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Abstract 

Background:  Iron supplementation before a first pregnancy may improve the future health of mother and baby 
by reducing maternal anaemia. Iron supplementation could, however, increase malaria infections, notably in primi-
gravidae who are most susceptible. The pathogenicity of other iron-utilizing pathogens could also increase, causing 
inflammation leading to increased risk of adverse birth outcomes. This paper reports pre-specified secondary birth 
outcomes from a safety trial in Burkina Faso in an area of high malaria endemicity. Primary outcomes from that trial 
had investigated effects of long-term weekly iron supplementation on malaria and genital tract infections in non-
pregnant and pregnant women.

Methods:  A double-blind, randomized controlled trial. Nulliparous, mainly adolescent women, were individually ran-
domized periconceptionally to receive weekly either 60 mg elemental iron and 2.8 mg folic acid, or 2.8 mg folic acid 
alone, continuing up to the first antenatal visit for those becoming pregnant. Secondary outcomes were ultrasound-
dated gestational age, fetal growth, placental malaria, chorioamnionitis and iron biomarkers. Seasonal effects were 
assessed. Analysis was by intention to treat.

Results:  478 pregnancies occurred to 1959 women: 258/980 women assigned iron and folic acid and 220/979 
women assigned folic acid alone. Malaria prevalence at the first antenatal visit was 53% (iron) and 55% (controls). 
Mean birthweight was 111 g lower in the iron group (95% CI 9:213 g, P = 0.033). Mean gestational ages were 264 days 
(iron) and 269 days (controls) (P = 0.012), with 27.5% under 37 weeks compared to 13.9% in controls (adjRR = 2.22; 
95% CI 1.39–3.61) P < 0.001). One-third of babies were growth restricted, but incidence did not differ by trial arm. 
Half of placentae had evidence of past malaria infection. C–reactive protein > 5 mg/l was more common prior 
to births < 37 weeks (adjRR = 2.06, 95% CI 1.04–4.10, P = 0.034). Preterm birth incidence during the rainy season 
was ~ 50% in the iron arm and < 20% in controls (P = 0.001). Chorioamnionitis prevalence peaked in the dry season 
(P = 0.046), with no difference by trial arm (P = 0.14).
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Background
Giving iron to young women ahead of their first preg-
nancy could potentially improve the future health of 
both mother and baby by reducing maternal anaemia 
[1–3], providing iron-infection interactions are neg-
ligible. Iron supplementation may increase malaria 
susceptibility [4], especially in primigravidae who are 
at highest risk [5]. It may also increase pathogenicity 
of other iron-utilizing organisms, such as with repro-
ductive tract infections, causing inflammation and 
increasing the risk of preterm delivery and low birth-
weight. Gram-negative bacteria, causative agents of 
chorioamnionitis, utilize multiple iron-uptake mecha-
nisms as does bacterial vaginosis (BV), associated with 
polymicrobial vaginal biofilms [6].

Existing systematic reviews on iron supplementa-
tion in pregnancy include few studies from malaria 
endemic areas, and those cited are from locations with 
no, or very little malaria [7]. A safety trial was con-
ducted in young women in Burkina Faso in an area of 
high malaria endemicity to investigate the effects of 
periconceptional iron supplementation on malaria and 
genital tract infection risk in non-pregnant and preg-
nant women [8, 9]. This safety trial measured malaria 
prevalence at first antenatal visit (ANC1) as the pri-
mary (non-inferiority) outcome, and reported that 
weekly supplementation did not increase malaria risk 
(risk ratio 1.00, 95% CI 0.97–1.03), or improve iron 
status (iron deficiency risk ratio 0.84 (0.46–1.54), or 
reduce anaemia (risk ratio 0.96, 0.83–1.10) in these 
young, mostly adolescent menstruating women [8]. 
Genital tract infection markers were also assessed [9]. 
BV, Trichomonas vaginalis prevalence and microbi-
ota profiles did not differ at trial end-points although 
at baseline, iron replete participants were less likely 
to have normal vaginal flora. At their first antenatal 
study visit weekly supplementation was withdrawn 
and replaced by haematinics for all women regardless 
of allocation. Women were followed to delivery and 
the trial protocol included pre-specified (superiority) 
secondary birth outcomes, which are reported in this 
paper along with exploratory analyses of the impact 
of infection, inflammation, seasonality and placental 
pathology on these outcomes.

Methods
The trial protocol and amendments were approved 
by ethical review boards and regulatory authorities at 
each collaborating centre. This birth outcome analysis 
was conducted within a randomized trial of the safety 
of weekly iron and folic acid supplementation in young 
women exposed to malaria [8, 9]. Specified birth out-
comes were: gestational age, preterm birth (PTB), small 
for gestational age and low birthweight. Additional 
summary data on the main trial, the primary malaria 
outcome measures, measurements of iron biomarkers, 
and other details relevant to this paper, are provided in 
Additional file 1.

General procedures
Between April 2011 and January 2014, a randomized, 
double blind, controlled trial was conducted amongst 
nulliparous, non-pregnant residents aged 15–24  years 
in a hyper-endemic malaria endemic area of Burkina 
Faso. HIV prevalence is low and reported as 1.2% 
among women aged 15–49  years and 0.76% among 
pregnant women [10]. Syphilis sero-prevalence among 
first time female blood donors is also low in Burkina 
Faso (1.1%) [11]. The study was undertaken within the 
rural Nanoro Health and Demographic Surveillance 
system which has a population of approximately 55,000, 
and area of 600 km2 [12]. The dry season is from Octo-
ber to May and wet season from June to September, 
with malaria peak prevalence between July to Septem-
ber [13].

Two cohorts of supplemented women were followed—
women remaining non-pregnant (not reported here) and 
women who experienced pregnancy during, or shortly 
after the 18 month supplementation period. Participants 
were individually randomized to receive either a weekly 
capsule containing ferrous gluconate (60  mg) and folic 
acid (2.8 mg), or an identical capsule containing folic acid 
alone (2.8  mg) (see Additional file  1 for randomization 
details). The regimen followed World Health Organi-
zation (WHO) guidelines, updated in 2016 [1, 2]. The 
primary outcome result of Plasmodium falciparum para-
sitaemia prevalence at ANC1, and secondary outcome 
results on lower genital infections have been reported [8, 
9]. Weekly iron supplementation did not increase malaria 
risk at the first antenatal visit [8].

Conclusion:  Long-term weekly iron supplementation given to nulliparous women in a malaria endemic area was 
associated with higher risk of preterm birth in their first pregnancy.

Trial Registration NCT01210040. Registered with Clinicaltrials.gov on 27th September 2010

Keywords:  Iron supplements, Preterm birth, Fetal growth, Malaria, Adolescents, Burkina Faso
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At enrolment, and at two further antenatal visits, a 
venous blood sample was collected for plasma ferritin, 
serum transferrin receptor (sTfR) and C-reactive protein 
(CRP) measurements. Pregnant women were referred 
for assessment at 13–16 weeks gestation (ANC1) as indi-
cated by the last menstrual period which was obtained 
from weekly review during follow-up of the non-preg-
nant cohort. Gestational age was estimated by ultrasound 
examination at ANC1 with a FF Sonic UF-4100 (Fukuda 
Denshi) scanner. Gestational age was estimated by crown 
rump length in the first trimester and by biparietal diam-
eter, femur length and abdominal circumference after-
ward. A blood sample was obtained for measurement of 
haemoglobin, iron biomarkers, and malaria screening 
as malaria end-points were the primary outcome meas-
ure for the trial [8]. A syphilis test was done (RPR VDRL 
Carbon, ELITechGroup). A self-taken vaginal swab was 
requested for Trichomonas vaginalis screening by qPCR, 
and slides were screened for BV as previously reported 
[9]. Symptomatic women were treated for BV and Tricho-
monas vaginalis.

Weekly supplements were withdrawn at ANC1 and 
replaced by haematinics for all pregnant women regard-
less of allocation according to national policy (60  mg 
iron, 400  µg folic acid daily). A second antenatal study 
visit (ANC2) was scheduled between 33 and 36  weeks. 
A single measure of blood pressure was taken at ANC1 
and ANC2 with explanation to the mother who rested 
5  min before use of the sphygmomanometer (Riester). 
Weekly follow-up continued till delivery, and adher-
ence was recorded [8]. All women received a first dose 
of intermittent preventive treatment with sulfadoxine-
pyrimethamine (IPTp-SP) at ANC1 if gestational age 
was > 13 weeks. Women ≤ 13 weeks gestation, if positive 
for malaria by rapid diagnostic test (RDT) (Bioline SD, 
Malaria Antigen Pf ), were treated with oral quinine. A 
second scheduled IPTp-SP dose was provided through 
routine antenatal care. At ANC2 women were encour-
aged to deliver at Nanoro Hospital or the nearest Health 
Centre, where free obstetric care was provided by the 
study. The main analyses are confined to those who 
delivered within the study area and excluded births from 
migrated women who delivered elsewhere.

Adverse events (SAEs), including maternal deaths, were 
collected by active (weekly) and passive surveillance and 
reported according to available information from field 
workers, health centre, and hospital staff. These events 
are reported separately and previously published [8]. A 
summary is provided in Additional file 1.

Assessment methods
Study nurses examined babies within 24–48 h of delivery, 
and recorded birthweight on an electronic scale to within 

10  g (SECA 384, Hamburg, Germany, precision ± 5  g 
for weights < 5000 g, ± 10 g above 5000 g), and clinically 
assessed gestational age [14]. Following hospital delivery 
placental biopsies (2.5 × 1  cm) were excised from fetal 
and maternal sides at mid-distance between umbilical 
cord insertion and the placental border, and placed in 
10% neutral buffered formalin. Laboratory procedures for 
iron biomarker assays have been previously reported [9, 
15], and details on placental histopathology procedures 
are available in Additional file 1. Classification of placen-
tal malaria was based on the presence of hemozoin and 
parasitized red blood cells in the inter-villous space [16]. 
Severity of acute chorioamnionitis and funiculitis (acute 
histologic chorioamnionitis) was graded histologically 
as early (grade 1), intermediate (grade 2) and advanced 
(grade 3) following the Redline-classification [17, 18].

Statistical analysis
The sample size was determined from formal power 
calculations for the malaria trial endpoints [9]. Primary 
analyses presented here are comparisons of the four pre-
specified secondary birth outcomes of birthweight, ges-
tation, PTB and placental malaria in singleton babies by 
trial arm on an intention to treat basis. Iron and inflam-
mation biomarkers, and placental chorioamnionitis were 
pre-specified exploratory outcomes. PTB was defined 
as a livebirth or stillbirth that took place at least 20 but 
before 37 completed weeks; early preterm as between 20 
and 33 completed weeks; post-term after 41 completed 
weeks; low birthweight as less than 2500 g; and miscar-
riage as spontaneous loss of a probable/clinical preg-
nancy before 20  weeks of gestational age. Fetal growth 
restriction (SGA) was defined as birthweight below the 
10th centile for gestation and gender, indicated by stand-
ard reference data [19].

Prevalence analyses of treatment effects (intention to 
treat [ITT] analysis of treatment allocation) based on 
data at specific time points utilized risk-ratio binomial 
models unadjusted and adjusted for mid-upper-am-cir-
cumference (MUAC) at baseline, bed net use (propor-
tion of weekly visits where a bed net was reported to have 
been used the previous night) to ANC1 or last follow-up, 
and birth month as a categorical variable. CRP was ana-
lysed using analogous ordinary regression models follow-
ing logarithmic transformation and adjusted using the 
calendar month of assessment. Results are expressed as 
risk-ratios (or density/biomarker level ratios) with 95% 
CI and associated likelihood-ratio significance level.

Similar models were used to compare CRP and pla-
cental pathology between women whose babies were 
term/preterm or SGA/AGA (small/appropriate for ges-
tational age), pooling the trial arms and with and with-
out adjusting for assessment (CRP) or birth (placental 
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markers) month. A non-linear sinusoidal cyclic model, 
based on calendar month of assessment, with a 
12  month period and adjusting for baseline MUAC 
and bed net use, as above, was used to formally test for 
seasonality and for differential magnitude of seasonal 
effects between arms.

P-values were determined using Likelihood-ratio 
tests comparing appropriately reduced models. Sen-
sitivity analyses confirmed the adequacy of this sea-
sonal model. Statistical significance was two-sided at 
alpha = 0.05. No formal adjustment is made for mul-
tiple testing as the outcomes examined were expected 
to be highly correlated. Other pre-specified birth out-
comes related to congenital anomalies and perinatal 
deaths have been previously reported [8]. All analyses 
were performed using R statistical environment version 
3.3 [20].

Result
Participants
Of 1959 nulliparous women, 980 were randomly 
assigned weekly supplements with iron and folic acid, 
and 979 folic acid supplements alone. During follow-
up 478 pregnancies occurred, with 437 known deliver-
ies (Fig.  1). Following exclusions due to miscarriages, 
severe congenital abnormalities and multiple births, 
there were 433 singleton births. After losses due to out-
migration, 307 births, (288 live births, 19 stillbirths) 
were included in the primary analyses presented here. 
Demographic, nutritional and clinical characteristics 
were comparable between intervention and control 
groups, with adolescents (< 20 years) comprising 90.9% 
of enrolled participants (Table  1). Characteristics of 
excluded women were similar to those providing birth 

1959 Randomised

980 assigned  
iron and folic acid 

979 assigned  
folic acid alone

258 Pregnancies

231 Known deliveries

16 miscarriage
11 lost to follow-up

231 singleton births
218 Live

13  Stillbirths

Birth assessments
149 ANC1 
123 ANC2

155 birthweight 
89 placenta biopsies

220 Pregnancies

206  Known deliveries

11 miscarriage
3 lost to follow-up

202 singleton births
186 Live

16  Stillbirths

4 Excluded
1 Spina bifida

3 multiple births

Birth assessments 
137 ANC1
120 ANC2

139 birthweight
92 placenta biopsies

66 Migrated 
(birth outside study 

area)

58 Migrated 
(birth outside study 

area)

163 birth assessments
155 live births

8 stillbirths

144 birth assessments
133 live births
11 stillbirths

Fig. 1  Participant flow diagram. ANC antenatal care
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Table 1  Baseline characteristics of nulliparae with birth assessments by intervention group

IPTp Intermittent preventive treatment with sulfadoxine-pyrimethamine
a  Domestic labour and farming not mutually exclusive
b  Bed net use is the percentage of weekly visits between enrolment and ANC1 where bed nets were reported being used the night before
c  Ferritin < 15 μg/L if CRP < 10 mg/l, or ferritin < 70 μg/L if CRP ≥ 10 mg/l. Ranges for normal controls were: ferritin, 69.1–114.7 µg/l; sTfR, 4.2-5.9 mg/l; CRP, 5–8 mg/l

Characteristic Iron Control

Sample size 163 144

Demographic and socioeconomic

 Mean age, years [IQR] 17.0 [16.0–18.0] 17.0 [16.0–18.0]

 Age < 20, n (%) 145/163 (89) 134/144 (93)

 Age < 17, n (%) 62/163 (38) 65/144 (45)

 Reproductive Age, years [IQR] 4 [3–5] 3 [2–4]

 Ethnic Group Mossi, n (%) 159/163 (98) 141/144 (98)

 Religion

  Muslim 49/163 (30) 36/143 (25)

  Christian 97/163 (53) 66/143 (56)

 Traditional 27/163 (17) 41/143 (29)

 No education, n (%) 109/162 (67) 91/144 (63)

 Primary education, n (%) 34/162 (21) 22/144 (15)

 Lower and higher secondary, n (%) 19/162 (12) 31/144 (22)

 Literate, n (%) 45/161 (28) 46/143 (32)

 Occupation

  Studenta 41/163 (25) 39/144 (27)

  Trading 7/163 (4) 7/144 (5)

  Domestic 101/163 (62) 74/144 (51)

  Farmer 75/163 (46) 58/144 (40)

 Unmarried, n (%) 145/163 (89) 133/144 (92)

Bed net use to ANC1, %, median [IQR]b 63 [50–83] [2 missing] 67 [47–84] [1 missing]

Clinical

 Menarcheal, n (%) 155/163 (95) 133/144 (92)

 Sexually active, n (%) 67/163 (41) 48/144 (33)

 Height, cms [IQR] 160 [156–164] 159 [155–163]

 Weight, kg [IQR] 51.4 [47.8–54.7] 50.9 [46.7–55.5]

 BMI, kg/m2 [IQR] 20.0 [18.9–21.1] 20.2 [18.9–21.0]

 BMI < 18.5 kg/m2, n (%) 29/163 (18) 28/144 (19)

 MUAC, cms [IQR] 24.1 [22.9–25.2] 24.2 [22.8–25.4]

Iron biomarkers

 Median Plasma CRP, mg/l [IQR] 0.59 [0.25–1.62] [5 missing] 0.68 [0.24–1.70] [2 missing]

 CRP > 5 mg/l, n (%) 13/158 (8) 14/142 (10)

 CRP > 10 mg/l, n (%) 5/158 (3) 7/142 (5)

 Median ferritin, µg/l [IQR] 51.50 [28.00–78.75] [4 missing] 46.00 [24.00–85.00] [3 missing]

 Median sTfR, mg/l [IQR] 6.13 [5.06–7.63] [3 missing] 6.33 [5.22–8.31] [3 missing]

 Median sTfRr/log ferritin ratio 3.72 [2.89–5.25] [4 missing] 3.84 [2.84–5.83] [3 missing]

 Iron deficiency (adj ferritin), n (%)c 16/157 (10) [6 missing] 21/141 (15) [3 missing]

 Iron deficiency (sTfR/log ferritin), n (%)d 33/159 (21) [4 missing] 42/141 (30) [3 missing]

Antenatal care

 First study visit (ANC1) 149/163 (91) 137/144 (95)

 Second study visit (ANC2) 123/163 (76) 120/144 (83)

 Median total ANC visits [IQR]e 4.00 [3.00–5.00] 4.00 [3.00–5.00]

 Median IPTp doses, IQR 2.00 [1.00–2.00] 2.00 [2.00–2.00]

 ≥ One IPTp dose n/N (%) 153/163 (94) 140/144 (97)

 ≥ Two IPTp dose, n/N (%) 109/163 (67) 114/144 (79)
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outcomes (Additional file  2: Table  S1). Frequency of 
pregnancy was higher in the iron group (P = 0.052). 
Prevalence of undernutrition (BMI < 18.5  kg/m2) was 
18.6%.

Mean gestational age at ANC1 was 18.4 ± (SD) 
5.9  weeks and at ANC2, 34.2 ± 1.6  weeks. At ANC1 
malaria parasitaemia prevalence was 53% in the iron 
arm and 55% in controls [8]. Iron deficiency prevalence 
at ANC1, based on the sTfR/log10 ferritin ratio, was 
11% (iron, 17/149) and 13% (controls, 18/135) (P = 0.53, 
adjusted for season, baseline MUAC and bed net use). 
At ANC2 prevalence was 28% (iron, 34/122) and 28% 
(controls, 34/118), (P = 0.91). Mean haemoglobin con-
centration was similar in both trial arms at ANC1 (iron 
10.5  g/dl ± 1.4; control 10.5 ± 1.5  g/dl), and at ANC2 
(iron 10.7  g/dl ± 1.4; control, 10.8 ± 1.4). There were 
fewer ANC2 visits in the treated arm (76% versus 83%, 
P = 0.094), which received a slightly lower number of 
mean IPTp-SP anti-malarial doses (67% of iron, receiving 
2 or more doses compared to 79% of controls, P = 0.021) 
(Table  1). The median total number of antenatal visits 
(ANC1, ANC2, and non-study visits) was four, and iden-
tical between trial arms. Two women had mild hyperten-
sion at ANC1 (both controls) (diastolic blood pressure 
90–99 mmHg, systolic 140–149 mmHg), and none were 
hypertensive at ANC2. There was no difference in mean 
height change between baseline and ANC1 between 
groups (iron, 1.3 ± (SD) 1.2  cm; control 1.3 ± 1.5  cm, 
P = 0.83).

Birth outcomes by trial arm
The mean birthweight was 100  g lower in the iron 
group (95% CI 205:5), Padj = 0.033), with a greater risk 
of LBW (OR: 1.34 (0.99–1.81) of borderline significance 
(P = − 0.062) (Table 2). Mean gestational age at birth was 
264.0 days in iron-supplemented women and 269.4 days 
in controls (Padj = 0.012). In the iron arm, the whole dis-
tribution curve for gestational age at delivery in livebirths 
was shifted to the left (Fig.  2). For iron-supplemented 
women PTB was more frequent at both < 37  weeks 
(27.5% vs 13.9%; Padj < 0.001) and < 34  weeks (9.4% vs 
4.4%; Padj = 0.069), (Table  2). The 6 stillbirths of known 
gestation born to mothers receiving iron had a mean ges-
tation of 250 days and of these, 3 (50%) were < 37 weeks 
and 4 intrapartum. In the control arm 10 stillbirths had a 
mean gestation of 245 days and 5 (50%) were < 37 weeks 
and 7 intrapartum. In 13 of the 14 PTB births < 34 weeks 
in supplemented women, tablet adherence was between 

69% and 100%, compared to only 2 of the 6 in the control 
group (Fig. 3).

Almost one-third of babies were growth restricted 
(SGA), but incidence did not differ significantly by trial 
arm (Table 2). Nine neonatal deaths occurred—six were 
babies of women who received iron. Approximately half 
of all placentae had histological evidence of past malaria 
infection, and chronic placental malaria was more fre-
quent in women receiving iron although this difference 
did not reach statistical significance (adjusted RR = 1.30, 
Padj = 0.25, Table 2). Grade 2 or 3 chorioamnionitis com-
monly occurred (mean 44.7%), with marginally lower 
prevalence in women receiving iron (Padj = 0.050).

Association between birth outcomes, inflammation 
and infection
Plasma CRP concentrations did not differ between 
trial arms at either ANC1 or ANC2 (Additional file  2: 
Table  S2). Therefore the two arms were pooled for 
exploratory analyses of the associations between inflam-
mation, PTB and SGA. Mean CRP concentrations were 
significantly raised in women with PTB, with high val-
ues (> 5  mg/l) more prevalent at both ANC1 (adjusted 
risk ratio 1.60, P = 0.044), and ANC2 (adjusted risk ratio 
2.06, P = 0.034) after adjustment for assessment month 
(Table  3). Values > 10  mg/l were also more prevalent at 
ANC1 (P = 0.036) and ANC2 (P = 0.26), (Table 3). Mean 
maternal CRP concentrations were increased with SGA 
outcomes, with values > 5  mg/l less frequent at ANC1 
amongst mothers of SGA babies (adjusted RR = 0.62, 
P = 0.009) (Table 3). CRP values at ANC2 or at baseline 
did not differ significantly between women with SGA 
compared to AGA outcomes.

Genital tract infection biomarkers at enrolment, 
ANC1, or ANC2 showed no significant associations 
with preterm/term outcomes (Table  S3, Additional File 
2), or SGA/AGA outcomes (Additional file 2: Table S4). 
All women (one missing) had a negative syphilis test at 
ANC1.

Seasonal patterns and birth outcomes
Figure  4 shows plots of seasonality giving the two trial 
arms separately for birth months between January and 
December. The birth and assessment month distributions 
were similar between trial arms. PTB incidence showed 
a striking difference in seasonality, mainly in those born 
in the malaria transmission period towards the end of 
the year. Women receiving iron showed not only a higher 

d  Ratio of sTfR (mg/l) to log10 ferritin (µg/l) > 5.6
e  ANC1, ANC2 and non-study ANC visits

Table 1  (continued)
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mean rate (P = 0.001) but also a stronger seasonal effect 
(interaction test P = 0.017) with peak PTB incidence 
of approximately 50%, compared to less than 20% in 
controls.

SGA showed a weaker seasonality with a definite low 
period at the end of the year, but with no evidence of arm 
differences (P = 0.28). Low birthweight (LBW) combines 
PTB and SGA and showed a strong, clear, seasonal effect 
(P < 0.001), with no significant difference between trial 
arms (P = 0.82).

The seasonal analysis showed a marked cyclic pat-
tern for chronic placental malaria (P < 0.001) with peak 
prevalence months late in the year, but with no sig-
nificant difference by trial arm (P = 0.30) (Fig.  4). For 

chorioamnionitis (grades 2 and 3) the seasonal pat-
tern (P = 0.046) was less marked and peak prevalence 
occurred in the early drier months of the year, with no 
difference by trial arm (P = 0.67). Seasonal variation was 
also observed for maternal CRP concentration in late 
pregnancy (P < 0.001), with a peak for those delivering 
late in the year, and no difference by trial arm.

Placental pathology in relation to PTB or SGA
Similar numbers of placental biopsies (n = 86 and 92) 
were available for each trial arm. Placental samples 
were not available for home deliveries or those en route 
to hospital, for retained placenta, or where maternal/

Table 2  Birth outcomes by trial arm

a  Gestational age is by ultrasound at ANC1 except one by Ballard assessment at birth; Preterm: 20–36 completed weeks, or 20 to 33 completed weeks
b  Relative risk for the categorical variables; difference in days or g for gestation and weight
c  Adjusted for MUAC at baseline, bed net use to ANC1 or last follow-up, and birth month
d  Based on full analysis dataset, n = 435
e  Based on 307 with post-delivery assessment
f  Based on 181 with a placental biopsy. Acute infection: only parasites and minimal hemozoin deposition in the macrophages but not fibrin

Chronic infection: parasites and hemozoin deposition; Past infection: hemozoin usually mixed with fibrin but no parasites
g  Severity of acute chorioamnionitis and funiculitis (acute histologic chorioamnionitis) was graded histologically as early (grade 1), intermediate (grade 2) and 
advanced (grade 3) following the Redline-classification [17, 18]

Outcomea n missing Iron Control Relative risk/
differenceb

P Adjusted relative 
risk/differencec

Pc
adj

Infant

 Neonatal death, n/N 
(%)d

433 0 6/231 (2.6) 3/202 (1.5) 1.75 (0.44; 6.93) 0.41 1.70 (0.43;6.80) 0.44

 Livebirth male, n/N 
(%)d

409 24 106/219 (48.4) 101/190 (53.2) 0.91 (0.75; 1.10) 0.34 0.89 (0.74;1.08) 0.25

 Gestation, 
days ± SDe

286 21 264.0 ± 17.5 [14 
missing]

269.4 ± 17.3 [7 miss-
ing]

− 5.36 (− 9.42; − 1.30) 0.010 − 5.21 (− 9.26; − 1.16) 0.012

 Preterm < 37 weeks, 
n/N (%)e

286 21 41/149 (27.5) 19/137 (13.9) 1.98 (1.21; 3.25) 0.004 2.24 (1.39; 3.61) < 0.001

 Preterm < 34 weeks, 
n/N (%)e

286 21 14/149 (9.4) 6/137 (4.4) 2.15 (0.85; 5.45) 0.091 2.25 (0.89; 5.67) 0.069

 Post-
term > 41 weeks, 
n/N (%)e

286 21 4/149 (2.7) 9/137 (6.6) 0.41 (0.13; 1.30) 0.11 0.41 (0.13; 1.31) 0.11

 Birthweight, g ± SDe 294 13 2640 ± 486 [8 miss-
ing]

2740 ± 420 [5 miss-
ing]

− 100 (− 205; 5) 0.062 − 111 (− 213; − 9) 0.033

 Low birthweight, 
n/N (%)e

294 13 54/155 (34.8) 40/139 (28.8) 1.21 (0.86; 1.70) 0.27 1.34 (0.99; 1.81) 0.062

 SGA, n/N (%)e 277 30 41/143 (28.7) 48/134 (35.8) 0.80 (0.57; 1.13) 0.20 0.82 (0.59; 1.14) 0.25

Placental pathology, n/N (%)f

 Acute malaria 181 0 5/89 (5.6) 7/92 (7.6) 0.74 (0.24; 2.26) 0.59 0.84 (0.28; 2.53) 0.76

 Chronic malaria 181 0 28/89 (31.5) 20/92 (21.7) 1.45 (0.88; 2.38) 0.14 1.30 (0.84; 1.99) 0.25

 Past malaria 181 0 44/89 (49.4) 52/92 (56.5) 0.87 (0.66; 1.16) 0.34 0.89 (0.71; 1.11) 0.29

 Chorioamnionitis, 
grade 3g

179 2 6/89 (6.7) 7/90 (7.8) 0.87 (0.30; 2.50) 0.79 0.87 (0.3; 2.51) 0.80

 Chorioamnionitis, 
grade 2 and 3

179 2 36/89 (40.4) 44/90 (48.9) 0.83 (0.59; 1.15) 0.26 0.75 (0.58–0.97) 0.050
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newborn illness at delivery made collection difficult. 
Chronic placental malaria was associated with a 2.00 
(95% CI 1.06:3.78) fold increased risk of PTB unad-
justed for season (41.9% vs 23.3%, P = 0.039), and a risk 
ratio of 1.49 (95% CI 0.75:2.94), after adjustment for 
season (Padj = 0.26), (Table 4). Acute or chronic placen-
tal malaria were not significantly associated with SGA 
risk. Chorioamnionitis (grades 2 or 3) was not signifi-
cantly associated with either outcome.

Discussion
Weekly iron and folic acid supplementation, given to 
young women for up to 18 months preceding pregnancy 
and until the first antenatal visit, significantly shortened 
gestational age and increased the incidence of spontane-
ous PTB at less than 37 weeks. PTB incidence followed a 
marked seasonal pattern, with a peak incidence of around 
50% in women receiving iron supplements, compared 
with less than 20% in women receiving folic acid alone. 
This seasonal peak corresponded with that for chronic 
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Fig. 2  Gestational age distribution in days of livebirths in iron and control arms. Vertical stippled lines indicate 43 weeks and 37 weeks gestation

Fig. 3  Gestation at birth by directly observed treatment adherence based on percentage of scheduled treatments received. Upper horizontal line: 
37 weeks gestation; lower horizontal line 34 weeks gestation. Stillbirths plotted with open symbols
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placental malaria infection towards the end of the rainy 
season. Chorioamnionitis, another important infectious 
cause of PTB, was marginally significantly increased 
in the dry season, but not increased in supplemented 
women.

Supplement adherence was balanced between trial 
arms in wet and dry seasons with good weekly adher-
ence (69–100%). Iron deficiency prevalence doubled 
in both trial arms between ANC1 and ANC2. Iron sta-
tus improves in early pregnancy in these women com-
pared to their non-pregnant counterparts [15], and an 
increase in iron deficiency prevalence between ANC1 
and ANC2 would be expected if later gestational iron 
requirements were not met. As the inter-quartile age 

range was 16–18 years continued linear growth may still 
be occurring, further increasing iron requirements [21]. 
IPTp uptake for ≥ two doses was slightly lower in the iron 
arm, which can primarily be attributed to some deliveries 
occurring in iron-supplemented women prior to receipt 
of the second IPTp dose.

Mean gestational age, PTB, birthweight and placental 
malaria were four of the pre-specified secondary out-
comes for the pregnant cohort, and as some of these 
outcomes admitted multiple time points or definitions 
a rigorous allowance for multiple testing is not possible. 
However, the significance level was such (P < 0.001 for 
PTB) that these results are unlikely to be chance find-
ings. Nevertheless, some caution is required, and further 

Table 3  C-reactive protein concentration at baseline, ANC1, or ANC2, for preterm/term or SGA/AGA outcomes

Antenatal clinic visits: ANC1 scheduled at 13–16 weeks gestation; ANC2 at 33–36 weeks gestation

AGA​ appropriate for gestational age, SGA small for gestational age
a  N(%) for categorical variables; mean ± SD for log(CRP)
b  Relative risk for the categorical variables; difference in log10 CRP
c  Adjusted for assessment month

Parameter mg/l n Outcomea Difference or Relative 
riska (95% CI)

P Adjusted difference 
or relative riskb (95% CI)

Pc
adj

Term Preterm

Baseline

 Log CRP, ± SD 280 − 0.2 ± 0.7 − 0.09 ± 0.7 1.18 (0.85; 1.63) 0.32 1.20 (0.87; 1.65) 0.26

 CRP > 5, n/N (%) 280 20/221 (9) 6/59 (10) 1.11 (0.53; 2.33) 0.79 1.14 (0.55; 2.35) 0.74

 CRP > 10, n/N (%) 280 8/221 (4) 4/59 (7) 1.62 (0.70; 3.75) 0.31 1.65 (0.73; 3.74) 0.31

ANC1

 Log CRP, ± SD 282 0.6 ± 0.7 0.7 ± 0.7 1.28 (0.91; 1.80) 0.15 1.33 (0.94;1.89) 0.097

 CRP > 5, n/N (%) 282 104/223 (47) 36/59 (61) 1.59 (0.99; 2.54) 0.049 1.60 (1.00; 2.55) 0.044

 CRP > 10, n/N (%) 282 69/223 (31) 26/59 (44) 1.55 (0.99; 2.44) 0.062 1.63 (1.04; 2.56) 0.036

ANC2

 Log CRP, ± SD 239 0.5 ± 0.7 0.9 ± 0.6 2.11 (1.25; 3.58) 0.004 1.78 (1.05; 3.00) 0.023

 CRP > 5, n/N (%) 239 74/208 (36) 19/31 (61) 2.49 (1.26; 4.90) 0.007 2.06 (1.04; 4.10) 0.034

 CRP > 10, n/N (%) 239 49/208 (24) 12/31 (38) 1.84 (0.95; 3.58) 0.082 1.48 (0.75; 2.91) 0.26

Parameter mg/l n Outcomea Difference or relative 
riska (95% CI)

P Adjusted difference 
or relative Riskb (95% CI)

Pc
adj

AGA​ SGA

Baseline

 Log CRP, ± SD 271 − 0.2 ± 0.7 − 0.1 ± 0.7 1.06 (0.83; 1.35) 0.67 1.10 (0.86; 1.4) 0.51

 CRP > 5, n/N (%) 271 15/183 (8) 11/88 (13) 1.35 (0.83; 2.19) 0.27 1.37 (0.86; 2.17) 0.23

 CRP > 10 n/N (%) 271 7/183 (4) 5/88 (6) 1.30 (0.65; 2.61) 0.50 1.41 (0.76; 2.63) 0.37

ANC1

 Log CRP, ± SD 273 0.7 ± 0.7 0.4 ± 0.7 0.75 (0.60; 0.94) 0.012 0.77 (0.61; 0.96) 0.018

 CRP > 5, n/N (%) 273 103/185 (56) 33/88 (38) 0.60 (0.42; 0.87) 0.005 0.62 (0.44; 0.09) 0.009

 CRP > 10, n/N (%) 273 70/185 (38) 23/88 (26) 0.68 (0.46;1.03) 0.054 0.71 (0.47; 1.07) 0.086

ANC2

 Log CRP, ± SD 236 0.5 ± 0.7 0.6 ± 0.7 1.08 (0.83; 1.41) 0.58 1.10 (0.84; 1.44) 0.51

 CRP > 5, n/N (%) 236 61/155 (39) 32/81 (40) 1.00 (0.70; 1.44) 0.98 1.02 (0.70; 1.47) 0.92

 CRP > 10, n/N (%) 236 40/155 (26) 21/81 (26) 1.00 (0.67; 1.50) 0.98 1.02 (0.68; 1.54) 0.91
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studies are needed to confirm these findings. A trial limi-
tation was attrition due to out-migration from the study 
area, leading to delivery attendance outside the study 
location. However, attrition was equivalent between trial 
arms and its level unsurprising given the long period of 
follow-up, and the adolescent profile of a culture in which 
young women move with their husbands at the time of 
marriage.

Genital tract infection prevalence (Trichomonas vagi-
nalis, BV), which can increase chorioamnionitis and/or 
PTB risk [22], was equivalent between trial arms at ANC1 
as previously reported [9]. Exploratory analyses showed 
no significant association of Trichomonas vaginalis, BV 
or chorioamnionitis with PTB. As a young population, 
women were only recently exposed to regular sexual 

activity and risk of sexually transmitted infections, and 
syphilis prevalence was zero at ANC1 [8]. Small stature 
is considered a risk factor for term SGA and PTB [23], 
but there were no baseline differences between trial arms 
in maternal stature, or change in mean height between 
baseline and ANC1. All women were primigravidae, and 
over 90% were adolescent, an important risk factor for 
PTB [24]. As mean age and the proportion of younger 
women (< 17 years) were almost identical between arms, 
this is an unlikely source of bias. Hypertension, which 
occurs more commonly in young nulliparae and is asso-
ciated with PTB, was infrequent, occurring in only two 
women (0.7%), which is at the lower prevalence limit for 
children and adolescents in Western Africa (range 0.2–
6.3%) [25].
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Fig. 4  Seasonal patterns and birth outcomes. Seasonal trends by trial arm in a PTB; b SGA; c LBW; d chronic placental malaria; e chorioamnionitis 
and f CRP at ANC2 assessment. The upper row shows the proportion (with 95% confidence intervals) for PTB, SGA and LBW outcomes by month of 
birth, with the months May/June to September/October occurring in the rainy season, and the months November through April in the dry season. 
The shaded region (July–September) represents the main malaria transmission season [13]. The lower panel provides the seasonal patterns by trial 
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trend; Pa is a test for difference between arms adjusting for season (birth month); Pac is a test for an interaction between seasonality and arm



Page 11 of 14Brabin et al. Malar J          (2019) 18:161 

The gestational age distribution curve was shifted to 
the left in iron-supplemented women suggesting a pop-
ulation effect had resulted in more preterm deliveries. 
Population estimates for prevalence of preterm delivery 
in sub-Saharan Africa in 2014 range from 8.6 to 16.7% 
[26], and are lower than the mean prevalence of 20.9% 
reported here. Previous estimates from malaria endemic 
countries range from 6.4 to 9.4% [27], but were not 
based on ultrasound measurement, which is required 
for accurate assessment [28]. Compared with studies in 
sub-Saharan Africa that used ultrasound, mean gesta-
tional age in iron-supplemented women in the present 
trial was 10.4  days shorter than in Tanzanian women 
(mainly older multigravidae) receiving daily antenatal 
iron (274.4 days) [29], and 6.2 days shorter than a popu-
lation sample of Malawian women (270.2 days) in which 
young age (< 20 years) and persistent malaria were iden-
tified as significant negative risk factors [30]. In Malian 
primigravidae with malaria infection, mean ultrasound 
dated gestational age was 268.9 days and PTB prevalence 
15.8% [31]. Mean gestational ages in the Malawian and 
Malian studies were comparable to those of women in 
the control arm of the present trial (269.4 days). In Bur-
kina Faso SGA did not differ by intervention arm, but the 
32.1% incidence was marginally higher than the global 
estimates for sub-Saharan Africa in 2010 which ranged 
from 21.7% to 28.8% [27]. Thus, incidence of both PTB 
and SGA outcomes was high in this trial in both study 
arms compared to other estimates, and this most likely 
reflects the young age and nulliparity of the population. 

This was further exacerbated by iron supplementation, 
leading to excess PTB in the intervention arm.

There was no reduction in iron deficiency or anaemia 
at ANC1 in the iron-supplemented cohort, despite good 
weekly supplement adherence [8, 9]. This was attributed 
to poor iron absorption resulting from raised hepcidin 
concentration [32], and tissue-specific gut mucosal dam-
age secondary to chronic malaria [33]. Many women had 
asymptomatic malaria which, as a result, was untreated 
[8, 34]. Women receiving iron had received significantly 
more antibiotic and antifungal prescriptions predomi-
nantly for enteric infections [9]. Chronic sequestration of 
P. falciparum-infected erythrocytes within gut endothe-
lium would contribute to gut-barrier dysfunction [35, 
36]. A combination of chronic systemic malarial inflam-
mation [31], and chronic enteric infection risk would cre-
ate a ‘double hit’ mechanism [37]. There was significantly 
higher plasma CRP concentration, indicating systemic 
inflammation, in women with PTB, with a risk ratio at 
ANC2 of 2.06 (95% CI 1.04:4.10) for raised values > 5. 
By comparison, in a meta-analysis from non-malaria 
endemic countries, raised plasma CRP was associated in 
mid-gestation with a risk ratio of 1.53 (95% CI 1.22:1.90) 
for spontaneous PTB [38]. Systemic [39, 40], and tissue-
level inflammation [33], would be expected to increase 
risk of labour and PTB [41]. However in this study, there 
were no treatment-associated differences in CRP, which 
was the only marker of inflammation available. Thus it 
could not substantiate a CRP-related mechanism, nor 
estimate direct and inflammation-mediated effects from 

Table 4  Placental pathology by preterm/term and AGA/SGA categories

AGA​ appropriate for gestational age, SGA small for gestational age
a  Acute: only parasites and minimal hemozoin deposition in the macrophages but not fibrin; Chronic: parasites and Hemozoin deposition; Past: hemozoin usually 
mixed with fibrin but no parasites. Severity of acute chorioamnionitis and funiculitis (acute histologic chorioamnionitis) was graded histologically as early (grade 1), 
intermediate (grade 2) and advanced (grade 3) following the Redline-classification [17, 18]
b  Adjusted for birth month

Placental pathology n/N (%)a n Term Preterm Relative risk (95% CI) P Adjusted relative 
risk (95% CI)

Pb
adj

Acute malaria 181 10/150 (6.7) 2/31 (6.5) 0.97 (0.26; 3.62) 0.97 0.99 (0.27; 3.66) 0.99

Chronic malaria 181 35/150 (23.3) 13/31 (41.9) 2.00 (1.06; 3.78) 0.039 1.49 (0.75; 2.94) 0.26

Past malaria 181 81/150 (54.0) 15/31 (48.4) 0.83 (0.44; 1.58) 0.57 1.08 (0.56; 2.08) 0.82

Chorioamnionitis grade 3 179 11/148 (7.4) 2/31 (6.5) 0.88 (0.23; 3.32) 0.85 1.00 (0.25; 4.00) 0.99

Chorioamnionitis grades 2 and 3 179 67/148 (45.3) 13/31 (41.9) 0.89 (0.46; 1.72) 0.73 0.96 (0.49; 1.87) 0.90

Placental pathology n/N (%)a n AGA​ SGA Relative risk (95% CI) P Adjusted relative 
risk (95% CI)

Pb
adj

Acute malaria 179 7/115 (6.1) 5/64 (7.8) 1.18 (0.58; 2.39) 0.66 1.03 (0.53; 1.99) 0.94

Chronic malaria 179 30/115 (26.1) 17/64 (26.6) 1.02 (0.65; 1.59) 0.95 0.80 (0.50; 1.27) 0.32

Past malaria 179 63/115 (54.8) 32/64 (50.0) 0.88 (0.60; 1.31) 0.54 1.06 (0.71; 1.57) 0.80

Chorioamnionitis grade 3 177 9/114 (7.9) 4/63 (6.3) 0.86 (0.37; 1.99) 0.70 1.02 (0.45; 2.27) 0.97

Chorioamnionitis grades 2 and 3 177 54/114 (47.4) 26/63 (41.3) 0.85 (0.57; 1.28) 0.43 1.04 (0.70; 1.54) 0.86
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the data available. Whether this reflects an absence of an 
inflammation-mediated effect, or a weakness in ascer-
tainment of inflammation, including use of enteric bio-
markers, is not clear.

SGA birth was not associated with raised CRP con-
centrations, and raised values were actually lower at 
ANC1 for this outcome. Previous studies in non-malaria 
endemic areas have reported a positive association with 
fetal growth restriction but only when CRP levels were 
very high (> 25  mg/l) [42], a weak positive association 
in late pregnancy [43], or no association [44]. In Papua 
New Guinea, CRP at enrolment and at delivery in women 
receiving sulphadoxine-pyrimethamine plus chloroquine 
(compared to sulphadoxine-pyrimethamine plus azithro-
mycin), was positively associated with PTB, but not SGA 
[45].

Conclusions
This trial provides evidence that long-term iron supple-
mentation leads to excess PTB in a malaria endemic area, 
predominantly associated with the malaria transmission 
season, with the risk of delivery under 37 weeks of 27.5% 
compared to 13.9% in non-iron-supplemented primi-
gravidae, and an average gestation 5 days shorter. While 
underlying mechanisms require further investigation, 
there is some evidence from the present study which 
implicates dual infection exposure. Before iron supple-
mentation can be recommended prior to the first preg-
nancy, malaria control must ensure improved uptake of 
IPTp-SP with reduction of chronic asymptomatic parasi-
taemias to avoid increasing risk of subsequent PTB. Early 
PTB precludes administration of later gestational doses 
of IPTp reducing protection. Routine iron supplements 
are not needed in populations, which have low preva-
lence of iron deficiency, such as in these young women. 
These findings are particularly relevant to adolescents 
living in sub-Saharan Africa where perennial malaria 
transmission occurs and where long-term iron supple-
mentation, as routinely offered to populations such as 
this, is potentially harmful.
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