
Dwomoh et al. Malar J          (2020) 19:307  
https://doi.org/10.1186/s12936-020-03381-8

RESEARCH

Evaluating the predictive performance 
of malaria antibodies and FCGR3B gene 
polymorphisms on Plasmodium falciparum 
infection outcome: a prospective cohort study
Duah Dwomoh1*  , Bright Adu2, Daniel Dodoo2, Michael Theisen3,4,5, Samuel Iddi6 and Thomas A. Gerds7

Abstract 

Background:  Malaria antigen-specific antibodies and polymorphisms in host receptors involved in antibody func-
tionality have been associated with different outcomes of Plasmodium falciparum infections. Thus, to identify key 
prospective malaria antigens for vaccine development, there is the need to evaluate the associations between malaria 
antibodies and antibody dependent host factors with more rigorous statistical methods. In this study, different statisti-
cal models were used to evaluate the predictive performance of malaria-specific antibodies and host gene polymor-
phisms on P. falciparum infection in a longitudinal cohort study involving Ghanaian children.

Methods:  Models with different functional forms were built using known predictors (age, sickle cell status, blood 
group status, parasite density, and mosquito bed net use) and malaria antigen-specific immunoglobulin (Ig) G and 
IgG subclasses and FCGR3B polymorphisms shown to mediate antibody-dependent cellular functions. Malaria anti-
gens studied were Merozoite surface proteins (MSP-1 and MSP-3), Glutamate Rich Protein (GLURP)-R0, R2, and the 
Apical Membrane Antigen (AMA-1). The models were evaluated through visualization and assessment of differences 
between the Area Under the Receiver Operating Characteristic Curve and Brier Score estimated by suitable internal 
cross-validation designs.

Results:  This study found that the FCGR3B-c.233C>A genotype and IgG against AMA1 were relatively better com-
pared to the other antibodies and FCGR3B genotypes studied in classifying or predicting malaria risk among children.

Conclusions:  The data supports the P. falciparum, AMA1 as an important malaria vaccine antigen, while FCGR3B-
c.233C>A under the additive and dominant models of inheritance could be an important modifier of the effect of 
malaria protective antibodies.
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Background
Malaria remains a major public health concern globally 
and is considered as one of the most prevalent and lethal 
human infectious diseases among children in sub-Saha-
ran Africa [1]. Despite the drastic reduction in the num-
ber of malaria cases and deaths in all ages globally, it still 
accounts for 10% of child deaths in sub-Saharan Africa 
[1], and mortality is mostly higher among children below 
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the age of 5 years. Individuals in endemic regions increas-
ingly develop immunity to malaria with age and this 
is conventionally thought to reflect a slow and gradual 
acquisition of protective antibodies [2]. Asymptomatic 
carriers may be a reservoir for malaria transmission [3]. 
It has recently been shown that interaction between 
naturally acquired antibodies to Plasmodium falciparum 
and polymorphisms in host FCGR3B gene, encoding the 
Fc Gamma Receptor IIIB (FcγRIIIB) plays a key role in 
immunity against malaria [4]. The FcγRIIIB is exclusively 
expressed on human neutrophils and crosslinking with 
immunoglobulin (Ig) G antibodies mediates neutrophil 
degranulation and generation of reactive oxygen spe-
cies (ROS) [5], which kills intra-erythrocytic P. falcipa-
rum [6]. It is conceivable that other host genes may also 
modify the protective effect of malaria antibodies. This 
emphasizes the need for robust modelling approaches 
to effectively address such confounders in malaria vac-
cine studies. It is quite plausible that the long delay in 
attaining an effective malaria vaccine may partly be due 
to inadequacies of traditional statistical approaches used 
in malaria immuno-epidemiological studies to determine 
the performance of predictors in classifying or predicting 
malaria risk [7–10]. Traditionally, most studies use gen-
eralized linear models (GLM) depending on the measure-
ment scale of clinical malaria. GLM provides an extensive 
class of tools for modelling the effect of predictors. Statis-
tical prognostic modelling techniques have been applied 
primarily in the area of non-communicable diseases such 
as cardiovascular diseases and lung cancer. For instance, 
Gail et  al. [11] developed a model of breast cancer risk 
prediction and implications for chemoprevention which 
was later validated by Rockhill et  al. [12]. Several risk 
prediction models for other cancers and cardiovascular 
diseases [12–21] have also been developed. For clinical 
malaria, on the other hand, personalized risk estimation 
has not been extensively studied. As indicated by sev-
eral authors [7–10, 22], markers such as polymorphisms 
and antigen-specific antibodies proposed for classifying 
or predicting risk in individual subjects must be held to 
a much higher standard than just assessing associations 
based on odds ratio estimates. Pepe et  al. [22] showed 
that strong statistical associations (including odds ratio, 
relative risk) between disease and host-specific factors 
found in literature do not necessarily imply that those 
factors can discriminate between a subject who is likely 
or not have the disease in a specified time. A risk predic-
tion model exploits the joint predictive power of several 
variables on the risk of an event or disease. A robust 
malaria risk prediction model based on epidemiological 
predictors may contribute to finding possible answers 
to the question of which parasite antigens and host fac-
tors should be the main research focus in the efforts to 

find optimal control strategies and vaccines. This is par-
ticularly important as the number of malaria-specific 
antibodies and host gene polymorphisms found to be 
associated with clinical malaria have increased signifi-
cantly over the past few years [3] but with little impact 
on malaria control. Using a more rigorous prediction 
modelling approach, this study aims to evaluate the pre-
dictive performance of malaria antibodies and FCGR3B 
gene polymorphisms on P. falciparum infection outcome. 
To assess the performance of the models, this study used 
Brier scores and area under the receiver operating char-
acteristic curve (AUROC) through appropriate bootstrap 
cross-validation design.

The identified model was obtained by comparing 
Brier score estimates and the AUROC curve of several 
models that integrate malaria antibodies and host gene 
polymorphisms.

Methods
Data source
Data used for modelling the risk of malaria was sec-
ondary data obtained from a prospective longitudinal 
malaria cohort study which was conducted from May 
2008 to January 2009 among children under 13 years of 
age in five different communities in the Shai Osudoku 
(formerly Dangme West) district of Ghana (Asutsuare, 
Kewum, Mafikorpe, Osuwem, and Volivo) [20, 21]. These 
children were observed both actively and passively for 
malaria case detection. The primary outcome measure 
was clinical malaria defined as fever with any level of P. 
falciparum parasitaemia plus at least one clinical symp-
tom of malaria, such as vomiting, joint pains, diarrhoea. 
In this study, the term “Susceptible” and “Protected” are 
used to represent clinical malaria and no malaria case 
detection respectively over the study period. The pro-
portion of children that developed malaria in the 1 year 
follow up was 15.0% (incidence proportion) and there 
were approximately 1.7 malaria cases per 100 children 
per month (incidence rate) [23]. The predictors of clini-
cal malaria included age in years, sex, sickle cell status, 
blood group, haemoglobin level, malaria antigen-spe-
cific immunoglobulin (Ig) G and subclasses (IgG1, 
IgG2, IgG3, and IgG4) and FCGR3B polymorphisms 
(c.108C>G-rs403016, c.114T>C-rs447536, c.194A>G-
rs448740, c.233C>A-rs5030738, c.244A>G-rs428888 
and c.316A>G-rs2290834). Malaria antigens studied 
were Merozoite surface proteins (MSP-1 and MSP-3), 
Glutamate Rich Protein (GLURP)-R0, R2, and the Api-
cal Membrane Antigen (AMA-1). Antibody levels were 
measured by sandwich ELISA and optical density val-
ues converted to antibody units using a four parameter 
curve fitting program by means of a reference curve on 
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each plate generated by serial dilution of malaria hyper-
immune sera [3].

This study includes a summary of the climatic variables 
at the time of the study to serve as a guide for future stud-
ies that may wish to compare their findings to this study. 
Changes in relative humidity (RH), which is the ratio of 
the partial pressure of water vapor relative to saturated 
vapour at the specified temperature was assessed over 
the study period. The minimum and maximum relative 
humidity over the study period were 71.0% and 98.0% 
respectively. The total monthly rainfall ranged between 
0 and 273.5 mm with the month of May 2008 recording 
the highest total rainfall. The total rainfall between June 
and December 2008 ranged from 19.7 to 125.4 mm. The 
maximum daily rainfall was recorded in the month of 
June 2008 (60 mm). There was no rainfall in the month of 
January 2009. The minimum and maximum air tempera-
ture ranged from 19.3 to 36.8 °C.

Malaria risk prediction model and performance measures
Let Dn = {Yi,X i}i=1,...,n be a malaria data set with n num-
ber of children aged less than 13  years. 
X i =

(

Xip

)

p=1,...,P,i=1,...,n
 be an input matrix of P predic-

tors of malaria (age, antibodies) and

Let G ⊆ {1, . . .G} be a subset of the available predic-
tors where p = p1, p2, . . . , pg . Let β = β1,β2, . . . ,βg be 
the regression coefficient to be estimated. The predicted 
risk of malaria is modelled using the logistic regression 
model. Specifically, for the trained prediction model, τ̂n 
which assigns to each child the probability of develop-
ing clinical malaria, the estimated malaria risk prediction 
model is given by:

where β̂ is a vector of estimated parameters of the model 
associated with predictor variables, β̂0 is the estimated 
intercept of the logistic regression model considered as 
the baseline risk of malaria and τ̂n(X i) is the predicted 
risk of malaria for the ith child with baseline character-
istics X i.

The modelling strategy was to first identify a baseline 
model out of several other competing models relating to 
the prevalence of malaria to baseline covariates. Compre-
hensive discrimination and calibration assessments of the 
fitted models were explored based on the AUROC curve, 
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Brier score, root mean squared error and the total 
explained variations in predicted probabilities (R2) using 
bootstrap cross-validation from 200 bootstrap samples 
with replacement. In selecting predictor variables to be 
included in the final model, candidate predictor variables 
were screened using tools for discriminative and calibra-
tion abilities such as the area under the receiver operat-
ing characteristics curve, the Brier score and explained 
variation in predicted risk. The model’s ability to predict 
accurately was further assessed by means of the calibra-
tion plot. According to Gerds et al. [24], the values of the 
Brier score could be interpreted as the loss or regret 
which is incurred when the prediction model τ̂n is applied 
to a child whose true malaria status is Yi. Model perfor-
mance was assessed via bootstrap cross-validation. Selec-
tion of predictor variables (age, sickle cell, blood group, 
haemoglobin, parasite density and, mosquito net use) for 
the baseline model was premised on subject matter 
knowledge and prior evidence of association with the risk 
of malaria from literature. Continuous predictors were 
fitted via restricted cubic splines. To quantify over-fitting 
and to recalibrate the model, the heuristic shrinkage esti-
mator γ̂ =

modelχ2−p

modelχ2  was used where p is the number of 
predictors (regression parameters including both linear 
and non-linear and possible interaction terms), χ2 is the 
likelihood ratio χ2 test statistic computed using the full 
set of p parameters to determine whether any of the 
predictor(s) is/are associated with log-odds of developing 
clinical malaria. For the model to be calibrated well for 
future data, γ̂ was multiplied by X β̂ and that defines 
shrinkage. The penalty factor was determined by means 
of repeated cross-validation of the data. All antigen-spe-
cific antibodies were log-transformed to base e in subse-
quent analysis. All models were fitted with R 
programming software version 3.2.4 with the following 
specialized packages: Design [25], Penalized [26]. Data 
cleaning and all other forms of data preparations were 
done with Stata SE version 13. A p-value of < 0.05 was 
considered statistically significant.

Results
Description of study participants and clinical malaria 
distribution
The study recruited 799 children of which 393 (49.2%) 
were males and 406 (50.8%) were females. Complete 
information on candidate predictors was available for 395 
children. The missing data were due to children for whom 
either no or insufficient plasma was available for all anti-
body measurement. Additionally, children for whom 
there was no DNA or poor quality DNA that resulted in 
poor genotyping data were excluded. The overall median 
age for this study sample was 5.0  years (Interquartile 
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range = 3.0–8.0). The cumulative incidence of malaria 
was 13% (53 out of 395 children). The bed net use among 
the children was 40.5%. The analysis of sociodemographic 
characteristics and baseline biomarkers on the risk of 
clinical malaria indicated that the cumulative incidence 
of malaria did not differ significantly among the baseline 
predictors that were studied (p-value ≥ 0.05). Distribu-
tion of other predictors and clinical malaria status can be 
found in Table 1.

Modelling results on baseline covariates 
and socio‑demographic characteristics
Four different initial models were rigorously assessed and 
the best model was chosen to serve as the baseline model 
using the aforementioned indices. These models are 
presented in Table  2. ‘Model.standard’ is a linear addi-
tive model of age in years, haemoglobin level in (g/dl), 
sickle cell, blood group, bed net use and parasite density 
categorized into positive and negative for presence and 
absence of parasite in blood at enrollment, respectively. 
The ‘Model.spline’ is the additive model (Model.standard) 
but it was modelled the nonlinear effect of age and hae-
moglobin using 5 knots restricted cubic splines, and also 
included an interaction term of bed net use, parasite den-
sity. The ‘Model.slope.optimism’ (SCFM) is the ‘Model.
spline’ but with regression coefficients shrunk by slope 
corrected optimism. Finally, a ‘PMLE.model’, which is the 
‘Model.spline’ but has estimates of the β coefficient that 
were based on the Penalized Maximum Likelihood Esti-
mation procedure [27]. Upon careful consideration based 
on the above model prediction performance measures, 
the ‘PMLE.model’ was chosen as the baseline model. The 
bootstrap cross-validated estimates of AUROC, Brier 
score, root mean squared error and explained variations 
in predicted probabilities of the ‘PMLE.model’ are 50.0%, 
10.0%, 0.32 and 17.0%, respectively. Although these per-
formance indices were generally poor, it was better as 
compared to the other models (Table  2). The probabil-
ity that PMLE.model will assign a higher predicted risk 
to a randomly chosen child with malaria compared with 
a randomly chosen child with no malaria is 50.0% (dis-
crimination ability = 50.0%; Table  2), which is not bet-
ter than random prediction. The Brier score of 10.0% is 
the expected loss or regret incurred when predicted risk 
from PMLE.model is issued to a child whose true malaria 
status is either susceptible or protected. The variations in 
predicted risk of malaria explained by the chosen model 
is 17.0% (Table  2). Furthermore, the calibration plot in 
Fig. 1 shows that the PMLE model underestimates chil-
dren at low risk of malaria and overestimate children at 
higher risk of malaria.

Modelling results on antigen‑specific antibodies 
and FCGR3B polymorphisms
The predictive effect of each antibody (IgG and sub-
classes) and FCGR3B was evaluated by introducing 
them one after the other in the selected baseline penal-
ized maximum likelihood model (PMLE.model) as 
shown in Table  3. All antibodies were modelled via 5 
knots restricted cubic spline. Admittedly, none of the 
antibodies nor the FCGR3B could significantly improve 
the performance of the PMLE.model after introduction 
but it was observed that IgGAMA1, IgG1AMA1, and 
FCGR3Bc.233C>A were better than all the other predic-
tors in relation to their bootstrap cross-validated esti-
mates of relatively higher AUROC, lower Brier score, and 
and relatively higher R2.

Evaluating the joint effect of IgGAMA1, IgG1AMA1 
and dominant gene c.233C>A
The selection of IgGAMA1, IgG1AMA1, and dominant 
gene c.233C>A in the subsequent model building were 
based on the fact that they had a higher AUROC and R2, 
and a smaller Brier Score as previously shown in Table 3. 
First, the analysis involved a model which was basically 
the baseline model (PMLE.model) together with the 
three predictors (IgGAMA1, IgG1AMA1 and domi-
nant gene c.233C>A) but with no shrinkage adjustment 
to the regression coefficients. This model was denoted 
as the final model with no shrinkage (FMNS). The sec-
ond model was a baseline model (PMLE.model) together 
with the three predictors (IgGAMA1, IgG1AMA1 and 
dominant gene c.233C>A), but with shrinkage of the 
regression coefficient using van Houwelingen-Le Cessie 
heuristic estimate. This was done to improve the cali-
bration ability of the model. This was denoted as slope 
corrected optimism with the van Houwelingen-Le Ces-
sie heuristic (SCOV) model. Finally, a model was fitted 
and evaluated with the only IgGAMA1, IgG1AMA1 
and dominant gene c.233C>A. This was denoted as the 
no baseline line covariate (NBC) model. The predic-
tive performance indices of these three final models 
were evaluated and the results showed that the NBC 
model with only IgGAMA1, IgG1AMA1, and domi-
nant gene c.233C>A predicted malaria incidence better 
as this model had the highest bootstrap cross-validated 
AUROC and R2 with a smaller Brier score as shown in 
Table 4.

Assessing the prediction performance of the three models 
using calibration plots
The prediction performance of these models was 
explored by examining calibration plots, that is the plots 
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Table 1  Bivariate analysis of malaria predictors and clinical malaria

Predictor Levels Protected Susceptible Combined p-value
N = 342 N = 53 N = 395

Age in years 5(3,8) 5 (3,7) 5 (3,8) 0.12e

Mosquito net use No 60% (204) 58% (31) 59% (235) 0.87f

Blood group A 18% (63) 19% (10) 18% (73) 0.93f

AB 6% (22) 8% (4) 7% (26)

B 29% (98) 25% (13) 28% (111)

O 46% (159) 49% (26) 47% (185)

Sickle cell status Positive 15% (51) 19% (10) 15% (61) 0.46f

Parasite count(categorized) positive 7% (25) 4% (2) 7% (27) 0.34f

Haemoglobin at enrollment(gram 
per dL)

12 (11,13) 11 (11,12) 12 (11,13) 0.11e

Additive c.108C>G CC 29% (100) 26% (14) 29% (114) 0.4f

CG 42% (144) 36% (19) 41% (163)

GG 29% (98) 38% (20) 30% (118)

Additive c.114T>C CC 27% (92) 26% (14) 27% (106) 0.82f

CT 43% (147) 47% (25) 44% (172)

TT 30% (103) 26% (14) 30% (117)

Additive c.233C>A AA 9% (31) 2% (1) 8% (32) 0:2f

AC 27% (93) 28% (15) 27% (108)

CC 64% (218) 70% (37) 65% (255)

Additive c.244A>G GG 31% (106) 32% (17) 31% (123) 0.36f

AG 39% (134) 47% (25) 40% (159)

AA 30% (102) 21% (11) 29%(113)

Additive c.316A>G GG 13% (43) 17% (9) 13% (52) 0.65f

AG 32% (109) 32% (17) 32% (126)

AA 56% (190) 51% (27) 55% (217)

Additive c.194A>G GG 39% (135) 30% (16) 38% (151) 0.43f

AG 39% (135) 45% (24) 40% (159)

AA 21% (72) 25% (13) 22% (85)

Dominant c.108C>G CC vs CG-GG 71% (244) 62% (33) 70%(277) 0:18f

Dominant c.114T>C TT vs CT-CC 73% (250) 74% (39) 73% (289) 0:94f

Dominant c.194A>G AA vs AG-GG 61% (207) 70% (37) 62% (244) 0:2f

Dominant c.233C>A CC vs AC-AA 91% (311) 98% (52) 92% (363) 0:075f

Dominant c.244A>G AA vs AG-GG 69% (236) 68% (36) 69% (272) 0:87f

Dominant c.316A>G AA vs AG-GG 87% (299) 83% (44) 87% (343) 0:38f

Recessive c.108C>G CC-CG vs GG 29%(100) 26% (14) 29% (114) 0:67f

Recessive c.114T>C TT-CT vs CC 30% (103) 26% (14) 30% (117) 0:58f

Recessive c.194A>G AA-AG vs GG 21% (72) 25% (13) 22% (85) 0:57f

Recessive c.233C>A CC-AC vs AA 64% (218) 70% (37) 65% (255) 0:39f

Recessive c.244A>G AA-AG vs GG 30% (102) 21% (11) 29% (113) 0:17f

Recessive c.316A>G AA-AG vs GG 56% (190) 51% (27) 55% (217) 0:53f

log.IgG-MSP1 2.2 (1.6,3.7) 2.4 (1.6,3.2) 2.3 (1.6,3.6) 0:77e

log.IgG1-MSP1 3.2 (2.4,5.4) 3.1 (2.6,4.4) 3.2 (2.4,5.4) 0:6e

log.IgG2-MSP1 1.9 (1.6,2.8) 2.0 (1.6,2.7) 1.9 (1.6,2.8) 0:71e

log.IgG3-MSP1 3.3 (1.9,6.0) 3.1 (2.0,6.0) 3.3 (1.9,6.0) 0:83e

log.IgG4-MSP1 1.6 (1.4,2.0) 1.6 (1.3,1.9) 1.6 (1.4,2.0) 0:64e

log.IgG-MSP3 3.2 (2.5,4.6) 3.2 (2.5,4.8) 3.2 (2.5,4.6) 0:66e

log.IgG-1MSP3 3.2 (2.6,4.7) 2.9 (2.6,4.2) 3.2 (2.6,4.7) 0:36e

log.IgG-2MSP3 1.8 (1.6,2.2) 1.8 (1.5,2.1) 1.8 (1.6,2.2) 0:52e

log.IgG-3MSP3 2.7 (1.8,4.5) 2.6 (2.0,4.1) 2.7 (1.8,4.5) 0:89e
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of sensitivity versus (1-specificity) (AUROC). There was 
no significant difference in their respective areas under 
the curve before internal validation, although the model 
with penalty corrected parameter estimates (SCOV 
model) had a higher AUROC (75.3%). After internally 
validating these models, it was observed that the AUROC 
of the model with only IgGAMA1, IgG1AMA1, and 
dominant gene c.233C>A (NBC model) performed better 
than the other two models (AUROC = 61.5%) (Fig. 2).

The calibration plots in Fig.  3 shows that the same 
model was well calibrated as it appears to be closer to the 
45° line compared to the two other models.

In relation to how these models assign the low and 
higher predicted risk of malaria using the box-whisker 
plots, there was not much difference between the model 

with slope corrected optimism and the model with only 
IgGAMA1, IgG1AMA1, and dominant gene c.233C>A 
although both were slightly better than the PMLE model 
updated with 3 more predictors (Fig. 4).

Discussion
The study investigated the predictive performance of sev-
eral malaria-specific antibodies (IgG and subclasses) and 
FCGR3B polymorphisms on the malaria risk. This was 
achieved by comparing a baseline malaria model with a 
prediction model that integrates the antibody and genetic 
data. Malaria prognosis of a child is an estimate of the 
child’s future malaria risk. The prognosis in this study is 
based on the child’s baseline socio-demographic char-
acteristics, blood group, sickle cell status, the use of bed 

Table 1  (continued)

Predictor Levels Protected Susceptible Combined p-value
N = 342 N = 53 N = 395

log.IgG-4MSP3 1.7 (1.4,2.1) 1.7 (1.5,2.1) 1.7(1.4,2.1) 0:82e

log.IgG-GLURPR0 3.4 (2.4,4.7) 3.8 (2.6,4.8) 3.4 (2.4,4.7) 0:36e

log.IgG1-GLURPR0 3.4 (2.5,4.9) 3.7 (2.7,5.1) 3.4 (2.5,4.9) 0:40e

log.IgG2-GLURPR0 1.9(1.6,2.3) 1.8(1.6,2.9) 1.9 (1.6,2.4) 0:61e

log.IgG3-GLURPR0 2.1 (1.6,3.4) 2.0 (1.7,2.7) 2.1 (1.6,3.4) 0:78e

log.IgG4-GLURPR0 1.5 (1.3,1.7) 1.5 (1.2,1.7) 1.5 (1.3,1.7) 0:44e

log.IgG-GLURPR2 3.9 (2.2,5.9) 4.2 (2.8,6.0) 4.0 (2.2,5.9) 0:26e

log.IgG1-GLURPR2 5.8 (3.8,8.0) 5.8 (4.3,7.5) 5.8 (3.9,8.0) 0:93e

log.IgG2-GLURPR2 3.2 (2.1,6.3) 2.9 (2.1,6.4) 3.1 (2.1,6.3) 0:56e

log.IgG3-GLURPR2 5.9 (3.5,7.8) 6.1 (4.1,7.3) 5.9 (3.5,7.6) 0:96e

log.IgG4-GLURPR2 2.1 (1.8,3.1) 2.1 (1.8,2.4) 2.1 (1.8,2.9) 0:62e

log.igG-AMA1 6.2 (3.6,9.2) 6.4 (4.5,8.4) 6.7 (3.8,9.1) 0:45e

log.IgG1-AMA1 9.5 (6.2,10.2) 8.9 (6.6,10.0) 9.4 (6.3,10.2) 0:61e

log.IgG2-AMA1 3.2 (2.1,4.5) 2.9 (2.1,4.2) 3.2 (2.1,4.4) 0:57e

log.IgG3-AMA1 4.7 (3.1,6.4) 4.8 (3.2,6.8) 4.7 (3.2,6.5) 0:54e

log.igG4-AMA1 4.0 (2.5,5.1) 3.6 (2.9,4.7) 3.9 (2.6,5.1) 0:62e

a (b, c), represent the median, lower quartile, and the upper quartile for continuous variables.e-Wilcoxon Ranksum test, f -Fishers Exact Test. Numbers after percents 
are frequencies. Additive model: assumes the risk associated with an allele is increased r-fold for heterozygotes and 2r-fold for homozygote; Dominant model: 
assumes risk association with the dominant allele and compares homozygous wild type with a combination of the heterozygous and homozygous for the variant; 
Recessive model: assesses risk association with the recessive allele and compares homozygous variant type with a combination of the heterozygous and homozygous 
for the wild type. Tests used: Wilcoxon test; Pearson test, MSP: Merozoite surface protein, GLURP: Glutamate Rich Protein, AMA: Apical membrane antigen. Note: 
natural log transformation was used

Table 2  Predictive effect of socio-demographic indices and baseline covariates

LR: Likelihood Ratio test statistic; BCV: Bootstrap cross-validation; RMSE: Root Mean Squared Error; R2: Proportion of explained variation in predicted risk; AUCROC: 
Area Under the Receiver Operating Characteristic curve, BS: Brier score

Model specification LR, p-value BCV AUROC (%) BCV BS(%) RMSE R2

Standard model (S) 5.34, 0.7209 51.0 12.0 0.35 0.01

Spline model 8.08, 0.8387 49.0 11.0 0.33 0.10

Slope corrected optimism model 
(SCFM)

7.32,0.7844 49.0 11.0 0.33 0.10

PMLE model 5.76, 0.7360 50.0 10.0 0.32 0.17
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net, presence of malaria parasite in blood and malaria-
specific antibodies and FCGR3B genotype. Most of the 
socio-demographic factors, malaria antigen-specific 
antibodies and the FCGR3B variant used in this study as 
predictors have been found to be associated with clinical 
malaria in various malaria seroepidemiological studies 
[23, 28–34]. The discrimination and calibration perfor-
mance of the baseline and integrated models measured 
via AUROC and the Brier score were far less than the 
generally recommended 80% or more for AUROC and 
smaller Brier score (closer to zero). Although most of the 
antibodies did not improve the performance of the base-
line model, it is worth noting that AMA1 specific anti-
bodies and FCGR3B-c.233C>A under the additive and 
dominant models of inheritance, can discriminate chil-
dren of low and higher risk of malaria. Admittedly, the 
improvement in AUROC and Brier score was not very 
substantial from the baseline model in this study but they 
showed signs of improving the performance of the base-
line model. This finding was consistent with other stud-
ies [31, 34–38] which identified AMA1 as an important 
blood-stage malaria vaccine candidate.

Traditional statistical methods of estimating odds 
ratios, relative risk and hazard ratio’s in epidemiological 
studies to assess associations between antibodies, genetic 
polymorphisms, and clinical malaria may not adequately 
determine the performance of each biomarker for pre-
dicting the risk of malaria for a child [22]. An antibody or 
gene variant associated with protection against malaria 

does not necessarily imply that it can significantly dis-
criminate between randomly chosen children with a 
low or high risk of malaria and consequently, will not 
improve model prediction performance. This may have 
contributed to the poor predictive performance of most 
of the antibodies and genotypes in this study. For classi-
fication of children into the high and low risk of malaria, 
statistical techniques should be used that directly address 
classification accuracy (e.g. Brier score, AUROC) rather 
than traditional regression models for assessing associa-
tions (reporting of the odds ratio, relative risk and haz-
ard ratio’s for time to event outcomes). Studies that link 
antibody responses and gene polymorphisms to clini-
cal malaria either control for age or restrict the analysis 
to individuals who have been exposed to P. falciparum 
[31]. In  situations where they have adjusted for most of 
the predictors of malaria, the predictive performance of 
certain antibody responses was reduced and only a few 
remained statistically significant [31]. Other important 
parameters such as haemoglobin level and sickle cell 
status should all be controlled for in a prediction model 
and its predictive performance assessed [39]. The incon-
sistencies in malaria risk prediction model performance 
indices may also be due to misclassification of the out-
come variable (clinical malaria). There are several differ-
ent case definitions for clinical malaria based on different 
parasitaemia threshold values and what would have been 
recorded as a case (malaria) in a particular study may be 
recorded as control (no malaria) in a different study and 

Fig. 1  Calibration plots comparing the four baseline models
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vice versa. The number of events (malaria cases) studied 
is important for prognostic research [41] because there is 
the risk of overestimating the predictive performance of 

the model when the number of predictors is much larger 
than the number of outcome events (malaria). Besides, 
different prognostic studies have suggested that for each 

Table 3  Assessing the predictive effect of each malaria antibody and FCGR3B polymorphisms on the risk of malaria

F: Penalized maximum likelihood model (PMLE.model), LR: Likelihood Ratio test statistic; BCV: Bootstrap cross-validation; RMSE: Root Mean Squared Error; R2: 
Proportion of explained variation in predicted risk; AUCROC: Area Under the Receiver Operating Characteristic curve, BS: Brier score

Model specification LR, p-value BCV AUROC BCV BS (%) RMSE R2

F + log.IgGAMA1 12.23, 0.0301 55 10 0.3511 2.0

F + log.IgG1AMA1 14.09, 0.0223 57 10 0.3501 2.0

F + log.IgG2AMA1 5.76, 0.8058 49 12 0.3400 1.0

F + log.IgG3AMA1 10.41, 0.7668 54 12 0.3525 2.0

F + log.IgG4AMA1 7.03, 0.7668 50 12 0.3439 3.0

F + log.IgGGLURPR0 7.41, 0.6501 51 12 0.3514 1.0

F + log.IgG1GLURPR0 6.93, 0.6987 51 12 0.3518 0.0

F + log.IgG2GLURPR0 6.38, 0.7528 50 12 0.3512 1.0

F + log.IgG3GLURPR0 5.99, 0.7872 49 12 0.3532 1.0

F + log.IgG4GLURPR0 6.13, 0.7716 50 12 0.3517 1.0

F + log.IgGGLURPR2 7.98, 0.5923 53 12 0.3518 1.0

F + log.IgG1GLURPR2 8.62, 0.6135 52 12 0.3512 1.0

F + log.IgG2GLURPR2 6.81, 0.7672 49 12 0.3514 1.0

F + log.IgG3GLURPR2 6.68, 0.7754 50 12 0.3812 1.0

F + log.IgG4GLURPR2 6.18, 0.7671 50 12 0.3909 2.0

F + log.IgGMSP1 6.60, 0.7302 51 12 0.3609 0.0

F + log.IgG1MSP1 6.03, 0.7812 50 12 0.3512 1.0

F + log.IgG2MSP1 6.53, 0.7369 50 12 0.3517 0.0

F + log.IgG3MSP1 5.78, 0.8059 49 12 0.3518 0.0

F + log.IgG4MSP1 5.81, 0.8032 49 12 0.3547 1.0

F + log.IgGMSP3 8.08, 0.5816 52 12 0.3558 0.0

F + log.IgG1MSP3 8.41, 0.6146 52 12 0.3678 1.0

F + log.IgG2MSP3 5.96, 0.7897 50 12 0.3579 2.0

F + log.IgG3MSP3 6.68, 0.7217 50 12 0.3510 1.0

F + log.IgG4MSP3 5.81, 0.8029 50 12 0.3512 2.0

F + Additive c.108C>G 7.81, 0.6743 51 12 0.3484 0.5

F + Additive c.114T>C 6.3, 0.8108 49 12 0.3501 0.5

F + Additive c.194A>G 7.42, 0.7103 50 12 0.3474 1.1

F + Additive c.233C>A 8.76, 0.5557 51 12 0.3470 1.3

F + Additive c.244A>G 8.51, 0.6066 51 12 0.3464 1.6

F + Additive c.316A>G 6.51, 0.7894 50 12 0.3483 0.6

F + Dominant c.108C>G 7.83, 0.6025 52 12 0.3455 2.1

F + Dominant c.114T>C 5.76, 0.8029 50 12 0.3458 2.0

F + Dominant c.194A>G 7.44, 0.6411 51 12 0.3467 1.5

F + Dominant c.233C>A 8.99, 0.0456 58 11 0.3166 2.4

F + Dominant c.244A>G 5.79, 0.8011 49 12 0.3491 0.1

F + Dominant c.316A>G 6.46, 0.7319 51 12 0.3476 1.0

F + Recessive c.108C>G 6.05, 0.7769 49 12 0.3454 2.2

F + Recessive c.114T>C 6.23, 0.7597 49 12 0.3487 0.3

F + Recessive c.194A>G 6.07, 0.7731 49 12 0.3480 0.7

F + Recessive c.233C>A 6.36, 0.7468 50 12 0.3500 0.4

F + Recessive c.244A>G 8.26, 0.5566 52 12 0.3470 1.3

F + Recessive c.316A>G 6.1, 0.7735 49 12 0.3479 0.8
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candidate predictor (antibodies, host genes, age, sickle 
cell, haemoglobin, parasite density) studied, at least 10 
events (malaria cases) are required [40–43] but these 
numbers could be lower in certain circumstances [44]. 
If for instance the number of cases studied is 200 based 
on fever with a threshold of 2500 parasites per microli-
tre of blood, then there will be differences in the num-
ber of events in a different study where clinical malaria 
was defined as fever with any level of parasitaemia with 
the latter having a larger number of cases in general to 
improve the power of the test. So long as malaria case 
definitions are not clearly defined, there will be incon-
sistencies in results of which antibody, host genetic fac-
tor and or their interactions have higher predictive 
performance on the malaria risk prediction model. Thus, 
in practice, different modelling strategies may result in 
similar or very different results even if they are applied to 

data from the same study. This study did not quantify the 
predictive performance of climatic factors on the model 
performance because children enrolled in the study were 
clustered around the same endemic area with no signifi-
cant difference in climatic variables. This study recom-
mends that prospective studies may consider including 
climatic variables in the malaria predictive model in sit-
uations where there are climatic differences in the geo-
graphic locations of subjects being studied.

Other factors that contribute to the incidence of 
malaria but were not measured to assess their predic-
tive effect may also be of interest. These include drug 
resistance in parasites, vector species, parasite strain 
and insecticide resistance in mosquitoes [32, 45–48]. 
The study’s inability to observe these factors may have 
contributed to poor model performance. The propor-
tion of missing values on covariates was relatively high 
and can result in loss of statistical power, efficiency and 
precision of the predicted risk notwithstanding the fact 
that standard statistical procedures of handling miss-
ing data were adhered to. This is particularly so when 
advanced statistical techniques that handle missing 
completely at random, missing not at random and miss-
ing at random make critical but untestable assumptions 
about how the data went missing [39]. The proportion 
of missing observations was common among immu-
noglobulins and host genetic factors which coinci-
dentally were key predictors of interest in the study. 
To accurately evaluate the effect of malaria antibodies 
and host genetic factors on the risk of malaria, steps 
should be taken to reduce to the barest minimum the 
proportion of missing values among candidate predic-
tors of malaria risk as this may bias model performance 
metrics.

Table 4  Prediction performance measures of  the  final 
selected models

FMNS = PMLE.model + logIgGAMA1 + logIgG1AMA1 + dominant c.233 with 5 
knots restricted cubic spline, Model SCOV = Slope Corrected final model with 
van Houwelingen-Le Cessie heuristic estimate

NBC = No baseline variable included: only dominant 
c.233 + logIgGAMA1 + logIgG1AMA1

LR, BCV, RMSE, R2, AUROC, BS, represent the Likelihood Ratio test statistic, 
bootstrap cross-validation, Root Mean Squared Error, the proportion of 
explained variation in predicted risk and Area Under the Receiver Operating 
Characteristic curve, Brier score, respectively

Model 
specification

LR, p-value BCV AUROC (97.5% 
CI)

BCV Brier 
score (%)

R2 (%)

FMNS 25.91, 0.0176 57.49(45.38–68.38) 12.10 1.00

SCOV 31.08, 0.0175 58.38(45.38–68.72) 12.00 2.00

NBC 22.41, 0.0077 61.51(48.87–70.71) 11.72 4.00

Fig. 2  Discrimination and calibration ability of the three final models. FMNS = Final model with no shrinkage, SCOV Final model with slope 
corrected optimism using Van Howelligen estimator, NBV Model with no baseline variables (only IgGAMA1, IgG1AMA1, and dominant gene 
c.233C>A); BCV Bootstrap cross-validation
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Conclusion
This study has found that the FCGR3B-c.233C>A geno-
type and IgG against AMA1 were relatively better com-
pared to the other antibodies and FCGR3B genotypes 
in classifying or predicting malaria risk among children. 

The findings support Apical Membrane Antigen 1 as 
an important malaria vaccine antigen while FCGR3B-
c.233C>A under the additive and dominant mod-
els of inheritance were also identified as an important 
modifier of the effect of malaria protective antibodies. 

Fig. 3  Calibration plots comparing the three final selected models

Fig. 4  Evaluating the discrimination ability of the three final selected models. Abbreviations: SCOV: slope corrected optimism model, NBC: 
no baseline covariate model, that is model with only IgGAMA1, IgG1AMA1, and c.233C>A genotype, FMNS: Parameter estimates via penalized 
maximum likelihood estimation
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Furthermore, the goal of malaria etiological risk factor 
studies may be quite different from studies where anti-
bodies and host genes are used in classifying a child into 
high or low-risk groups. Hence the statistical methods 
between such studies differ to a large extent. If the latter 
is required, then it would be appropriate to e use model 
discrimination and calibration indices, such as Brier 
score, RMSE, and AUROC.
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