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Abstract 

Cerebral malaria (CM), results from Plasmodium falciparum infection, and has a high mortality rate. CM survivors can 
retain life-long post CM sequelae, including seizures and neurocognitive deficits profoundly affecting their quality 
of life. As the Plasmodium parasite does not enter the brain, but resides inside erythrocytes and are confined to the 
lumen of the brain’s vasculature, the neuropathogenesis leading to these neurologic sequelae is unclear and under-
investigated. Interestingly, postmortem CM pathology differs in brain regions, such as the appearance of haemorragic 
punctae in white versus gray matter. Various host and parasite factors contribute to the risk of CM, including expo‑
sure at a young age, parasite- and host-related genetics, parasite sequestration and the extent of host inflammatory 
responses. Thus far, several proposed adjunctive treatments have not been successful in the treatment of CM but are 
highly needed. The region-specific CM neuro-pathogenesis leading to neurologic sequelae is intriguing, but not suf‑
ficiently addressed in research. More attention to this may lead to the development of effective adjunctive treatments 
to address CM neurologic sequelae.
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Background
Malaria is transmitted through the bite of Plasmodium-
infected female Anopheles mosquitoes. It remains one 
of the most common vector-transmitted diseases, lead-
ing to a high disease morbidity and mortality. Although 
there are several Plasmodium species with the potential 
to cause disease, Plasmodium falciparum and Plasmo-
dium vivax are the main two species responsible for most 
complications in humans, with P. vivax more prevalent 
in South East Asian countries, and India [1–3]. In 2018, 
there were roughly 228 million cases of malaria world-
wide resulting in 405,000 deaths [1]. Of these deaths, 67% 
(272,000) were in children under the age of 5 years [1].

Multiple complications can occur as a result of P. fal-
ciparum infection, with cerebral malaria (CM) causing 
some of the highest mortality rates [1, 4, 5]. Furthermore, 
patients that survive CM can remain with life-long post 
CM sequelae, especially neurological deficits, affecting 
quality of life [6]. Severe malaria, due to P. falciparum 
infection, presents differently in children than adults, 
especially regarding the onset of CM. Whereas paediatric 
CM mortality is reportedly lower than adult CM mortal-
ity, paediatric CM is associated with a higher rate of sei-
zures and post-CM neurocognitive deficits [7, 8]. These 
variances in CM disease presentation may arise due to 
differences in the immature brain, including differences 
in host responses of the cerebral vasculature in differ-
ent brain regions to sequestration and the magnitude 
of inflammation. This review focuses on the underlying 
immunopathophysiological mechanisms of paediatric P. 
falciparum malaria and subsequent neurological seque-
lae as seen in sub-Saharan Africa.
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Host genetic susceptibility and resistance
Given that more than one million children per year 
were dying from P. falciparum in Africa alone prior to 
the twenty-first century [4], malaria is, from a genetic 
standpoint, the evolutionary driver resulting in genetic 
erythrocyte diseases such as sickle-cell, thalassaemia 
and glucose-6-phosphate dehydrogenase  deficiency. 
This is supported by the observations that, despite 
homozygote mortality, the HbS allele has a high prev-
alence in areas endemic with malaria as well as the 
observation that independent genetic mutations have 
developed in different ethnic and geographical popula-
tions [9]. Other host genetic factors contributing to CM 
susceptibility include inflammatory factors and regula-
tory regions, such as Type 1 Interferon receptor vari-
ants in Malawi [10], IL17 in Nigeria and IL4 and IL22 in 
populations in Mali [11, 12]. In addition, earlier reports 
showed a role for intercellular adhesion molecular -1 
(ICAM-1) Kilifi variants in CM [13]. A recent study 
in Kilifi, Kenya, identified 15 genes associated with 
increased paediatric malaria [14], and an Indian study 
identified TNF polymorphisms [15]. In addition, epi-
demiological studies reported association of outcomes 
of malarial infections with age and previous exposure 
to epigenetic modifications [16–19]. This arises from a 
recent discovery that the production of the citric acid 
cycle metabolites succinate and fumarate increased 
during severe malaria, including CM. These metabo-
lites can serve as modulators of epigenetic enzymes, 
such as histone and DNA demethylases [20]. There is 
growing evidence that recurrent parasite infections, by 
invoking hyper responsiveness of the Toll-like Recep-
tors (TLR) ligand stimulation, can result in epigenetic 
modifications with phenotypes showing resistance to 
malaria [21]. Indeed, these epigenetic modifications 
were reported among Plasmodium infected Kenyan 
children [16]. Coinfections in paediatric CM patients, 
such as HIV, are considered independent risk factors 
for death. Autopsy studies have demonstrated a two-
fold increase in intravascular monocytes and plate-
lets in HIV infected children who died from CM [22]. 
In addition, increased T cell presence was observed in 
human CM brains with HIV co-infection [23, 24]. It is 
likely that in co-infected patients, the HIV associated 
immune dysregulation further amplifies the pathologi-
cal damage of CM, leading to increased T cell influx 
into the brain [22, 24, 25]. Taken together, various host 
factors contribute to susceptibility to severe malaria 
and, although there are differences among regions, fac-
tors associated with strong host-immune responses 
appear key.

Clinical characteristics
CM is the most severe neurological complication of the 
infection by P. falciparum and is a clinical syndrome 
whose hallmark is impaired consciousness, with coma 
being the most severe manifestation [26]. Clinical fea-
tures of pediatric malaria, including CM, involve a 
relapsing diurnal fever, which is produced after para-
site release upon rupture of Plasmodium infected red 
blood cells (PRBC), secondary to asexual replication 
and cytokine release [9, 27]. Patients with acute infec-
tion can present with a diffuse CM encephalopathy, a 
rapid progressive coma, and/or seizures without return 
to consciousness. In some cases, focal neurologic signs 
are present [28]. At the end stages of disease, children 
often display signs of brainstem dysfunction, such as 
abnormal pupillary and corneal reflexes, a dysconju-
gate gaze and irregular breathing patterns [28–32]. 
Although some sequelae, such as cortical blindness, 
improve with time, long-term clinical follow-up assess-
ments in paediatric CM survivors showed elevated per-
sistence of neurological sequelae, including hemiplegia, 
ataxia, paresis, seizure disorders, language deficits, 
altered behaviour, severe cerebral palsy and cognitive 
impairments [28, 29, 32, 33]. These neurologic seque-
lae may lead to an impaired quality of life and loss of 
disability adjusted life years. The exact underlying fac-
tors that play a role in the neuropathogenesis leading 
to poor neurological outcome in children are unclear. 
However, autopsy findings have ascertained that intra-
vascular sequestration of Plasmodium-infected red 
blood cells is associated with perivascular damage, 
including axonal injury, myelin loss and breakdown of 
the blood brain barrier (BBB) [34], as reflected in Fig. 1. 
How exactly sequestration leads to BBB breakdown is 
unclear. As discussed later, sequestration together with 
soluble Plasmodium factors, may have both direct and 
indirect effects on BBB integrity, which may be ampli-
fied by the cytokine storm and influx of plasma factors, 
including albumin, that are toxic to neurons. Interest-
ingly, in paediatric African CM patients, sequestration 
reportedly occurs in the brain vasculature irrespective 
of the region, however postmortem pathology revealed 
different host vascular responses [34, 35]. A predomi-
nance of multiple haemorrhagic punctate lesions is 
observed in white matter areas and corpus callosum, 
but not visible in other brain regions, such as gray mat-
ter or basal ganglia [35]. Moreover, adult P. falciparum 
CM also features a predominance of punctate white 
matter damage, as shown by postmortem pathology 
and magnetic resonance imaging (MRI) [36, 37]. Taken 
together, this suggests that potential phenotypic het-
erogeneity in the local host vasculature [38] that can 
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attract differential PRBC sequestration can lead to 
alternate host responses [39] (Fig. 1).

The clinical World Health Organization (WHO) diag-
nostic criteria for CM, (P. falciparum  on blood smear, 
coma and no other known cause of coma) [40], has the 
potential to result in misdiagnoses. Using these criteria, 
an autopsy study conducted in Malawi [35] reported that 
23% of clinically diagnosed CM cases were, in fact, a dif-
ferent pathology entirely. This has the potential to skew 
the results of post CM cognitive studies in that some 
children might already have pre-existing neurocogni-
tive problems. Fundoscopy and diagnosis of retinopathy 
has been shown to improve the specificity of the clini-
cal diagnosis of CM, although the retinopathy appears 
to be less specific in adults [8, 41, 42]. CM-retinopathy 

is a constellation of ocular changes that includes retinal 
whitening, retinal haemorrhages, vascular changes and 
papilledema, and increased expression of vascular cell 
adhesion molecule-1 (VCAM-1) [41, 43, 44]. The severity 
of malaria retinopathy is also positively correlated with 
an increased risk of death [41, 43, 44]. Even after reso-
lution of Plasmodium infection, neurologic symptoms 
persist in almost one-fourth of children with retinopathy-
positive CM [28]. In addition, retinopathy negative CM 
patients were found to have pre-existing neurologic con-
ditions, which subsequently allows for the possibility of 
inaccurate post CM neurological assessments [8]. Unfor-
tunately, not all clinicians have access to funduscopes, as 
such instrumentation is relatively expensive for LIMC. 
Increased access to affordable funduscopy adaptations, 

Fig. 1  Graphical abstract of cerebral malaria pathogenesis. Cerebral malaria pathology manifests itself differently in white matter and gray matter 
of the brain. Whereas haemorragic punctae are abundant in white matter, they are not obvious in gray matter. The cerebral vasculature in these 
brain areas is different, which may lead to differential attachment of PRBC—as guided by var gene expression—of PfEMP1 and resulting activation 
of alternate signalling pathways in the brain endothelial vasculature in these regions. The release of chemokines and cytokines from the inflamed 
BBB endothelium towards the brain, in conjunction with the opening of the blood brain barrier that allows ingress of both neurotoxic plasma 
substances and soluble Plasmodium factors into the brain, leads to astroglial activation. This, together with an influx of immune cells, causes 
neurological damage that is responsible for the post CM neurologic sequelae
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e.g. by using adapted cell phones in combination with 
appropriate algorithms and training will improve appro-
priate diagnosis of CM and may provide predictions on 
risk of neurologic sequelae.

Access to other non-invasive imaging modalities, such 
as MRI, is extremely limited in low and middle income 
countries. Nevertheless, MRI studies have provided fur-
ther insight into the pathogenesis and cause of death of 
sub-Saharan paediatric CM patients. MRI findings in 120 
children with retinopathy-positive CM demonstrated 
increased cerebral volume (50%) and T2 brain abnormali-
ties, suggesting inflammation in the basal ganglia (84.2%), 
white matter (71,7%), brain stem, thalamus (40%), corpus 
callosum (49,2%) and cerebellum (49,2%) 30. A subse-
quent 1.5 Tesla MRI study performed on 16 retinopathy-
positive CM children in Zambia indicated that diffusion 
weighted imaging abnormalities spared the gray matter, 
indicating a likely vasogenic, as opposed to cytotoxic, 
oedema. Micro-haemorrhages and parasite sequestration 
occurred in the same white matter regions. The diffu-
sion weighted imaging results are consistent with micro-
haemorrhages and parasite sequestration co-occurring in 
white matter regions with vascular congestion [45]. These 
regional differences in MRI findings suggest potential dif-
ferences in host vasculature between these white- and 
gray matter regions (Fig. 1).

MRI findings that have been associated with poor to 
fatal CM outcomes include signs of elevated intracra-
nial pressure, cerebral oedema, decreased cerebrospinal 
fluid (CSF) volume posterior cerebral involvement, tha-
lamic and supratentorial gray matter lesions and patchy 
areas of lobular involvement [31, 45]. MRI studies have 
also demonstrated a clear link between cerebral oedema, 
depth of coma, and increased mortality [30].

Neuropathogenesis of cerebral malaria
CM pathogenesis is multifaceted and, until recently, has 
been complicated by disease heterogeneity, often inaccu-
rate clinical case classifications and a lack of large, clini-
cal prospective studies [35]. Although already adopted 
by some groups with access to funduscopy, an overall 
standard use of CM-retinopathy as an inclusion crite-
rion for studies will likely result in more precise follow 
up for assessing the late sequelae of CM. The enigma 
of CM neuropathogenesis and resultant coma has con-
founded scientists for decades as the pathogen itself, 
residing inside PRBC’s, does not directly or physically 
enter the central nervous system (CNS) due to the BBB, 
but remains inside the vascular lumen (Fig. 1). Yet, severe 
neurological symptoms, including coma, are a hallmark 
in CM and pathological evidence of neuronal injury have 
also been demonstrated by elevated tau levels in the CSF 
of children with CM [46]. This highlights the vital role of 

the BBB endothelium in CM, as the BBB is at the inter-
face of PRBC intravascular sequestration and underlying 
neuronal damage (Fig. 1).

Two main theories (1) the “mechanical hypothesis” and 
(2) the “cytokine storm” hypothesis provide an explana-
tion underlying CM-neuropathogenesis. The mechanical 
hypothesis is based on the contribution of intravascular 
sequestration of PRBCs that results in multiple conse-
quences, including vascular congestion, hypo-perfusion 
and localized hypoxia [47, 48]. In addition, differences 
in local blood flow may contribute to increased intrac-
ranial pressure in CM and lobular differences. This 
may be due to either differences in vascular supply, e.g. 
occipital lobe via posterior cerebral artery versus other 
lobes via the circle of Willis, due to PRBC sequestration 
or due to a combination of these factors. Together, these 
factors ultimately lead to a breakdown of the BBB, cer-
ebral oedema and a pro-thrombotic state [49–51]. The 
parasite-encoded P. falciparum erythrocyte membrane 
protein-1 (PfEMP-1) is expressed on PRBC surfaces and 
interacts with host receptors. PfEMP-1 is devised to 
save PRBCs from clearance by the spleen and is respon-
sible for intravascular PRBC sequestration. PfEMP-1 is 
encoded by a variable gene (var-gene) and, depending on 
which var-gene is expressed, interacts with various host 
adhesion receptors, such as ICAM-1, EPCR and CD36 
[52–55]. Binding of PRBC expressing differential PfEMP-
1, as encoded by the var gene family, to its respective 
receptor leads to downstream host signalling, including 
activation of inflammatory and coagulatory pathways, 
eventually leading to loss of BBB integrity and encepha-
lopathy (Fig. 1). In addition, as assessed in in vitro experi-
ments with brain endothelial cells, differential host 
endothelial responsiveness may affect development of 
CM in patients [56]. Post-mortem data, animal models 
for CM and in vitro data, demonstrate that PRBC seques-
tration correlates with brain vascular activation. This is 
shown by the presence of large vesicular nuclei, endothe-
lial destruction, activation of transcription factor NF-κB, 
increased expression of cell adhesion molecules, such as 
ICAM-1, VCAM-1, E-selectin, cytokine release and BBB 
breakdown [35, 57–62]. Endothelial damage in CM is 
also demonstrated by changes in the endothelial glycoca-
lix upon exposure to PRBC, both in vitro [63] and in vivo 
in human CM [64] and murine experimental CM (eCM) 
[65] and release of endothelial vesicles into the circula-
tion [66].

Although several studies correlate the degree of PRBC 
sequestration in the brain to increased CM severity [34, 
67, 68], the extent to which this correlates with clini-
cal symptoms, coma development and mortality in CM 
is debated [69]. Therefore, as proposed by the “cytokine 
storm hypothesis”, peripheral inflammation, neutrophil 
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activation [60] and increased circulations of multi-
ple serum cytokines such as TNF, IFNγ, and IL-2, IL-6, 
IL-8, and IL-10 contribute to the CM pathogenesis [12, 
70]. When compared with patients with uncomplicated 
malaria, circulating IL-6, MCP-1 and vascular endothelial 
expression of CD61 are upregulated [56]. The increase in 
inflammatory markers are indicative of both immune cell 
and endothelial inflammation and associated with PRBC 
sequestration [57, 61]. Increased levels of soluble plasma 
neutrophil proteins and impaired neutrophil chemotaxis 
were found in retinopathy positive paediatric CM [60], 
indicative of neutrophil activation. These activated neu-
trophils may, similar to the intravascular localized mono-
cytes [22], contribute to vascular activation. In addition, 
CD8 T cells have been found associated with the brain 
vasculature, both intravascular and perivascular and with 
the endothelial basal lamina where they can contribute to 
cerebral vascular activation, both in human and murine 
studies. Murine eCM studies indicated that those T cells 
that transmigrated further into the neuropil can damage 
neurons through release of Granzyme B and/or perforin 
[71, 72]. At this moment, it is not clear if the CD8+T 
cells preferentially invade specific white matter or gray 
matter brain regions. Additional mechanisms whereby 
neuronal damage occurs may involve caspases in select 
neurons, as shown in human CM [73].

Vascular integrity and lymphocyte transmigration can 
also be affected by sphingolipid alterations. For exam-
ple, therapeutic sphingosine-1-phosphate (S1P) blocking 
agents, such as FTY720 decreased lymphocyte trafficking 
into the brain and lowered peripheral IFNγ levels [74]. 
Not all studies have found a relation between peripheral 
cytokines and cerebral oedema in CM [75].

Taken together, sequestration and inflammation, in 
conjunction with elevation of coagulation factors and 
alterations in blood metabolites, all contribute to CM 
neuropathogenesis [46, 70, 76–81], which may occur in 
a region-specific manner, e.g. white matter or gray mat-
ter. Regardless of either the cytokine storm- or sequestra-
tion-mediated CM hypothesis, the effects of endothelial 
activation can be seen incrementally even in subclinical 
presentations of parasitaemia as indicated by elevated 
serum  levels  of von  Willebrand  factor (VWF), soluble 
ICAM-1, and soluble-VCAM-1 [82, 83]. This signifies the 
paramount importance of the contribution of the BBB 
endothelium in the pathogenesis of CM and while the 
exact relationship between cerebral oedema and periph-
eral inflammation has yet to be fully elucidated, it is likely 
that they are also correlated with downstream neural 
stem cell repair processes.

Post CM neuro‑sequelae and potential mechanisms
Post CM, persistent neurologic sequelae, including cog-
nitive impairment, motor skills, visual coordination, sei-
zures and attention deficit hyperactivity disorder, occur 
in up to 25% of paediatric survivors [28, 33, 84–86]. The 
highest risk for deficits in motor, language, and social 
development was for children under 5 years of age [87]. 
Between 3 and 6  months post infection, cognitive defi-
cits specific to working memory can intensify with lan-
guage development being the most consistently affected 
in paediatric survivors [7, 32, 88, 89]. Cognitive impair-
ments, including memory and attention, can persist for 
as long as nine years post CM episodes [84, 85]. Ten 
percent of paediatric CM survivors in one study had at 
least one mental health sequela with onset ranging from 
six to twelve months’ post infection and a median of 
21  months follow up. The three top mental health dis-
orders in this group were attention deficit hyperactivity 
disorder, conduct disorder and oppositional defiant dis-
order [90]. Post-CM, patients with increased externaliz-
ing behaviours (i.e. poor attention and aggression) were 
also reported [87, 91]. However, accurate assessment 
of neurologic sequelae can be challenging. Most stud-
ies done, thus far, on the long term sequelae of CM have 
used the 2000 clinical WHO definition of CM [7, 84, 85, 
88, 91, 92]. This could mean that part of these children 
did not have true CM, or another underlying infectious 
condition as well. This opens the possibility that children 
were included who already had pre-existing neurocogni-
tive conditions or that this was due to the co-infection 
and not CM. Regardless, the presence of neurologic 
sequelae in both retinopathy positive and negative chil-
dren has been well documented [29]. The retinopathy 
negative children display a different clinical pattern and 
presentation. Although retinopathy positive patients dis-
play more abnormalities on MRI in a variety of different 
brain regions, the percentage of patients with neuro-
logic sequelae is similar [30]. The lower mortality in the 
retinopathy negative patients may be due to the pres-
ence of potentially protective- co-infections, skewing 
the immune responses 30,45,93. Interestingly various brain 
regions appear to be differentially affected. Due to diverse 
study cohorts in the different countries and assessment 
methodologies, these studies cannot be directly com-
pared for behavioural assessment. However, it is clear 
that, as a result of complicated Plasmodium infections, 
there is a degree of behavioural difficulties in many 
cases that satisfy the criteria for a mental health disorder 
diagnosis.

Seizures are common in children with CM and, as a 
long-term consequence, sustained seizure disorders, 
often refractory to at least one antiepileptic medication 
may develop, even months after a CM episode [28, 29, 33, 
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84, 85, 94–96]. The presence of seizures could contribute 
to development of other post CM neurological seque-
lae, including developmental delays [7, 28]. In particular, 
acute seizures during CM episodes was an indicator for 
future developmental disabilities raising the question of 
whether acute seizures might promote epileptogenesis 
and increased risk for chronic epilepsy [28, 89, 93].

Elucidation of the mechanisms underlying the devel-
opment of behavioural disorders in CM is challenging, 
especially as complex human behaviours are difficult 
to recapitulate in animal models. There are several ani-
mal models that are used to study CM pathogenesis, but 
there are ethical concerns in using primate models [97, 
98] and these are very expensive. The animal model that 
is mostly used to study CM is the Plasmodium berghei 
ANKA strain in a murine model, which recreates a num-
ber of features observed in human CM: including vas-
cular inflammation, haemorrhagic punctae in parts of 
the brain and a set of neurologic sequelae that can be 
measured in behavioural tests [99–101]. Like any model 
system for a disease, the P. berghei ANKA model is not 
ideal and has received critiques. Critiques on the murine 
eCM model revolved around the absence of a PfEMP-1 
analogue in the parasite, limited sequestration, the find-
ings of effective therapeutics in the eCM models versus 
their limited success in human CM [102] and perceived 
differences in T cell involvement in murine eCM versus 
human CM. Although authors rightfully caution against 
blindly extrapolating murine model data, caution to their 
stance is warranted as addressed at several scientific 
meetings and in publications [103–107]. Importantly, 
although previous work failed to show the presence of 
CD8+T cells in human CM brains [34], recently and 
due to updated and highly sensitive methodologies, their 
presence was confirmed in human CM brains; these were 
both intravascular and perivascular, transmigrated into 
the neuropil and associated with the choroid plexus, an 
important entry point into the ventricles and cerebro-
spinal fluid [23–25, 108]. In addition, differences in the 
measured outcomes of a study may also contribute to, 
e.g. the survival or incidence of neurologic sequelae in 
survivors. It is, therefore, imperative to compare results 
obtained in animal models with human pathology. Due 
to ethical issues and regulatory guidelines, availability 
of pathological human CM specimens for CM research 
is highly limited. Improved patient participation/consent 
from family members and improved access to the wider 
CM research community could greatly benefit future CM 
patients. Moreover, other outcomes than just survival 
should be taken into account, such as reductions in neu-
rologic sequelae when evaluating new adjunctive treat-
ments for effectiveness.

Several studies using the murine P. berghei ANKA eCM 
model demonstrated an increase in anxiety-like behav-
iours following resolution of P. berghei ANKA infection 
[109]. Inflammatory signalling, such as increased brain-
cortical TNF levels in conjunction with either increased 
IL-6 or IL-1β, and alterations in growth factor levels, 
e.g. brain derived neurotrophic factor and neuregulin, 
can contribute to the development of anxiety in eCM 
and behavioural sequelae [109–112]. Endothelin family 
peptide ET-1 (Pre-proendothelin) also plays an impor-
tant role in inducing BBB damage and produces a CM-
like picture in rodent models [113]. Selective endothelin 
receptor antagonists also improved outcome in cogni-
tive decline and decreased brain hemorrhages in mice 
[113–115].

In response to increased inflammation in eCM, Dar-
ling et al. showed the relevance of the receptor tyrosine 
kinase EphA at the BBB endothelium [116]. Upregula-
tion of EphA2 was shown to be required for the loss of 
BBB junction proteins both in eCM and in human brain 
microvascular endothelial cells and for infiltration of 
CD8+T cell into the brain in the eCM model.

Taken together, these studies suggest that CM epi-
sodes, both in humans and in animal models can lead to 
neurological deficits. The presence of specific neuronal 
repair processes after resolution of Plasmodium infec-
tion is implicated, although the nature and efficiency of 
these underlying mechanisms is unclear. The neuronal 
damage inflicted during Plasmodium infection could be 
related to the extent of the inflammatory responses, the 
amount of PRBC sequestration or, post-infection, to the 
efficiency of the neurological repair mechanisms. Very 
little is known about post CM repair processes. Given the 
extent of the neuronal damage, neuro-progenitors will 
be migrating in and will need to replace these damaged 
neurons. Especially due to the still highly inflammatory 
environment in the brain, this process can be skewed and 
contribute to the neuro-sequelae. More research into the 
underlying molecular pathogenic and repair mechanisms 
of CM is needed. This research should focus on several 
key areas, including ameliorating brain vascular inflam-
mation, breach of barrier function and neuronal damage. 
In addition, a focus on the neuronal repair processes in 
CM is needed. This may lead to identification of targets 
for adjunctive therapies targeting the brain vascula-
ture, neuroprotection and neuro repair. Study outcomes 
should focus not only on survival, but also target neuro-
logic sequelae and behaviour.

Quest for novel adjunctive therapies
Effective adjunctive neuro-protective therapies are cur-
rently not available. Numerous attempts to develop 
therapies targeting neurological sequelae have failed or 
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have even increased the incidence of adverse sequelae, as 
reviewed by Varo et al. [117]. These attempts have mainly 
focused on efforts to decrease sequestration, inflamma-
tion, coagulation, and oxidative stress and have thus far 
proven ineffective in reducing mortality and preventing 
adverse neurological outcomes [118–122]. For example, 
treatment of CM patients with dexamethasone, com-
monly used in other neurological disorders to reduce 
inflammation and combat vasogenic oedema, actu-
ally resulted in longer coma and increased neurological 
complications [123]. Adjunctive therapies attempting 
to counteract brain oedema with the osmotic diuretic 
mannitol, known to lower intracranial pressure, showed 
no beneficial effect in CM patients [124]. Also targeting 
inflammation, monoclonal anti-TNF antibody therapy 
worsened CM outcome and increased the incidence of 
post-CM neurologic sequelae [125]. Although pharma-
cologic reduction of TNF levels using pentoxifylline, a 
phosphodiesterase inhibitor, showed slight improve-
ments in survival for humans in some studies [126, 127], 
others showed no benefit on clinical outcomes [128, 129], 
or actually increased mortality when studied in chil-
dren [130]. Interestingly, decreases in hippocampal TNF 
and IL-6 levels were observed in a murine eCM model 
with cannabidiol treatment, which also increased brain 
derived neurotrophic factor levels, promoted eCM sur-
vival and prevented post-CM anxiety-like behaviours 
[111]. The dual role of TNF in neurogenesis could be due 
to differential downstream signalling effects, depend-
ent on which TNF-receptor is involved. While signalling 
through TNFR1 significantly hinders neurogenesis, acti-
vation of TNFR2 contributes to survival and prolifera-
tion of neural stem cells [131]. Neurogenesis, as driven 
by neural stem cells in the sub granular zone of the hip-
pocampus, is important in learning and memory func-
tion [132, 133]. In the murine eCM model, increased 
expression of TNFR1 and, to a higher degree, TNFR2 is 
seen [134, 135]. Consequently, a full blockade of TNF 
signalling may hinder its neurogenic actions and, thus, 
lead to higher neurocognitive deficits. Targeting other 
cytokines might show promise for possible interventional 
strategies. A study examining the post mortem serum 
and CSF of children in Ghana with CM showed elevation 
of IP-10, IL-8, MIP-1β, PDGFbb, IL-1ra, Fas-L, sTNF-R1, 
and sTNF-R2 [136]. Neuregulin, a neurotrophic growth 
factor was shown to be protective of eCM and was pos-
tulated as an effective adjunctive therapy to reduce 
CNS tissue injury [112]. Administration of neuregulin-1 
resulted in a 73% increased survival in eCM, as well as 
a decrease in systemic and CNS cytokines; TNF, IL-6, 
IL-1α and CXCL10 [137].

Further attempts to elucidate the role of other poten-
tial contributors to improving survival include targeting 

the complement system with a C5/C5a receptor blockade 
[138] and blood flow/vascular health using inhaled nitric 
oxide [139] Nitric oxide has a role in the pathogenesis 
of CM with low peripheral concentrations contributing 
to the pathology [140, 141]. Nitric oxide based adjunc-
tive therapy is also effective in eCM through a variety of 
mechanisms, indicating that direct nitric oxide adminis-
tration or through dietary supplementation of citrulline 
may be beneficial as adjunct therapy [142].

Other adjunctive therapies that target inflamma-
tion and immune responses and show promise in eCM 
studies include the peroxisome proliferator-activated 
receptor gamma agonist rosiglitazone, which improves 
both survival and neurocognitive outcome [143, 144]. 
The cholesterol lowering drug atorvastatin [145] also 
dampens inflammation and thereby reduces both brain 
endothelial damage and BBB opening [146]. Moreover, 
rosglitazone boosted neuroprotective pathways and, in 
human studies, showed promise for treatment of uncom-
plicated malaria [117], but its effects in human CM are, 
thus far, unclear. Erythropoietin, a hormone produced by 
the kidneys, has been considered for use in CM as also 
has antioxidant and anti-inflammatory components in 
animal models. Murine studies have demonstrated posi-
tive, neuroprotective results, either alone [147] or when 
paired with artesunate [148]. However, clinical studies 
demonstrated that high erythropoietin levels are associ-
ated with extended coma and increased mortality [149]. 
As the BBB inflammation and loss of integrity also plays 
a central role in CM, a potential therapeutic approach of 
blocking EphA2 to protect the BBB from breakdown was 
suggested in recent eCM studies [116].

It is clear from both animal and clinical studies that, 
although high levels of inflammation and brain oedema 
have been associated with CM mortality and neuro-
sequelae, addressing this pharmacologically still presents 
significant challenges. Completely suppressing inflam-
mation is detrimental, but ameliorating inflammation 
appears beneficial in CM survival outcome and may 
likely be neuroprotective as well.

Many of these studies on adjunctive therapies in mice 
have examined mortality outcomes and did not assess 
neurocognitive impairment. Thus, it is possible that neu-
rocognitive effects may have been missed. These types 
of studies could have strengthened the argument for 
adjunctive therapy. Additional research is needed to elu-
cidate the complex neuropathology leading to long-term 
neurological deficits, to identify biomarkers predictive 
of the severity of the neuro-sequelae and how this can 
be addressed clinically with adjunctive neuroprotective 
treatments. This requires testing additional outcomes 
beyond survival, both short and long term and to include 
a focus on reduction of neurologic sequelae.



Page 8 of 12Schiess et al. Malar J          (2020) 19:266 

Concluding remarks
CM is a devastating disease with complex neuro-
pathophysiology that can lead to a variety of neurologic 
sequelae affecting a person throughout life. The het-
erogeneity of clinical symptoms and outcomes range 
from full recovery, to various neurologic sequelae and, 
often, to death. With improvements in healthcare in 
sub-Saharan Africa more paediatric CM patients are 
expected to survive. This population may develop last-
ing neurologic sequelae, thus contributing to a grow-
ing global health concern. Several clinical studies have 
identified specific characteristics of these neurological 
sequelae, including cognitive and, behavioural defi-
cits and seizure disorders. Human post-mortem and 
imaging studies have increased understanding of the 
neuropathology. Murine eCM studies can address 
mechanisms involved in eCM development and gen-
esis of neurologic sequelae. Although current research 
suggests a significant role for inflammation in elicit-
ing neuronal damage and the development of post 
CM sequelae, more research is needed to address the 
more specific underlying molecular pathophysiologi-
cal drivers and signalling mechanisms. This under-
lines the importance of collaboration among different 
fields, including clinical research, animal research, and 
exchange of samples as key to advancing existing 
knowledge of CM neuropathogenesis. Together, this 
may lead to identification of novel targets for adjunc-
tive treatments to ameliorate post-CM neuro-sequelae.
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