this vector with synchronized 
age and study its resistance profile so that effective inter-
ventions can be mounted. Lastly, the study also empha-
sizes that decisions on which insecticidal interventions to 
apply should be informed by geographical and species-
specific studies rather than generalized studies. In this 
cases, it appears that PBO-based LLINs and IRS with non 
pyrethroids, such as organophosphates may be appropri-
ate for now, as the main vectors are still susceptible to 
these treatments.
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