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Abstract 

Background:  Plasmodium parasites are known to impose fitness costs on their vertebrate hosts. Some of these costs 
are due to the activation of the immune response, which may divert resources away from self-maintenance. Plasmo-
dium parasites may also immuno-deplete their hosts. Thus, infected individuals may be less able to mount an immune 
response to a new pathogen than uninfected ones. However, this has been poorly investigated.

Methods:  The effect of Plasmodium infection on bird humoral immune response when encountering a novel 
antigen was tested. A laboratory experiment was conducted on canaries (Serinus canaria) experimentally infected 
with Plasmodium relictum (lineage SGS1) under controlled conditions. Birds were immune challenged with an intra-
pectoral injection of a novel non-pathogenic antigen (keyhole limpet haemocyanin, KLH). One week later they were 
challenged again. The immune responses to the primary and to the secondary contacts were quantified as anti-KLH 
antibody production via enzyme-linked immunosorbent assay (ELISA).

Results:  There was no significant difference in antibody production between uninfected and Plasmodium infected 
birds at both primary and secondary contact. However, Plasmodium parasite intensity in the blood increased after the 
primary contact with the antigen.

Conclusions:  There was no effect of Plasmodium infection on the magnitude of the humoral immune response. 
However, there was a cost of mounting an immune response in infected individuals as parasitaemia increased after 
the immune challenge, suggesting a trade-off between current control of chronic Plasmodium infection and invest-
ment against a new immune challenge.
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Background
Avian malarial parasites can impose fitness costs on their 
vertebrate hosts and several studies have shown that 
infection can lead to decreased reproductive success [1], 
decreased survival [2] or increased telomere degradation 
[3]. Part of these costs may be mediated by the activation 
of the host immune response which may be engaged in 
several life history trade-offs with for example self-main-
tenance, reproduction and survival [4, 5].

Immune functions require energy. For example, 
immune activation has been shown to depend on energy 
storage [6, 7] and to affect host metabolism [7–10]. The 

immune response may also be harmful because of its 
inherent propensity to cause auto-immunity and oxi-
dative stress, leading to host self-reactivity and dam-
age to somatic cells [11–13]. An increased susceptibility 
to oxidative damage due to immune activation [14] has 
also been linked to reduced survival [15, 16]. Therefore, 
a trade-off may occur between mounting an immune 
response and self-maintenance.

Parasites have also evolved evasion strategies to avoid 
the host immune defence and to establish in their host 
[17–19]. For instance, malarial parasites have been sug-
gested to adaptively immuno-deplete their human and 
mouse hosts by interfering with immune signalling [20–
23]. Therefore, malarial parasites may impose an addi-
tional cost to their vertebrate host due to the depletion of 
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immune functions which may increase host susceptibility 
to other parasites and diseases.

In the present study, the effect of Plasmodium infec-
tion on the ability of hosts to mount an immune response 
when encountering a new pathogen was investigated. A 
laboratory experiment was conducted under controlled 
conditions with experimental infections on non-breed-
ing canaries (Serinus canaria). Bird humoral immune 
response was measured as the antibody production 
after injection with a novel non-pathogenic antigen. A 
novel antigen was used to test for the ability to mount an 
immune response without the problem of unknown past 
exposures and potential acquired immunity. Plasmodium 
infected individuals were predicted to have an impaired 
immune response when faced with a novel antigen. 
Alternatively, if their immune response was not impaired, 
they would pay a higher cost (in terms of higher anaemia 
or weight loss) of immune activation.

Methods
Laboratory experiment
To compare levels of humoral immune response of Plas-
modium infected and uninfected birds under controlled 
conditions, canaries (Serinus canaria) were experimen-
tally infected with Plasmodium relictum (lineage SGS1) 
in the laboratory. Thirty-two 1-year old canaries (15 
females and 17 males) were kept in randomized groups 
of one to three individuals of the same sex per cage 
(1 × 1 × 2 m) in the animal facility (14:10 day–night light 
cycle, 20 °C, 55% humidity). Each of the 16 cages received 
fresh food (mix of 24 g of seeds, Vitabalance, and 18 g of 
couscous, Migros Bio) and fresh water (500  mL) daily, 
as well as a vitamin mix (Océvit, Virbac, 1  mL per litre 
of water) weekly. A first group of canaries (eight females 
and nine males) were experimentally infected via intra-
peritoneal injection of 75  µL of a blood mix (prepared 
from blood of canaries previously infected with P. rel-
ictum) mixed with PBS (1:1). The control group (seven 
females and eight males) received an injection of the 
same volume of PBS. Once the infected canaries reached 
the chronic phase of infection (42  days post infection, 
hereby dpi, [24]), all the canaries were blood sampled and 
immune challenged (primary contact). At 49 dpi, they 
were blood sampled and immune challenged a second 
time (secondary contact). A final blood sample was taken 
at 56 dpi. Individuals were weighed prior to each blood 
sampling. The experiment was designed in two equiva-
lent temporal blocks 1 week apart. After blood collection, 
haematocrit was measured in capillaries as the fraction of 
red blood cells in the total blood volume. The rest of the 
blood was centrifuged for 10 min at 4 °C at 15,000 rela-
tive centrifugal force. Plasma was stored at − 80 °C until 

immunological testing and red blood cells were stored at 
− 20 °C until Plasmodium detection and quantification.

Potential differences in food intake due to different 
energetic demands between uninfected and Plasmodium 
infected individuals were controlled by assessing individ-
ual daily food consumption. The daily food consumption 
per cage (in g/cage/day) was measured by weighing each 
morning the unconsumed amount of food and was used 
to extrapolate the average amount of food consumed 
per canary per day (in g/individual/day). For this reason, 
all the individuals of a cage received the same infection 
treatment.

Immune challenge
In order to measure the bird humoral immune response 
when encountering a new pathogen, keyhole limpet 
haemocyanin (KLH), a molecule extracted from the 
giant keyhole limpet (Megathura crenulata) was used 
as an antigen. This molecule elicits a humoral immune 
response without pathogenic effects. A solution of KLH 
(Sigma-Aldrich) emulsified in PBS (1 mg/mL) and mixed 
with incomplete Freund’s adjuvant (Sigma-Aldrich, 1:1) 
was prepared according to [25]. Each bird received an 
intra-muscular (pectoral muscle) injection of 50  µL of 
KLH-adjuvant solution (25  µg of KLH per injection, 
adapted from [25]).

Humoral immune response quantification
The humoral immune response when encounter-
ing a novel antigen (KLH) was measured by quantify-
ing the anti-KLH antibodies present in the plasma via 
enzyme-linked immunosorbent assay (ELISA). Plates 
(Nunc, MaxiSorp, Thermo Fisher Scientific) were incu-
bated over night at 4  °C on a turning plate with KLH 
solution (0.5  mg KLH per mL in sodium hydrogen car-
bonate 0.1  M pH 9.6). Coated plates were washed with 
PBS-Tween 20 0.05% (PBS-T) and incubated with PBS-T 
containing 5% of non-fat dry milk for 2  h at ambient 
temperature on a turning plate. Plates were washed with 
PBS-T and incubated with standards (eight standards 
prepared with immunoglobulin Y of chicken immunized 
against KLH, Gallus Immunotech Inc., concentrations 
from 20 μg/mL to 2 ng/mL diluted in PBS) and samples 
(before and after immune challenge, 1:100 dilution in 
PBS) all in duplicates for 3 h at 37 °C on a turning plate. 
Plates were washed with PBS-T and incubated with a 
secondary antibody (anti-chicken immunoglobulin Y 
peroxidase-linked antibodies produced in rabbit, Sigma-
Aldrich, 1:1000 dilution in PBS) for 1 h at 37 °C on a turn-
ing plate. Plates were washed with PBS-T and incubated 
with O-phenylenediamine dihydrochloride peroxidase 
substrate (Sigma-Aldrich, 0.4 mg/mL) for 30 min in the 
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dark at ambient temperature. The reaction was stopped 
by adding HCl 3 M and absorbance was read at 560 nm 
with a spectrophotometer. Anti-KLH antibody level was 
extrapolated from the standard curve and expressed in 
mg/mL. Negative controls (blank and non-specific bind-
ing) were performed in duplicates on each plate.

Plasmodium detection and quantification
DNA was extracted from red blood cells using the 
DNeasy blood and tissue extraction kit (Qiagen) accord-
ing to the manufacturer’s protocol for the BioSprint 96. 
A nested PCR was performed to detect the infection sta-
tus of individuals. Following a primary reaction with the 
primers HaemNF1 and HaemNR3, a secondary reaction 
with the primers HaemF and HaemR2 to amplify Plas-
modium was conducted as described in [26] adapted 
from [27] and 5 μL of PCR product was run on a 2% aga-
rose gel to assess infection status.

Parasite quantification was performed by quantita-
tive PCR as described in [26]. Briefly, two separate qPCR 
reactions using a parasite cyt b TaqMan probe (CY3-
CYTb-BHQ2) and a host 18  s rRNA probe (FAM-18S-
BHQ1) were performed. For both parasite and host, DNA 
concentration was calculated from the standard curve 
and the parasitaemia was given by the ratio of parasite 
DNA concentration on the host DNA concentration. In 
order to normalise the distribution, this ratio was log10 
transformed. As a consequence, we obtained a range of 
parasitaemia values increasing from − 2.10 to 1.10 (arbi-
trary unit) in infected canaries.

Statistical analyses
Statistical analyses were performed in R (version 3.1, 
[28]).

Anti-KLH antibody level was analysed as a response 
variable in linear mixed effect models (lme function in 
nlme package). Terms for sex (female–male), infection 
group (control–infected), antigen contact (primary–
secondary contact) and all two-way interactions were 
included. Haematocrit and body mass were also ana-
lysed as response variables in linear mixed effect models 
including terms for sex (female–male), infection group 
(control–infected), antigen contact (prior to immune 
challenge—after primary contact—after secondary con-
tact) and all two-way interactions. For Plasmodium 
infected canaries, parasitaemia over time was also inves-
tigated. Parasitaemia was analysed as a response variable 
in a linear mixed effect model including terms for sex, 
antigen contact (prior to immune challenge—after pri-
mary contact—after secondary contact) and their two-
way interaction. Daily food consumption, calculated at 
the cage level, was analysed as a response variable in lin-
ear mixed effect models including terms for the density 

of canary per cage (1–3, to control for heterogeneity in 
the number of individuals per cage), sex (female–male), 
infection group (control–infected), time (as a quantita-
tive continuous variable) and all two-way interactions 
between sex, infection group and time. Random fac-
tors were implemented as canary identity nested in cage 
nested in block (only cage nested in block for food con-
sumption as it was calculated at the cage level) to account 
for the nested experimental design. An auto-correlation 
structure (corAR1) was implemented to account for 
repeated measurements. To determine the explanatory 
power of each fitted parameter, likelihood ratio tests were 
conducted following a standard backward selection pro-
cedure by sequential elimination of each fitted terms of 
similar order from the full model [29]. Only significant 
terms were kept to reach the minimal adequate model. 
The significant p values given in the text come from the 
minimal adequate models and the non-significant p 
values come from the likelihood ratio tests prior to the 
elimination of the non-significant term from the model. 
To look at the effect of each significant term individually, 
contrast analyses were performed [29].

As haematocrit is usually negatively affected by parasi-
taemia, the link between both parameters was also inves-
tigated. To account for the nested experimental design 
and repeated measurements, haematocrit was analysed 
as a response variable in a linear mixed effect model, 
implementing canary identity nested in cage nested in 
block as random factors and an auto-correlation struc-
ture (corAR1).

Results
There were no anti-KLH antibodies in the plasma prior 
to the first KLH injection. Anti-KLH antibody produc-
tion was elicited after the primary contact and signifi-
cantly increased after the secondary contact (Table  1A, 
Fig.  1). There was no significant difference of anti-KLH 
antibody level between the infection groups or between 
the sexes (Table 1A).

Parasitaemia of infected canaries increased after the 
first immune challenge (Table  1B, Fig.  2). There was no 
difference between the sexes (Table 1B).

Haematocrit was not affected by the immune chal-
lenge, the infection status, the sex or any interaction 
between these factors (Table  1C) but there was a nega-
tive association between haematocrit and parasitaemia 
(lme, t = − 2.55, p = 0.0171, Fig. 3). Body mass slightly 
decreased after the first immune challenge (Table  1D, 
Fig.  4). There was no difference of body mass between 
infection groups or between sexes (Table 1D).

Daily food consumption slightly increased over time 
after the first immune challenge and was negatively 
affected by the number of canary per cage (Table 1E).
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Discussion
To investigate the effect of Plasmodium infection on the 
ability of birds to mount an immune response to a new 

pathogen, a laboratory experiment was conducted by 
challenging birds with a novel non-pathogenic antigen 
and by measuring their antibody production in response 
to this challenge. Plasmodium infected individuals 
tended to have a lower immune response than unin-
fected ones, yet this difference was not statistically sig-
nificant. However, parasitaemia increased after immune 

Table 1  Summary table of linear mixed effect models

A: anti-KLH antibody level (32 canaries measured twice), B: parasitaemia (log 
transformed) in infected canaries (17 canaries measured 3 times), C: haematocrit 
(32 canaries measured 3 times), D: body mass (32 canaries measured 3 times) 
and E: daily food consumption per canary per cage (16 cages measured 14 
times). Minimal models are given with intercept as well as estimates, standard 
errors (se), t values and p values for each specific term. Non-significant terms are 
given with the p value of the likelihood ratio test before being dropped-out of 
the model

Estimate se t value p value

A—Anti-KLH antibody level

 Intercept 0.0135 0.0044 3.03 0.0049

 Antigen contact 0.0546 0.0038 14.23 < 0.0001

 Infection − 0.0071 0.0035 − 2.03 0.0630

 Sex 0.3852

 Sex:infection 0.9385

 Sex:antigen contact 0.6984

 Infection:antigen contact 0.8441

B—Parasitaemia

 Intercept − 1.3100 0.3637 − 3.60 0.0013

 Primary contact 0.4480 0.1722 2.60 0.0149

 Secondary contact 0.8352 0.2123 3.93 0.0005

 Sex 0.7583

 Sex:antigen contact 0.7733

C—Haematocrit

 Antigen contact 0.8830

 Infection 0.3684

 Sex 0.4051

 Sex:infection 0.3616

 Sex:antigen contact 0.8048

 Infection:antigen contact 0.9807

D—Body mass

 Intercept 24.6219 0.4981 49.43 < 0.0001

 Primary contact − 0.3594 0.1226 − 2.93 0.0047

 Secondary contact − 0.2631 0.1290 − 2.04 0.0457

 Infection 0.4846

 Sex 0.5193

 Sex:infection 0.6287

 Sex:antigen contact 0.9930

 Infection:antigen contact 0.3580

E—Daily food consumption

 Intercept 12.8814 1.1213 11.49 < 0.0001

 Time 0.0438 0.0170 2.58 0.0106

 Number of canaries per cage − 3.2332 0.3168 − 10.21 < 0.0001

 Sex 0.8609

 Infection 0.8316

 Sex:infection 0.2238

 Sex:time 0.5214

 Infection:time 0.7816

Fig. 1  Humoral immune response after immune challenges. Anti-
KLH antibody level (mg/mL) after primary and secondary contact 
to KLH antigen and in uninfected and infected individuals. The star 
indicates a significant difference

Fig. 2  Parasitaemia prior to and after immune challenges. Parasitae-
mia (arbitrary unit, log transformed) as a function of antigen contact 
in infected canaries prior to the immune challenge, after primary 
contact and after secondary contact. Different letters indicate signifi-
cant differences
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challenge, suggesting a cost of immune activation on the 
ability to control Plasmodium infection.

Plasmodium infected individuals were expected to 
have a weaker response to a novel antigen than unin-
fected ones, because Plasmodium parasites may drive 
host immuno-depletion [23] and because Plasmodium 
infection may impair host ability to invest in an energeti-
cally costly immune response [30]. The results showed no 
significant differences between uninfected and infected 
individuals. Mounting an immune response was however 
associated with an increased parasitaemia that negatively 
correlated with haematocrit. During chronic infection, a 
low parasite intensity could be maintained through host 

action via both antibody-dependent and independent 
mechanisms of acquired and innate immunity [31, 32]. 
Following a novel infection, immune effectors may change 
their target to the novel antigen, releasing host control 
on Plasmodium parasites and enabling the parasite to 
increase. Recrudescence, an increase of Plasmodium par-
asite intensity in the blood [33], has already been linked 
with host immunity in a mouse-Plasmodium chabaudi 
system, where a decrease in mouse immune functions 
was associated with Plasmodium recrudescence [34]. 
The result suggests the existence of a trade-off between 
immune control of chronic infection and immune 
response to a new pathogen, which might be common in 
nature where individuals often incur multiple infections at 
once.

Mounting an immune response has been shown to be 
energetically and metabolically costly [6, 7, 9, 10]. Here, 
following the first immune challenge, body mass slightly 
decreased and food consumption increased in all groups 
suggesting an energetic cost of mounting an immune 
response.

In the present study, the immune response did not dif-
fer between females and males. This is in contrast with 
previous hypothesis about sex differences in immune 
functions [35], thought to be mediated, for instance, by 
hormonal differences between the two sexes [36–38]. 
Canaries however, are not a sexually dimorphic species, 
individuals were not reproducing during the experi-
ment and sexes were maintained separately in aviaries. In 
this experiment, therefore, males did not need to invest 
in costly reproductive behaviour or signals, which may 
explain a similar immune investment in both sexes.

In the present study, P. relictum (lineage SGS1) was 
used to infect birds. P. relictum is a species exhibiting 
genetic diversity and to a larger extent Plasmodium is a 
diverse group of parasites [33]. Yet, virulence is the result 
of the interaction of the parasite genotype, the host geno-
type and the environment the association occurs in [39, 
40]. Therefore, pathogenicity (measured as parasitaemia) 
have been shown to vary depending on the species-spe-
cific association [41]. Thus, different levels of immune 
response might also be observed depending on the host 
and parasite species involved in the interaction under 
study.

Conclusions
The short-term costs of mounting an immune response, 
such as the energetic demand, are usually considered to 
be low [42]. In contrast, the long-term costs, through 
immunopathology and cumulated oxidative damage, are 
likely to be more important [11, 42]. In the present study, 
the results showed that one short-term cost of mounting 
an immune response may be the released host control on 

Fig. 3  Haematocrit (%) as a function of parasitaemia (arbitrary unit, 
log transformed) in infected individuals

Fig. 4  Body mass (g) as a function of antigen contact prior to and 
after immune challenges. Different letters indicate significant differ-
ences
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parasite intensity during the chronic phase of Plasmo-
dium infection. This may have limited costs (in terms of 
anaemia and weight loss) for individuals maintained in 
the laboratory with sufficient food resources and mini-
mal stress. However, costs could be much higher for wild 
individuals, which have to deal with more stressful condi-
tions such as food shortages or a harsh environment. The 
costs may also be paid later in life if the recrudescence 
of Plasmodium parasites is associated with supplemen-
tary oxidative damage to the host. Further studies on the 
mechanisms involved in the control of chronic infections 
would allow a better understanding of the mechanisms 
underlying Plasmodium recrudescence during chronic 
infection, an important feature of the ecology of this 
parasite.

Abbreviations
ELISA: enzyme-linked immunosorbent assay; KLH: keyhole limpet haemocya-
nin; PBS: phosphate buffered saline.

Authors’ contributions
PC and OG originally formulated the idea. JD and TJ developed the methods, 
conducted laboratory analyses and performed statistical analyses. JD, TJ, 
OG and PC wrote the manuscript. All authors read and approved the final 
manuscript.

Author details
1 Department of Ecology and Evolution, University of Lausanne, Le Biophore, 
Unil Sorge, 1015 Lausanne, Switzerland. 2 Museum of Zoology, Place de la 
Riponne 6, 1005 Lausanne, Switzerland. 

Acknowledgements
We thank Jason Buser, Laélia Maumary and Jézaëlle Rufener for taking care of 
the canaries in the animal facilities.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data will be deposited and made available at the Dryad repository (http://
datadryad.org/) as https://doi.org/10.5061/dryad.8ft948b. upon acceptance of 
the manuscript for publication.

Consent for publication
Not applicable.

Ethics approval and consent to participate
This study was conducted under licence according to the Swiss animal 
legislation (Authorization Number 1730.1). All applicable institutional and/or 
national guidelines for the care and use of animals were followed.

Funding
The project was funded by the Swiss National Science Foundation (Grant 
31003A-138187 and 31003A-159600).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 3 June 2017   Accepted: 31 January 2018

References
	1.	 Knowles SCL, Palinauskas V, Sheldon BC. Chronic malaria infections 

increase family inequalities and reduce parental fitness: experimental 
evidence from a wild bird population. J Evol Biol. 2010;23:557–69.

	2.	 Atkinson CT, Saili KS, Utzurrum RB, Jarvi SI. Experimental evidence for 
evolved tolerance to avian malaria in a wild population of low elevation 
Hawai’i’Amakihi (Hemignathus virens). EcoHealth. 2013;10:366–75.

	3.	 Asghar M, Hasselquist D, Hansson B, Zehtindjiev P, Westerdahl H, Bensch 
S. Hidden costs of infection: chronic malaria accelerates telomere degra-
dation and senescence in wild birds. Science. 2015;347:436–8.

	4.	 Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences 
and trade-offs in evolutionary ecology. Trends Ecol Evol. 1996;11:317–21.

	5.	 Norris K, Evans MR. Ecological immunology: life history trade-offs and 
immune defense in birds. Behav Ecol. 2000;11:19–26.

	6.	 Demas GE, Drazen DL, Nelson RJ. Reductions in total body fat decrease 
humoral immunity. Proc Biol Sci. 2003;270:905–11.

	7.	 Demas GE. The energetics of immunity: a neuroendocrine link between 
energy balance and immune function. Horm Behav. 2004;45:173–80.

	8.	 Demas GE, Chefer V, Talan MI, Nelson RJ. Metabolic costs of mounting an 
antigen-stimulated immune response in adult and aged C57BL/6J mice. 
Am J Physiol. 1997;273:R1631–7.

	9.	 Eraud C, Duriez O, Chastel O, Faivre B. The energetic cost of humoral 
immunity in the Collared Dove, Streptopelia decaocto: is the magnitude 
sufficient to force energy-based trade-offs? Funct Ecol. 2005;19:110–8.

	10.	 Martin LB II, Scheuerlein A, Wikelski M. Immune activity elevates energy 
expenditure of house sparrows: a link between direct and indirect costs? 
Proc Biol Sci. 2003;270:153–8.

	11.	 Sorci G, Faivre B. Inflammation and oxidative stress in vertebrate host-
parasite systems. Philos Trans R Soc Lond B Biol Sci. 2009;364:71–83.

	12.	 Costantini D, Møller AP. Does immune response cause oxidative stress 
in birds? A meta-analysis. Comp Biochem Physiol A: Mol Integr Physiol. 
2009;153:339–44.

	13.	 Sell S. Immunology, immunopathology and immunity. 6th ed. Washing-
ton: ASM Press; 2001.

	14.	 Bertrand S, Criscuolo F, Faivre B, Sorci G. Immune activation increases 
susceptibility to oxidative tissue damage in Zebra Finches. Funct Ecol. 
2006;20:1022–7.

	15.	 Alonso-Alvarez C, Bertrand S, Devevey G, Prost J, Faivre B, Chastel O, et al. 
An experimental manipulation of life-history trajectories and resistance 
to oxidative stress. Evolution. 2006;60:1913–24.

	16.	 Hanssen SA, Hasselquist D, Folstad I, Erikstad KE. Costs of immunity: 
immune responsiveness reduces survival in a vertebrate. Proc Biol Sci. 
2004;271:925–30.

	17.	 Schmid-Hempel P. Parasite immune evasion: a momentous molecular 
war. Trends Ecol Evol. 2008;23:318–26.

	18.	 Sacks D, Sher A. Evasion of innate immunity by parasitic protozoa. Nat 
Immunol. 2002;3:1041–7.

	19.	 Zambrano-Villa S, Rosales-Borjas D, Carrero JC, Ortiz-Ortiz L. How 
protozoan parasites evade the immune response. Trends Parasitol. 
2002;18:272–8.

	20.	 Finney OC, Riley EM, Walther M. Regulatory T cells in malaria—friend or 
foe? Trends Immunol. 2010;31:63–70.

	21.	 Hansen DS, Schofield L. Natural regulatory T cells in malaria: host or 
parasite allies? PLoS Pathog. 2010;6:e1000771.

	22.	 Crompton PD, Moebius J, Portugal S, Waisberg M, Hart G, Garver LS, et al. 
Malaria immunity in man and mosquito: insights into unsolved mysteries 
of a deadly infectious disease. Annu Rev Immunol. 2014;32:157–87.

	23.	 Hisaeda H, Yasutomo K, Himeno K. Malaria: immune evasion by parasites. 
Int J Biochem Cell Biol. 2005;37:700–6.

	24.	 Cellier-Holzem E, Esparza-Salas R, Garnier S, Sorci G. Effect of repeated 
exposure to Plasmodium relictum (lineage SGS1) on infection dynamics in 
domestic canaries. Int J Parasitol. 2010;40:1447–53.

	25.	 Hasselquist D, Wasson MF, Winkler DW. Humoral immunocompetence 
correlates with date of egg-laying and reflects work load in female tree 
swallows. Behav Ecol. 2001;12:93–7.

	26.	 Jenkins T, Delhaye J, Christe P. Testing local adaptation in a natu-
ral great tit-malaria system: an experimental approach. PLoS ONE. 
2015;10:e0141391.

http://datadryad.org/
http://datadryad.org/
https://doi.org/10.5061/dryad.8ft948b


Page 7 of 7Delhaye et al. Malar J  (2018) 17:77 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	27.	 Hellgren O, Waldenström J, Bensch S. A new PCR assay for simultaneus 
studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian 
blood. J Parasitol. 2004;90:797–802.

	28.	 R Development Core Team. R: a language and environment for statistical 
computing. R Found. Stat. Comput. R Foundation for Statistical Comput-
ing; 2011.

	29.	 Crawley MJ. The R book. Chichester: Wiley; 2007.
	30.	 Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just 

what is the cost of immunity? Oikos. 2000;88:87–98.
	31.	 Stevenson MM, Riley EM. Innate immunity to malaria. Nat Rev Immunol. 

2004;4:169–80.
	32.	 Taylor-Robinson AW. Regulation of immunity to Plasmodium: implications 

from mouse models for blood stage malaria vaccine design. Exp Parasitol. 
2010;126:406–14.

	33.	 Valkiunas G. Avian malaria parasites and other haemosporidia. Boca 
Ratón: CRC Press; 2005.

	34.	 McLean SA, Pearson CD, Phillips RS. Plasmodium chabaudi: relationship 
between the occurrence of recrudescent parasitaemias in mice and the 
effective levels of acquired immunity. Exp Parasitol. 1982;54:213–21.

	35.	 Hasselquist D. Comparative immunoecology in birds: hypotheses and 
tests. J Ornithol. 2007;148:S571–82.

	36.	 Klein SL. Hormonal and immunological mechanisms mediating sex differ-
ences in parasite infection. Parasite Immunol. 2004;26:247–64.

	37.	 Klein SL. The effects of hormones on sex differences in infection: from 
genes to behavior. Neurosci Biobehav Rev. 2000;24:627–38.

	38.	 Folstad I, Karter J. Parasites, bright males, and the immunocompetence 
handicap. Am Nat. 1992;139:603–22.

	39.	 Vale PF, Salvaudon L, Kaltz O, Fellous S. The role of the environment in 
the evolutionary ecology of host parasite interactions. Infect Genet Evol. 
2008;8:302–5.

	40.	 Wolinska J, King KC. Environment can alter selection in host-parasite 
interactions. Trends Parasitol. 2009;25:236–44.

	41.	 Dimitrov D, Palinauskas V, Iezhova TA, Bernotienė R, Ilgūnas M, 
Bukauskaitė D, et al. Plasmodium spp.: an experimental study on verte-
brate host susceptibility to avian malaria. Exp Parasitol. 2015;148:1–16.

	42.	 Hasselquist D, Nilsson J-Å. Physiological mechanisms mediating costs of 
immune responses: what can we learn from studies of birds? Anim Behav. 
2012;83:1303–12.


	Avian malaria and bird humoral immune response
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Laboratory experiment
	Immune challenge
	Humoral immune response quantification
	Plasmodium detection and quantification
	Statistical analyses

	Results
	Discussion
	Conclusions
	Authors’ contributions
	References




