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Abstract

Understanding the life cycle of Plasmodium vivax is fundamental for developing strategies aimed at controlling and
eliminating this parasitic species. Although advances in omic sciences and high-throughput techniques in recent
years have enabled the identification and characterization of proteins which might be participating in P vivax inva-
sion of target cells, exclusive parasite tropism for invading reticulocytes has become the main obstacle in maintaining
a continuous culture for this species. Such advance that would help in defining each parasite protein’s function in
the complex process of P vivax invasion, in addition to evaluating new therapeutic agents, is still a dream. Advances
related to maintenance, culture medium supplements and the use of different sources of reticulocytes and parasites
(strains and isolates) have been made regarding the development of an in vitro culture for P, vivax; however, only
some cultures having few replication cycles have been obtained to date, meaning that this parasite’s maintenance
goes beyond the technical components involved. Although it is still not yet clear which molecular mechanisms P
vivax prefers for invading young CD717 reticulocytes [early maturation stages (I-II-II)], changes related to mem-
brane proteins remodelling of such cells could form part of the explanation. The most relevant aspects regarding P
vivax in vitro culture and host cell characteristics have been analysed in this review to explain possible reasons why
the species’ continuous in vitro culture is so difficult to standardize. Some alternatives for P vivax in vitro culture have

also been described.
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Background

Continuous in vitro Plasmodium falciparum culture
(standardized in the 1970s) [1-4] has been an indispen-
sable tool for understanding the parasite’s life cycle and
identifying most proteins involved in erythrocyte inva-
sion, some of which have been tested as vaccine compo-
nents at clinical level [1-6]. Developing a methodology
enabling the continuous growth and propagation of Plas-
modium vivax (P. vivax being the second most important
species causing malaria in humans) has thus become a
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challenge for several research groups studying this para-
site [7-13].

Unfortunately, maintaining a continuous culture of P
vivax in vitro is still difficult, despite different aspects
having been studied and modified, ie. different cul-
ture media [13, 14], parasite [9, 15] and reticulocyte [7,
10] sources, added to the different methods for obtaining
and enriching invasion target cells [16]. It has only been
possible to maintain a culture in vitro for up to 26 months
to date, having <0.1% parasitaemia [14], which might be
due to merozoites (Mrz) losing their ability to re-invade
new host cells [11, 13, 14, 17, 18].

The forgoing has discouraged research orientated
towards knowing in detail the mechanism used by P
vivax for specifically invading reticulocytes; conse-
quently, there has been a delay in identifying new mol-
ecules, the function they fulfil and their antigenic and
immunogenic capability; such information is essential for
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selecting specific proteins to be included when develop-
ing parasite control methods.

This work has been aimed at reviewing aspects which
have been taken into account for standardizing an
in vitro P. vivax culture and proposes some alternatives
which could be considered.

The current state of Plasmodium vivax biology
Plasmodium vivax is a parasite causing malaria in
humans; it has been included on the international health
agenda regarding its early eradication, mainly due to the
high morbidity rates it causes and its wide geographical
distribution [6]. This parasite species displays particu-
lar biological characteristics, such as hypnozoite devel-
opment in the liver and rapid gametocyte formation.
Interestingly, the parasite exclusively infects immature
erythrocytes (reticulocytes), representing just 1-2% of
total red blood cells (RBC) from adult human peripheral
blood. These cells are fragile, have rapid maturation and
complex procedures are required for obtaining enriched
samples, hence maintaining a P vivax continuous culture
in vitro is extremely difficult [16].
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The absence of an in vitro culture in P. vivax could be
considered as “the spoke in the wheel” which has caused
a considerable delay (between 5 and 10 years) in execut-
ing certain types of studies, such as omic sciences, inva-
sion inhibition and determining adhesin-type ligands,
epitopes and antigens [19-21], i.e. compared to those
for P. falciparum [22-24]. In fact, more than 50 proteins
involved in P. falciparum binding to and invading target
cells have now been described as well as some receptors
for them [25-28]. By contrast, only 23 proteins associ-
ated with P vivax invasion of reticulocytes have been
characterized (using parasites from patients [29-31] and
infected animals’ samples [32-35]) and few receptors
have been studied (Fig. 1). The proteins characterized to
date have been tryptophan rich antigens (PvTRAg26.3,
PvTRAg33.5, PvTRAg34, PvTRAg35.2, PvTRAg36
(band 3 as receptor) [36], PvITRAg36.6, PvTRAg38
(basigin [37] and band 3 [38] as receptors), PvTRAg40,
PvTRAg69.4, PvTRAg74 (band 3 as receptor) [36], rhop-
try neck protein 5 (RON5) [39], reticulocyte-binding
proteins RBP-1a, RBP-1b [40], RBP-2b (CD71 as recep-
tor) [41, 42], erythrocyte binding protein 2 (EBP-2) [43],
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Fig. 1 Plasmodium vivax and P, falciparum merozoite host cell adhesion proteins. The figure shows the P, vivax (left-hand side) and P, falciparum
(right-hand side) proteins described to date having a binding-related function regarding receptors identified on target cells: reticulocyte and
mature erythrocytes, respectively. Mrz proteins' subcellular localization is indicated. An asterisk indicates those molecules with unknown subcellular
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GPI-anchored micronemal antigen (GAMA) [44], reticu-
locyte binding surface antigen (RBSA) [45], the Dufty
binding protein (DBP) (DARC as receptor) [46, 47], retic-
ulocyte binding protein 1 (RBP-1) [48], merozoite surface
protein 1 (MSP-1) (possible receptor, band 3) [49], apical
membrane antigen 1 (AMA-1) (chymotrypsin- and neu-
raminidase-sensitive receptor, GPB?) [50] and rhoptry
neck proteins 2 and 4 (RON2 and RON4) [51].

The small list of characterized ligands and receptors
reveals the tremendous challenge faced by research-
ers considering studying P vivax in terms of continuous
propagation to understand different aspects of the para-
site’s basic biology. In view of this and aimed at making
significant advances in clinical and basic research regard-
ing the species, several groups have focused on stand-
ardizing a continuous in vitro culture system for P. vivax
blood stages for which some essential parameters for
optimizing parasite growth and development have been
determined.

Culturing Plasmodium vivax

The first reports about culturing malarial Plasmodium
date from the beginning of the twentieth century, some
techniques being more controversial than others (i.e. par-
asite culture from infected water and keeping parasites
alive in milk for several days) [52]. Although the first suc-
cessful P vivax in vitro culture was reported in 1912 [53,
54], a base protocol for propagating this parasite species
was only established at the end of the 1970s [4, 55, 56].
Since then, one or more of the factors involved in the cul-
ture have been modified in various attempts at finding an
efficient methodology (Fig. 2). However, it has not been
possible to date to maintain a culture, given two main
problems: parasitaemia dynamics and the amount of days
for maintaining a P. vivax in vitro culture. Although is not
clear why P, vivax Mrz in culture lose their ability to re-
invade new host cells, the isolate or parasite strain and
target cells may have intrinsic characteristics which can
influence P. vivax propagation (despite modifications to
the culture media). The factors related to maintaining a
P, vivax in vitro culture (i.e. culture media, parasite and
reticulocyte origin) will therefore be analysed.

Culture media and supplements

Several media and supplement combinations have been
tested to ensure the conditions and nutrients required
for optimum P. vivax growth (Fig. 2). The first reported
medias for P vivax in vitro culture were modified Har-
vard, RPMI-1640, Waymouth’s and SCMI 612 sup-
plemented media [4, 53, 57] (Fig. 2); it was seen that
only SCMI 612 medium improved parasite viability
[58] (Table 1). Other research showed that RPMI 1640
medium supplemented with MgCl, [59], ascorbic acid,
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hypoxanthine, vitamin B12, choline and biotin [60]
improved parasite maturation. However, in later studies
in which RPMI 1640 medium was used [12, 56, 61-65],
even in mixture with different compounds and salts
(MgS0,, KH,P0, and CaCl,) and 50% AB* human serum,
there was no improvement in parasitic density, suggest-
ing that the RPMI 1640 media is not appropriate for P
vivax continuous growth and development [65].

McCoy’s5A medium has also been routinely used [7,
9-11, 13, 14, 17, 18, 66, 67] in combination with various
supplements such as D-glucose and L-glutamine, or just
with 20% or 25% AB™ human serum [9, 10, 17, 18]. It has
been reported that a medium consisting of McCoy’s5A
supplemented with HEPES, NaHCO,, p-glucose, gen-
tamycin and 50% AB" human serum maintains parasite
density (10 parasites/pL) during the first 5 days of cul-
ture. However, such parasite density can be maintained
after 5 days using just media supplemented with 25%
AB' human serum [14]. Two compounds improving
parasite development in McCoy’s5A medium have been
reported recently: Albumax II [67] and GlutaMAX [15,
68] (Fig. 2, Table 1). GlutaMAX (r-alanyl-L-glutamine
dipeptide) did indeed improve parasite viability, growth
and development compared to L-glutamine as this com-
pound does not break down to form toxic by-products,
such as ammonia, formed by traditional L-glutamine
[15]. This highlighted the fact that P vivax could be very
sensitive to the accumulation of waste or toxic products
in in vitro conditions.

The use of Dulbecco’s Modified Eagle Medium
(DMEM) for P. vivax culture supplemented with L-glu-
tamine, HEPES and hypoxanthine has been reported
recently. Parasitaemia was maintained for 233 days and
was ended because of bacterial contamination [69]. The
fluctuation in parasitaemia using DMEM was similar
to that observed when the parasite has been grown in
McCoy’s5A medium [14], suggesting that these media
(McCoy’s 5A and DMEM) are useful for culturing and
maintaining parasite maturation and replication in vitro.
Future trials should be conducted with McCoy’s5A or
DMEM medium, supplemented with 25% human serum
(with Glutamax and Albumax) to evaluate whether
parasite density can be maintained and/or increased in
culture.

Parasite source

The parasite has been used from two sources for stand-
ardizing P vivax in vitro culture, ie. isolated from
humans and from primates (Fig. 2, Table 1). Regardless of
the source, it has been observed that keeping the culture
in static conditions improves culture parasitaemia [15,
61] as well as depleting white blood cell amount in reticu-
locyte samples, as leukocytes’ phagocytic activity against
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Fig. 2 Conditions evaluated for culturing Plasmodium vivax in vitro. The figure shows modifications made to culture medium, parasite sources and
the target cells which have been used in culturing the P vivax parasite. Each combination evaluated is described in the culture medium section.
For example, 14 indicates RPMI 1640 medium, which contains HEPES, NaHCO;, neomycin, vitamin B12, hypoxanthine, ascorbic acid, MgCl,, biotin,
choline and 15% AB™* human serum (box showing typology). The reticulocyte source section lists these cells’enrichment methodology using the
letters a—e. Sections of the graphic enclosed by a red discontinuous line indicate the best target cell sources and/or enrichment methods available
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parasites affects their invasion [53, 61]. Likewise, it has
been shown that cryopreservation [9, 18] enables main-
taining parasite viability and invasive capability when
preserved and stored for days [13, 69] or even years [9].
Difficulty related to variation in both longevity and
parasitaemia has occurred regarding in vitro culture with
parasites obtained from humans. For example, it has
been reported that different isolates could be maintained
in culture for several days: i.e. from 10 or 30 days [12],
from 2 to 8 days or up to 85 days (more than 2 months)
[10]. An in vitro culture of 3 P vivax isolates was recently
maintained for more than 1 year (26 months), having
~0.01% parasitaemia [14]. Other research has shown that
culture parasitaemia can increase almost tenfold when

using parasites from isolates which were enriched during
ring stage by Percoll gradient [11, 68]. Despite this, the
parasite progressively loses its invasion ability, a problem
which has not yet been resolved to date. These studies
suggested that each P vivax isolate has its own charac-
teristics related to adaptation to in vitro culture and thus
their invasion capability, multiplication rate and para-
sitaemia are variables which must be considered when
standardizing a culture for each of them. This hypothesis
can be supported by a study by Russell et al., who evalu-
ated umbilical cord blood (UCB) reticulocyte invasion
inhibition using 85 P, vivax clinical isolates. They found
that invasion efficiency was constant for each specific
isolate but that 85.79% of the total variance depended on
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isolate type [11]. Heterogeneity concerning human iso-
lates’ invasion efficacy and P. vivax parasitaemia density
variation thus makes the methodologies used for cultur-
ing the parasite not suitable for studying its biology and
further complicates the development of a robust and reli-
able culture method.

Unlike parasites obtained from humans, primate-
adapted P, vivax strains can be used to start in vitro cul-
ture anytime, given their availability. This is why some
research groups have worked with several P. vivax strains
(Fig. 2, Table 1) [56, 57, 61, 62, 70] which were able to
adapt to invade erythroid cells in vitro (from humans suf-
fering from haemochromatosis [7, 15]), owl monkey cells
[7] and reticulocytes obtained from the maturation of
UCB haematopoietic stem cells (HSC) - CD34" [17], cul-
tures reaching >0.5% parasitaemia. These results support
the notion that monkey-adapted P. vivax strains do not
lose their capability to invade, regardless of cell source,
and therefore, represent a good alternative for establish-
ing a parasite culture.

Considering invasion efficacy variability in cultures
from human sources and the great adaptability of strains
in monkeys, it can be suggested that the same parasite
strain must be used during attempts at standardization
to establish the basic and necessary conditions for main-
taining a long-term in vitro culture.

Target cell source

Obtaining reticulocytes for continuous supplementation
in culture has been a huge inconvenience since these cells
only form 1 to 2% of human peripheral blood, mature
quickly, are fragile and have low viability. UCB (con-
taining 6.9-7.9% reticulocytes), peripheral blood from
humans or splenectomized monkeys, blood from haemo-
chromatosis patients (14—17% reticulocytes) and HSC
(variable reticulocyte percentages) have been used as
reticulocyte sources for standardizing an in vitro P. vivax
parasite culture [7, 12, 61] (Fig. 2, Table 1). Different tech-
niques such as density gradients (Percoll and Nycodenz),
ultra-centrifugation and/or immunomagnetic separation
have also been used for obtaining a greater percentage of
reticulocytes in culture, Nycodenz being one of the most
appropriate compounds as it has had no notable toxic
effects on cells [7, 14, 15] (Fig. 2).

Although UCB are a good source of reticulocytes, it has
been shown that they do not support the parasite’s full
development and are easily lysed [61]. Fetal haemoglobin
in such erythroid cells apparently produces an inhibitory
effect for P vivax growth, equivalent to that reported for
P, falciparum, which does not grow adequately in erythro-
cytes containing fetal haemoglobin [71, 72]. The forgoing
has been supported since it has been reported that reticu-
locytes from CD34% erythroid progenitors (derived from
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adult peripheral blood or bone marrow) and from adults’
peripheral blood lacking fetal haemoglobin could improve
P, vivax invasion [66] regarding maturation and gameto-
cyte production [14]. Whilst these studies have shown that
UCB does not seem to be very suitable for standardizing
an in vitro P, vivax culture, another study has shown that
fetal haemoglobin caused no alteration in parasite growth
and up to 0.4% parasitaemia was reached during the first
days of culture [11]. Although it is not clear how haemo-
globin could alter parasite development, this effect might
depend on the reticulocyte’s maturation stages (variability)
and the availability of these stages in the UCB source.

Another great concern related to using reticulocytes is
their rapid maturation. It has been suggested that these
target cells can be frozen to provide a reserve and then
used for supplementing a culture when required. Differ-
ent studies have reported that both fresh reticulocytes
and freshly thawed reticulocytes were susceptible to
invasion by P. vivax Mrz. Interestingly, such susceptibil-
ity did not depend on reticulocyte source since they were
obtained from UCB [18], haemochromatosis patients (in
which the cells were enriched using Percoll gradient [7,
18] or differential centrifugation [7]) and human cord
HSCs [9, 17] (enriched by Percoll density gradient [10]).
Notably, cryopreserved cells which were then thawed had
up to 70% viability and such percentage remained stable
compared to that for fresh samples [9].

According to the literature, haemochromatosis patients
have been one of the best reticulocyte (fresh or cryopre-
served) sources. These reticulocytes, enriched by differ-
ential centrifugation in 20% homologous plasma [7, 15],
were easily invaded, able to support both parasite growth
and invasion [12] and maintain a stable schizont percent-
age [7]. Although Percoll gradient has been widely used
for enriching reticulocytes obtained from haemochro-
matosis patients (Fig. 2), two studies have reported that
cell viability and stability could be affected by damage to
or the loss of some membrane receptors which might be
essential for P vivax invasion [7, 15]. Despite this, one of
the drawbacks of this target cell source is that haemo-
chromatosis mainly occurs in Caucasians, a type of retic-
ulocyte not normally accessible for researchers outside
Europe or North America [14]. Using HSC-derived retic-
ulocytes could guarantee a more homogenous and stand-
ardized cell population which would enable obtaining a
high reticulocyte concentration (>20%) [9], necessary for
maintaining P. vivax cultures.

Factors such as culture medium, as well as parasite
and reticulocyte sources have been revised and possible
modifications which could improve parasite development
in vitro have been pointed out. However, target cells must
be analysed in depth in relation to their intrinsic charac-
teristics enabling the parasite to invade them.
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Reticulocyte receptors: the new molecular keys?

Taking into account that P. vivax Mrz only invade reticu-
locytes, the next question arises: Which characteristics
do reticulocytes have so that P vivax can only invade
this type of cell? Immature reticulocytes in bone marrow
contain ribonucleic acid (RNA) and undergo different
biochemical, biophysical and metabolic changes during
their maturation to normocytes within a period of 72 h
[73]. The differences between reticulocytes and normo-
cytes have been studied at molecular level in murine and
human models [74—-76]. It has been found that the main
difference between these two cells is the abundance of
their receptors, since more than 60% of proteins quanti-
fied in immature erythrocytes became reduced (from
2 to 100 times) as they matured to normocytes, whilst
around 5% had higher expression levels. Receptors such
as transferrin receptor (CD71) on reticulocyte mem-
brane decrease progressively until their total absence in
normocytes [77, 78]; this, together with cytoplasmatic
RNA (Thiazole Orange stained, TO) concentration, has
enabled classifying the reticulocyte population into four
groups: Heilmeyer stage I (CD71M¢"TOheY), Heilmeyer
stages IT and III (CD71°*TO™¢) and Heilmeyer stage IV
(CD7-TO"™) [73, 79].

Most P vivax in vitro culture studies have been
restricted to using stage III (the first to emerge from bone
marrow), stage IV or mature reticulocyte (CD71"TO"Y)
populations. Using these two reticulocyte stages and their
rapid maturation could provide an explanation for why
the parasite loses its infective capability through various
replication cycles. This could also explain why less than
1% parasitaemia has only been achieved in most assays
performed to date [12, 14]. In line with the forgoing
hypothesis, it has been shown that cryopreserved para-
site isolates from patients can infect stage I reticulocytes
(CD71MeMTO Meh) representing only 0.02% in total blood
[79]. The infected cells mature rapidly and almost com-
pletely lose reticular matter 3 h post-invasion, thereby
showing that parasite invasion promotes rapid reticulo-
cyte maturation [79, 80]. Similar results have been found
by Shaw-Saliba et al., when evaluating a culture of Sal-I
strain parasites adapted in A. lemurinus monkeys with
CD71"e" reticulocytes. As expected, parasites prefer-
entially invaded stage I reticulocytes (CD71hhTQhigh)
and very few managed to invade stage IV reticulocytes
(CD71"TO"™) [15]. Research by Golenda and Udom-
sangpetch showed that P vivax development and inva-
sion levels were better using haemochromatosis patients’
blood; these results also support the previous hypothesis
[7, 12] as people suffering this type of anaemia produce a
larger amount of stage I reticulocytes (CD71M8"TOMe) to
balance the decrease of erythrocytes in blood flow [81].
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These observations lead to another question: Why can
P vivax Mrz only invade the most immature reticulocyte
stage? Several studies using different approaches could
provide an answer to this question. One such was related
to DARC receptor abundance on CD71Me"TQOMs" reticu-
locytes and conformational changes affecting such recep-
tor enabling the parasite to bind to and invade this type
of cell [82]. It has been found that although total DARC
protein remains constant throughout reticulocyte matu-
ration there is selective exposure of one DARC amino
acid sequence (QLDFEDVWNSSY) by conformational
changes before maturation which causes DBP to bind
more specifically to CD71"8"/TOM&" reticulocytes than
to other mature reticulocyte or erythrocyte subpopu-
lations [82]. Other studies showing P vivax proteins’
preference for binding to CD71high reticulocytes [44,
45] and evidence about RBP-2b binding to CD71 mem-
brane receptor have been published very recently [42].
The above highlights the most immature reticulocyte
stage (CD71Meh TOM8M) a5 the molecular key (receptor)
which P, vivax takes advantage of to invade and replicate
within cells. This could suggest that using reticulocytes
from bone marrow and/or from patients suffering differ-
ent types of haemolytic anaemia (i.e. haemochromato-
sis) could be appropriate for maintaining and developing
a continuous in vitro culture system involving P vivax
blood stages [83]. However, it would be ethically compli-
cated to work with samples from patients suffering from
some type of anaemia, which is why using stage I homog-
enous reticulocytes (CD71M8" TOh8") obtained from
HSC could be a viable alternative.

Others challenges to be faced

It has been demonstrated that P vivax DBP binds more
to reticulocytes having the Fya /Fyb™ phenotype [84],
which could be an advantage regarding parasite culture.

It would be expected that supplementing cultures with
a CD71Me"TOMeM enriched reticulocyte population and
having such phenotype should maintain parasitaemia,
invasion efficiency and a culture for a long time.

A new challenge today concerns the fact that enough
evidence has been amassed to indicate that the parasite
can also invade Dufty negative cells (Fya /Fyb’) via an as-
yet-unknown alternative invasion route [85]. This find-
ing suggests two possibilities; first, such P. vivax property
remains unknown due to this parasite’s sub-microscopic
and asymptomatic parasitaemia and secondly this could
be a new adaptation phenomenon where ligand-receptor
interaction routes different to DBP-DARC are acting as
survival strategy for propagating cells having the Fya™/
Fyb™ phenotype. Studies aimed at ascertaining whether
P vivax target cell invasion route is via the RBP2b-CD71
interaction using Duffy negative phenotype CD71Msh
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reticulocytes are in need [42]. Future assays should evalu-
ate whether the aforementioned factors could help stand-
ardize a P. vivax culture.

Other important considerations include knowing
whether the abundance of receptors (as has been showed
for DARC and CD71) or remodelling other proteins
during reticulocyte maturation (as has been shown for
DARC [82]) can have an impact on the development of a
P vivax in vitro culture.

This review has described different factors affecting P,
vivax in vitro culture, ranging from using several strains
and isolates to different target cell sources and physico-
chemical variations. Using the same parasite strain and
CD71M8"TOMeEM host cells could be a starting point for
removing the spoke in the wheel and advance knowledge
regarding P. vivax biology.
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