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REVIEW

Statistical methods to derive efficacy 
estimates of anti‑malarials for uncomplicated 
Plasmodium falciparum malaria: pitfalls 
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Abstract 

The Kaplan–Meier (K–M) method is currently the preferred approach to derive an efficacy estimate from anti-malarial 
trial data. In this approach event times are assumed to be continuous and estimates are generated on the assumption 
that there is only one cause of failure. In reality, failures are captured at pre-scheduled time points and patients can 
fail treatment due to a variety of causes other than the primary endpoint, commonly termed competing risk events. 
Ignoring these underlying assumptions can potentially distort the derived efficacy estimates and result in misleading 
conclusions. This review details the evolution of statistical methods used to derive anti-malarial efficacy for uncompli-
cated Plasmodium falciparum malaria and assesses the limitations of the current practices. Alternative approaches are 
explored and their implementation is discussed using example data from a large multi-site study.
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Background
Despite a rich pharmacopeia of anti-malarial agents, the 
emergence and spread of anti-malarial drug resistance 
has been relentless, with resistance now documented 
to all recommended treatment regimens in widespread 
use. Efficacy estimates derived from in  vivo clinical tri-
als, including post marketing and surveillance studies, 
form the basis for monitoring the status of anti-malarial 
drug resistance, with in  vitro drug susceptibility testing 
and molecular analyses providing important complemen-
tary and confirmatory information. The main measure of 
anti-malarial clinical efficacy is the risk of recrudescent 
infection, which is defined as recurrent parasitaemia with 
parasites that were present prior to the initiation of treat-
ment. Recrudescence needs to be differentiated from 

reinfections arising from inoculation with a new parasite 
strain during the follow-up period. New infections can be 
either from the same parasite species or a different one 
(Fig. 1) [1].

Recrudescent parasitaemia arises from a variety of fac-
tors which can be broadly categorized into those related 
to the host, the parasite or the drug (Fig.  2). Pharma-
cokinetic factors can be ameliorated by improved pre-
scribing practices, such as revising the dosing strategy 
and co-administration with food, whereas significant 
drug resistance usually requires revision to an alterna-
tive treatment regimen. At patient level, failure to achieve 
adequate clinical cure (i.e. preventing recrudescent infec-
tions) can have serious clinical implications including 
cumulative risk of anaemia, rising parasitaemia, and early 
treatment failure, which individually and collectively may 
lead to severe malaria and even death [1]. At the com-
munity level, treatment failures can lead to an increased 
economic burden and onwards transmission, fuelling the 
development of anti-malarial drug resistance [2].
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Anti-malarial efficacy needs to be monitored routinely 
in endemic areas, so that early indications of drug resist-
ance are recognized and malaria control activities can 
be revised accordingly [3]. Defining clinical efficacy of 
current treatment options is a key process in optimiz-
ing anti-malarial treatment policy. The World Health 
Organization (WHO) recommends that treatment effi-
cacy corrected by polymerase chain reaction (PCR) geno-
typing (defined as 1 minus the risk of recrudescence at 
day 28) should be at least 90% for existing anti-malarials, 
and that novel regimens should achieve greater than 95% 
efficacy to be considered suitable as a first line treatment 
[4]. However, the classification of treatment outcomes 
based on PCR-genotyping is known to be vulnerable to 
its sensitivity, the resolution limits for detecting the dif-
ferences in the allelic variants of the parasites, the defini-
tion used, the number of markers used, the transmission 
settings, and the genetic diversity of the markers used 
for sequencing and allele frequencies in different popu-
lations [5–8]. In areas of low transmission, multiplic-
ity of infection (MOI) is low (in contrast to the areas of 
high transmission) [9] and the probability of the pre- and 
post-treatment alleles being the same due to chance is 

very small leading to a low misclassification risk for the 
PCR genotyping. Failure in collecting either the pre-
treatment or recurrent parasite DNA isolate will result 
in missing outcomes. Sometimes, the PCR technique is 
unable to discriminate recrudescences from new infec-
tions due to unsuccessful amplification of DNA or due to 
failure to interpret the results leading to indeterminate 
cases. Uncertainty in genotyping procedures leading to 
misclassification of outcomes has been well studied in 
anti-malarial literature and outcome classification is vul-
nerable to the algorithm used and transmission intensity 
[8, 10]. In addition, study design, the presence of attrition 
bias, duration of follow-up and the choice of statistical 
methods to address these confounding factors can have 
a profound influence on the derived efficacy estimates 
[11–14].

In this review, the evolution of the methods for 
defining anti-malarial drug efficacy since the 1960s 
and the key statistical approaches currently available 
are documented. Challenges associated with these 
statistical methods and how they apply to stand-
alone efficacy trials and comparative drug studies are 
discussed.

Fig. 1  Therapeutic responses post anti-malarial treatment. The blue line represents a hypothetical concentration versus time profile for an antima-
larial drug administered orally. The green and red lines represent scenarios for parasite burden versus time profiles following treatment for an infec-
tion where all the parasites are completely killed resulting in cure (green) and an infection where parasites are initially killed by high drug levels but 
with drug levels below the minimum inhibitory concentration (MIC), net parasite growth results in subsequent recrudescence (red). The purple and 
orange lines represent parasite-time profiles for new infections; either an infection due to a new parasite of the same species (orange) or an infec-
tion with a Plasmodium vivax parasite (purple) during the follow-up. The left y-axis is for parasite density, and the right y-axis shows drug levels at 
hypothetical units. The horizontal black line represents the microscopic limit of detection for parasites. The maximum number of parasites a human 
body can contain is 1012 (Adapted from White-2002 [1])
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Methods for estimating anti‑malarial efficacy for a 
single treatment
The WHO released its first standardized protocol for 
assessing in  vivo efficacy against Plasmodium falcipa-
rum malaria in 1965, primarily to monitor chloroquine 
resistance which had been identified a few years ear-
lier [15, 16]. This early protocol was revised twice, first 
in 1967 and then again in 1972, recommending that 
patients be kept in a mosquito free environment to pre-
vent new infection [17]. These early protocols focused 
on parasitological outcomes, such as a recurrent periph-
eral parasitaemia and time to parasite clearance. In the 
subsequent revisions, methodologies remained largely 
the same until 1996, when the focus shifted from para-
sitological response to adequate clinical response [18]. 
The latter was defined as patients without clinical dis-
ease and included those with recurrent parasitaemia but 
without symptoms. The 1996 WHO protocol focused on 
parasite clearance assessed on day 14 downgrading the 
importance of a longer follow-up used for characteriz-
ing anti-malarial efficacy—a recommendation retrospec-
tively found to be inadequate [11]. The recommendation 
were revised again in 2009, when a composite endpoint 
of both parasitological and clinical assessment was 
adopted and this was defined as “adequate clinical and 
parasitological response (ACPR)” [3]. Whilst the earlier 

guidelines focused on the broader aspects of malarial 
chemotherapy, the later guidelines have focused more on 
the methodological aspects of clinical studies. The evolu-
tion of these documents and relevant methodical reviews 
is presented in Fig. 3.

Two approaches have been used in deriving efficacy 
estimates in anti-malarial efficacy studies: (i) the cal-
culation of the proportion of patients cured within a 
specified period of follow-up (this proportion is often 
referred to as the “cure rate”) and (ii) survival analysis, 
which provides a cumulative probability of cure. The 
term “cure rate” statistically speaking is misleading since 
this is not a rate, but a point estimate of risk at a prede-
fined time point. The proportion cured is usually esti-
mated using a per-protocol (PP) and intention to treat 
(ITT) approaches. In PP approach, the proportion cured 
is derived from all patients followed until treatment fail-
ure or a set period of time, excluding those with protocol 
deviations, those who develop new infection or who are 
lost to follow-up. Whilst relatively easy to calculate, this 
approach ignores valuable information provided by the 
patients who experience protocol deviations or are lost 
to follow-up. Patients failing treatment are more likely to 
become symptomatic and seek retreatment and thus be 
detected passively. Whereas patients who are cured are 
more likely to tire from active detection and be lost to 

Fig. 2  Determinants of in vivo response to anti-malarial treatment. a The process by which infected erythrocytes containing mature parasites 
adhere to the microvasculature. Their removal of from the circulation results in the peripheral parasite count being an underestimate of the true 
parasite biomass. b The developmental stage of the parasite. The artemisinin compounds have the broadest stage specific action against the para-
site. c Simultaneous rupture of hepatic schizonts result in a uniform stage distribution of the parasite
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follow up—these attrition biases result in an underesti-
mation of treatment efficacy [13]. In a more conservative 
analysis using an ITT approach, the evaluable population 
includes all patients enrolled in the study, but patients 
who are lost to follow-up or who experience protocol 
deviations are considered as treatment failures. This will 
underestimate treatment efficacy (and overestimate clini-
cal resistance). This definition of ITT used within the 
context of anti-malarial studies differs from the stand-
ard terminology used in randomized controlled trials, 
in which ITT generally means that all study participants 
are included in the analysis as part of the groups to which 
they were randomized regardless of whether they com-
pleted the study or not. Assigning patients who do not 
complete follow-up the worst possible outcome ensures 
that derived estimates represent the “worst case scenario”.

Survival analysis using Kaplan–Meier (K–M) method 
provides an alternative strategy. This approach maxi-
mizes the information available from each patient, 
thereby increasing the precision of the estimates [12, 
13]. The K–M estimates of the cumulative probability of 
cure are usually reported at day 28 and for studies with 
longer follow-up duration the estimates at the end of the 
study (e.g. day 42 and 63) are also presented. The com-
plement of K–M (1 minus K–M) is frequently used to 

derive estimate of the cumulative proportion of treat-
ment failure. In the K–M approach, patients who do not 
fail treatment during the study period and do not com-
plete follow up for any reasons are included in the anal-
ysis until the time of last recorded visit when they are 
“censored”. Patients who are censored are considered to 
be at the same risk of experiencing the event of interest 
as those who continue to be followed, i.e. the censoring 
is uninformative [19]. Although survival analysis has long 
been used in other disease areas and in one anti-malar-
ial study in 1995 [20], it was only widely considered for 
deriving anti-malarial efficacy in 2001 [21] and adopted 
into the WHO guidelines in 2003 [17]. Stepniewska 
and White provided a further assessment on the meth-
odological approaches used in anti-malarial studies, and 
strongly advocated the use of K–M method [12]. A tuto-
rial on deriving efficacy estimates using the K–M survival 
approach is presented in Additional file 1: Section A.

Several reports have compared the use of PP approach 
and K–M survival analysis in deriving anti-malarial 
efficacy. Guthmann et  al. pooled datasets from 13 tri-
als (n =  2576) to examine the discrepancies in derived 
estimates when PP and K–M approach were used [14]. 
Overall 6% of the samples were lost by day 28 using K–M 
analysis when indeterminate outcomes were excluded 

Fig. 3  The evolution of guidelines for anti-malarial studies



Page 5 of 14Dahal et al. Malar J  (2017) 16:430 

and new infections were treated as treatment success. In 
contrast, there was a 25% reduction in sample size using 
PP approach. The risk of recrudescence estimates were 
lower with the K–M method and the risk differences 
ranged from −  2.3 to 2.3% when indeterminate cases 
were excluded. Similar finding was reported by Ashley 
et al., where the use of PP method was associated with a 
34% reduction in sample size as opposed to < 10% reduc-
tion when survival analysis was used [22]. In a pooled 
analysis of 29 clinical trials from Africa and Asia carried 
out by Verret and colleagues, the PP method consistently 
overestimated the risk of treatment failure compared 
to the K–M approach (median difference: 1.7%, range 
0–30.9%) and the magnitude of overestimation was pro-
portional to the incomplete follow-up [13]. The authors 
of these studies recommended the use of K–M analysis, 
as this minimized the loss of information and made the 
maximum use of the data.

Since the K–M approach was being increasingly rec-
ommended for deriving efficacy estimates, Price et  al. 
provided a classification table for different possible out-
comes (see Table 3 of the article) [23]. The WHO guide-
line published in 2009 further recommended the use of 
K–M method for deriving anti-malarial efficacy where 
patients who are lost to follow-up or who develop a new 
infection during the follow-up period or any other devia-
tions are censored on the day of their last observation in 
the trial (Table 1) [3]. However, there are several pitfalls 
and challenges associated with K–M approach that need 
to be considered [24], and these are addressed in sections 
to follow, with example from a large multi-centre study 
carried out in Uganda.

Example dataset
Data from a randomized control trial which compared 
three anti-malarial regimens in four different sites 
in Uganda from 2002 to 2004 was used as a motivat-
ing example [25]. Briefly, 2160 patients aged 6  months 
or older were randomized to one of the three treat-
ment arms: chloroquine  +  sulfadoxine–pyrimethamine 
(CQ + SP), amodiaquine + sulfadoxine–pyrimethamine 
(AQ + SP) or amodiaquine plus artesunate (AS + AQ). 
The primary endpoint was the risks of parasitological 
failure either unadjusted or adjusted by PCR genotyp-
ing at the end of the study follow-up on day 28. The study 
was standardized using the WorldWide Antimalarial 
Resistance Network (WWARN) clinical protocol [26] 
and hence the estimates reported in the original article 
are slightly different to the estimates reported here.

Challenges in estimating efficacy for a single treatment
The presence of competing endpoints
In an anti-malarial trial of uncomplicated P. falciparum 
malaria, the primary endpoint is the risk of recurrence 
due to reappearance of the same parasite which caused 
the initial infection (recrudescence). However, patients 
can experience new infections with P. falciparum or 
other species such as Plasmodium vivax during the ensu-
ing weeks (Fig. 1). Such alternative outcomes which can 
preclude the occurrence of recrudescence are referred 
to as competing risk events [24]. When studies are con-
ducted in a malaria endemic setting these competing risk 
events can sometimes occur in over 30% of patients [13]. 
Once a patient experiences competing events before the 
end of the study follow-up, recrudescence can no longer 

Table 1  Assigning outcomes for estimating treatment efficacy under current recommendations. Source: WHO-2009 [3]

End-point for day X (X = 28 or 42) Cumulative success or failure probability  
(Kaplan–Meier analysis)

Proportion (per-protocol analysis)

Adequate clinical and parasitological response at day X Success Success

Early treatment failure Failure Failure

Late clinical failure before day 7 Failure Failure

Late clinical failure or late parasitological failure on or after day 7

 Falciparum recrudescence Failure Failure

 Falciparum reinfection Censored day of reinfection Excluded from analysis

 Other species with falciparum recrudescence Failure Failure

 Other species infection Censored day of infection Excluded from analysis

 Undermined or indeterminate PCR Excluded from PCR-corrected analysis Excluded from analysis

Loss to follow-up Censored last day of follow-up according to timetable Excluded from analysis

Withdrawal and protocol violation Censored last day of follow-up according to timetable 
before withdrawal or protocol violation

Excluded from analysis
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be observed as the first event. The presence of competing 
events changes the number of people remaining at risk of 
recrudescence and consequently the probability of true 
treatment failure. In such situations, the overall probabil-
ity of failing due to recrudescence should be estimated 
by accounting for the treatment failures due to recrudes-
cence and also recurrence due to the competing events 
[24].

The K–M method makes a fundamental assumption of 
independent (non-informative) censoring, i.e. patients 
who are censored have the same risk of observing the 
outcome as those who are still being followed-up. When 
a patient experiences new infections, censoring is no 
longer non-informative (as they will be retreated) and 
in such situations the use of K–M leads to an upwards 
biased estimate of treatment failure [24, 27, 28]. Despite 
this limitation, the complement of K–M estimate (i.e. 1 
minus K–M) is commonly used to derive the cumulative 
probability of failure in anti-malarial studies. An alterna-
tive approach in the presence of competing risk events 
is the derivation of the Cumulative incidence function 
(CIF) as proposed by Kalbfleisch and Prentice [29]. CIF 
estimates the risk of failing from a specific cause at any 
time between enrolment (t0) and the time point of inter-
est (tx) and this takes into account the failures from other 
causes (see Additional file 1: Section A for a tutorial).

A comparison of the K–M method and CIF is illus-
trated using example data from Tororo site in Uganda, 

an area of high transmission where new infections during 
follow up were frequently observed [25]. Data from 166 
patients treated with CQ +  SP were originally analysed 
using the K–M method and were reanalysed using the 
CIF approach using cmprsk package in R software (Addi-
tional file 1: Section B) [30]. The estimate of cumulative 
probability of recrudescence on day 28 was 0.376 [95% 
CI 0.264–0.470] using the K–M approach (Fig. 4a) [25], 
compared with 0.265 [0.199–0.331] calculated using the 
CIF approach. The corresponding probabilities of reinfec-
tions by day 28 were 0.761 [0.667–0.828] using K–M and 
0.654 [0.584–0.723] using CIF. These values represent an 
absolute overestimation of 0.11 for both recrudescence 
and new infections. In relative terms, this represents an 
overestimation of treatment failure using K–M approach 
by 41.8% for recrudescence and 24.4% for new infec-
tions. Such overestimation is particularly relevant to new 
treatment regimens as increasingly high efficacy (> 95%) 
is demanded for a drug to be considered as a first line 
therapy. This bias is likely to be worse for regimens which 
offer only short post treatment prophylaxis in high trans-
mission areas, as new infections are more likely to occur, 
than for regimens which provide longer protection; this 
difference in the incidence of new infections over the 
follow-up period has implications for trials comparing 
different anti-malarials (comparative trials section to fol-
low). Another challenge with the K–M method is that 
the sum of individual K–M estimates for different events 

Fig. 4  Overestimation of failure using complement of K–M method in Tororo dataset [25]. a Cumulative probability of failure due to recrudescence 
derived using Kaplan–Meier approach (red line) and using Cumulative Incidence Function (solid black line), which accounts for the presence of 
competing risks (dotted black line). b Estimates of the cumulative probability of recurrences for recrudescence (green), new infections (light blue) 
and overall recurrences (dark blue line) using K–M method. The sum of the probabilities for recrudescence and new infection is presented as the 
pink line and exceeds the value of 1 at 28 days of follow-up
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(e.g. recrudescence and new infection in malaria studies) 
can exceed the K–M estimate for the composite endpoint 
of overall recurrence. The sum of the cumulative prob-
ability of recurrence estimated using K–M approach for 
recrudescence and new infection on day 28 was 113.7%, 
whereas the all cause recurrence estimate was only 87.6% 
(Fig.  4b). In such situations, the interpretation of K–M 
estimate as a probability is no longer valid as the sum 
exceeds 100%.

Follow‑up data are interval‑censored
In anti-malarial studies, active surveillance is gener-
ally conducted weekly with follow-up usually scheduled 
daily for the first 3 days and weekly from day 7 until 28, 
42 or 63  days. Thus recurrent parasitaemia, particularly 
in patients who are asymptomatic, is actively detected 
and commonly occurs on pre-scheduled follow-up time-
points. However, the true timing of microscopically pat-
ent positive recurrent parasitaemia is often in between 
the times of observation, and this gives rise to interval-
censored failure times in anti-malarial studies. Ignoring 
such intervals might lead to an under or overestima-
tion of failures at a given time point, especially when it 
is assumed that failures occur at the beginning or the 
end of the interval, and the magnitude of the bias tends 
to be accentuated as the length of the interval gets larger 
[31]. Despite this, interval censored data are analysed 
frequently using K–M method in an ad hoc approach of 
assuming the failures observed at pre-scheduled visits as 
the true failure time. Interval censored methods are now 
part of standard statistical packages and there exists sub-
stantial literature on survival estimation and regression 
methods [32–35]; the algorithm proposed by Turnbull 
being the most commonly used [32].

The K–M estimates derived using the interval censored 
method for the Uganda data were similar to the K–M 
estimates generated by ignoring the interval censoring, 
and the results and R script for analysis is presented in 
Additional file 1: Section C.

Multi‑centre trials
Clinical surveillance studies sometimes enrol patients 
from more than one centre in order to achieve adequate 
sample size and sample geographically distinct popula-
tions, thus increasing the generalizability of the results. 
Data are often pooled across sites to get an overall esti-
mate of drug efficacy, but this requires careful considera-
tion. Although samples from different sites are assumed 
to be independent, there may be heterogeneity in censor-
ing patterns, attrition rates, patient demographics, and 
transmission intensity. The overall cured proportion at 
a fixed time point can be computed by combining esti-
mates from each of the sites using standard meta-analysis 

methods for pooling proportions; the approach of Der-
Simonian and Laird’s being the most common [36]. 
However, synthesizing survival curves across sites is chal-
lenging. The Cochrane Handbook for Systematic Reviews 
of Interventions comments on the difficulty in presenting 
a pooled estimate of K–M from different studies as fol-
lows [37]:

“Kaplan–Meier plots for all pooled participants 
across trials in a meta-analysis have previously 
been presented in medical journals. This practice 
breaks with the principle of comparing like with 
like. For this reason, until further discussions have 
taken place the Statistical Methods Group is unable 
to recommend inclusion of such plots in Cochrane 
reviews.”

The Cochrane statement is regarding the presentation 
of the survival curve in a meta-analysis; and this is also 
relevant for multi-centre studies. However, no specific 
guidance is provided regarding presentation of point esti-
mates of K–M at specified time points and there exists 
no consensus among researchers on the best approach to 
synthesize survival estimates across studies/sites, neither 
for the aggregate meta-analysis nor for individual patient 
data meta-analysis. It is common to perform the analy-
sis in a one-step approach where raw data from several 
sites are pooled as if they came from a single site (naïve 
approach) and present an overall K–M estimate with-
out considering the multi-centric nature of the data, an 
approach recommended by Srinivasan and Zhou pro-
vided the data from several sites (studies) are independ-
ent [38]. However, due to heterogeneity across centres, 
such approach can result in a treatment appearing to be 
beneficial after pooling data from several sites, in  situ-
ations where the reverse is in fact true [39]. Recently, 
Comberscure et al. proposed a method to pool the K–M 
estimates from several studies at specific time point [40]. 
Using this approach, K–M and number of patient at risk 
are derived for each site at a time-point of interest. DerSi-
monian and Laird’s (D + L) method is then applied after 
carrying out an arc-sine transformation of the survival 
to obtain a pooled estimate of the K–M. This is available 
through MetaSurv package on open source R software 
[41].

The meta-analytic approach proposed by Comberscure 
et  al. has been illustrated with the example dataset on 
AS + AQ arm [40]. The K–M estimates for each of the 
study sites were extracted at the all the pre-scheduled vis-
its (days 1, 2, 3, 7, 14, 21 and 28) including the number 
of people at risk. The pooled K–M estimates estimated 
using the naïve approach D + L’s approach are presented 
in Table  2. The R script for performing analysis is pre-
sented in Additional file 1: Section D. In this example, the 
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pooled estimates at day 28 were similar between the two 
approaches; with the confidence intervals being wider 
for the estimates derived using D + L’s approach. How-
ever, this approach needs to be used with caution as the 
bias in estimates could be high when sample size per site 
is small or when the events are rare [40]. In such situa-
tion, an alternative approach could be to apply the D + L 
procedure after complementary log log transformation 
{log( −  log  (.))} of the survival function. This approach 
has the desired statistical property of giving correct 
coverage probability for the estimated 95% confidence 
interval of the survival estimate based on as few as 25 
observations [42].

Challenges specific to comparative trials
To investigate suitable alternative treatment regimens, 
a comparative randomized clinical trial is required and 
these comparative trials raise further difficulties in the 
analyses and interpretation of the data.

Comparison of anti‑malarial drugs with different 
pharmacokinetic profiles
Anti-malarial drugs with different elimination half-
lives may vary considerably in the period of time during 
which peripheral parasite growth is suppressed. Since 
post treatment prophylaxis reduces the risk of new infec-
tion and delays the timing of recurrent parasitaemia, for 
drugs with similar efficacy the comparative results may 
be biased against the drug with the shorter half-life. Con-
versely, a new drug which has a long elimination half-
life may result in the false impression of good efficacy. 
Consider dihydroartemisinin–piperaquine (DP) and 
artemether–lumefantrine (AL). Piperaquine is a slowly 
eliminated regimen with a terminal elimination half-life 
of 13.5–28 days and will suppress parasitic growth for a 

far longer period compared to lumefantrine, which has 
an elimination half-life ranging from 1.4 to 11.5 days [4]. 
Patients treated with DP will therefore encounter fewer 
recrudescences/new infections during the first 28  days 
of the follow-up and thus comparison of efficacy at day 
28, will be biased against artemether–lumefantrine (AL; 
see Fig. 5 for an illustration of this bias). For example, in 
a longitudinal study conducted in Uganda, the median 
time to recrudescence was 21 days (range 21–50 days) in 
the AL arm compared to 42 days (range 33–51 days) in 
the DP arm [43].

Ideally, the comparison overall efficacy of anti-malar-
ial regimens should be carried out at a time, when anti-
malarial drug concentrations cease to suppress parasite 
growth (i.e. fall below the minimum inhibitory con-
centration—MIC) and after allowing the time for the 
parasites to reach the limit of detection. If the drug con-
centrations fall below MIC on day 18, and assuming 10 
parasites are circulating in the blood, these parasites 
will reach the threshold for detection (~  108 parasites) 
in 7 parasite life cycles, which is approximately 14  days 
assuming an efficient multiplication of tenfold per cycle 
and a parasitic developmental cycle of 48 h. In this sce-
nario recrudescences begin to appear by day 33. Under 
the same assumption, a drug which provides more pro-
longed prophylaxis (e.g. with drug concentrations in 
plasma falling below than MIC on day 31) will result in 
recrudescent parasites reaching the limit of detection on 
day 45. Hence, comparing these two drugs on day 42 will 
result in a biased conclusion. The comparative efficacy 
should account, therefore, for differences in the pharma-
cokinetic profile of the drugs. This is further confounded 
by transmission setting, which determines the risk of new 
infection (a competing risk event). Characterization of 
the duration of follow-up required to appropriately cap-
ture the treatment failures would provide a basis for com-
parison and this is currently being investigated [44].

Comparing survival estimates at  a fixed point in  time 
in a single centre study  Comparison of survival curves 
is usually carried out using the log-rank test. In com-
peting risk analysis situation, such comparison is made 
using Gray’s test [45]. The log-rank test uses information 
throughout the study follow-up period with equal weights 
given to failures at all time points. This is the most pow-
erful test under the assumption of proportional hazards. 
Intersection of two survival curves may be indicative of 
non-proportional hazards and the log-rank test will fail 
to pick up differences. In such situation Gehan’s test and 
non-parametric tests such as Kolmogorov–Smirnov and 
Cramer–von Mises types of tests may be used [42]. Which 
of these two tests (log-rank or Gray’s test) remains the 
appropriate approach has gathered considerable interest 

Table 2  Pooled Kaplan–Meier estimates for recrudescence 
using naïve and metasurv approaches for AS + AQ [25]

a  Kaplan–Meier estimates were estimated assuming the data came from one 
single study. Patients with new infections, indeterminate outcomes and lost to 
follow-up were censored when deriving the K–M estimates for recrudescence 
failures
b  Kaplan–Meier estimates and associated number of patients at risk were 
extracted on pre-scheduled follow-up days 1, 2, 3, 7, 14, 21, and 28. The 
estimates were pooled using MetaSurv package in R (Additional file 1: Section 
D). I squared statistic for heterogeneity = 0%

Day Pooled Kaplan–Meier estimates

Naïve approacha D + L approach meta-analysisb

7 1.000 0.994 [0.987–1.000]

14 0.994 [0.989–1.000] 0.989 [0.979–0.998]

21 0.949 [0.933–0.966] 0.943 [0.916–0.970]

28 0.918 [0.895–0.941] 0.909 [0.873–0.948]
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in statistical literature. It has been suggested that if the 
interest is in understanding the biological mechanism 
(e.g. how a treatment affects recrudescence), the log rank 
test is considered appropriate and when a researcher is 
interested is answering if subjects receiving a particular 
drug are more likely to fail (e.g. experience recrudescence 
by the end of the study), the comparison of CIF through 
Gray’s test is considered appropriate [24, 46, 47].

In addition, when comparing two anti-malarial regi-
mens (e.g. AL and DP) it appears to be more relevant 
to focus on the overall proportion of failures observed 
during the follow-up time. Consequently, an alternative 
approach test is needed which allows comparison of the 
cumulative Kaplan–Meier estimates at a specific time 
point. Such a test can be constructed from the difference 
of complementary log–log transformed K–M estimates 
at a specified time point and the appropriately estimating 
the standard error for this difference [42].

Let Ŝ1(t) and Ŝ2(t) be the two survival estimates 
and δ = {ln

(

− ln

(

Ŝ1(t)

))

− ln

(

− ln

(

Ŝ2(t)

))

 be the 
difference between these two estimates on comple-
mentary log–log scale. The X2 test statistic for the com-
paring the difference in two estimates is given by [42]:

where Var(δ) denotes variance estimate of δ (see Addi-
tional file  1: Section E for details of derivation and R 
associated script). This statistic has an approximate 
Chi squared distribution in 1 degree of freedom. The 
approach recommended by Klein et  al. [42] (referred 
as Klein’s test onwards) has been illustrated using 
example data 2 provided in Additional file 1: Section E. 
There was a significant difference between drug A and 
drug B on day 42 based on log-rank test (X2 = 4.30 , 
p  =  0.038). Using Klein’s test, there were no differ-
ence in the K–M estimates on day 42 (X2  =  0.266, 
p = 0.606) (Fig. 6).

Comparing survival estimates at  a fixed point in  time 
in  multicentre trials  Klein’s test to compare survival 
estimates at a fixed point in time can be extended to multi-
centre studies (Additional file 1: Section E) [42]. The result 
of the Klein’s test and the stratified log-rank test for com-
paring AQ + SP against AS + AQ were similar and are 
presented in Table 3.

X
2 =

{δ}2

Var(δ)

Fig. 5  Cumulative failure estimates for drugs with different terminal elimination half-lives. The solid line represents K–M cumulative failure prob-
abilities and the dotted line represents the drug levels with hypothetical units presented on the right y-axis. Drug B (blue) has a longer elimina-
tion half-life and the recrudescent failures are more patent after day 21 compared to drug A (red) with a short half-life and recrudescences being 
observed after day 7
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Non‑inferiority designs
Historically clinical trials have been designed to deter-
mine the superiority of a new regimen against that of 
a failing drug [48]. This approach is useful when the 
efficacy of the standard regimen has already reached 
unacceptable levels. However, when comparing highly 
effective regimens it is often unfeasible to demonstrate 
the superiority since the required sample size will be 

extremely large. In this scenario a non-inferiority design 
is often adopted [12]. The primary objective of a non-
inferiority trial is to demonstrate that an investigational 
drug regimen is not clinically inferior (“is no worse”) to 
the current standard of care. This can be demonstrated 
by showing the two-sided 95% confidence interval (CI) 
for treatment difference is likely to lie above a lower mar-
gin of clinically acceptable differences (Δ). Currently, 
there exists no recommendation regarding the optimal Δ 
margin for comparative studies. The US Food and Drug 
Administration (FDA) requires construction of two-
sided 95% confidence interval for the difference in cure 
with a pre-specified Δ for the per-protocol and modified 
ITT population to demonstrate non-inferiority [49]. For 
anti-malarial studies, Borrmann et al. recommend using 
a non-inferiority margin of 5% units (or, its equivalent as 
hazards ratio unit) for phase III trials provided that the 
cured proportion remain above 90% [48]. Since anti-
malarial efficacy with an ACT regimen is invariably close 
to or greater than 95%, a non-inferiority margin of 5% can 
be regarded as a reasonable choice. Smaller margin will 
require a much larger sample size, which has immediate 

Fig. 6  Comparison of survival estimates at fixed point in time

Table 3  Comparing K–M at fixed point in time

Site Chi squared test for com-
paring K–M at a fixed 
time point (day 28)
(Klein’s test [42])

Log-rank test 
for comparing 
whole curve (day 0 
to day 28)

X2 p value X2 p value

Tororo 1.35 0.246 2.00 0.158

Arua 2.72 0.099 2.20 0.142

Jinja 6.18 0.013 6.40 0.011

Apac 0.91 0.340 1.10 0.290

Stratified test 4.98 0.026 4.90 0.026
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implication on cost and resources. A larger margin will 
lead to a smaller sample size but would not guarantee 
that the efficacy of the comparator is greater than 90%.

Currently the demonstration of non-inferiority is 
widely based on the cured proportion. Since the K–M 
method is the recommended statistical approach for 
deriving anti-malarial efficacy, any demonstration of 
non-inferiority should be based ideally on differences in 
the K–M estimates. This can be carried out a fixed point 
in time or can be based on the whole curve.

Demonstrating non‑inferiority based on  K–M estimates 
at a fixed point in time  The hypothesis of non-inferiority 
at a fixed time point (e.g. day 28) can be tested using the 
K–M estimates. Suppose Δ is the margin for non-infe-
riority. The 95% CI for the difference of two K–M esti-
mates can be constructed by adding individual variance 
of the two K–M estimates [50]. For anti-malarial studies, 
Stepniewska and White have proposed the use of effec-
tive sample size for constructing 95% CI for differences in 
K–M estimates and this can be easily applied for any trial 
[12]. The effective sample size is calculated by dividing the 
derived K–M estimates at a given time point by the num-
ber of patients who reached the end of the study without 
any deviations or treatment failure (see Additional file 1: 
Section F for a worked out example).

Demonstrating non‑inferiority based on  relative risk 
measure  Under the proportional hazards assumption, 
the non-inferiority between regimens can be tested based 
on the relative risk measure (e.g. hazards ratio). Let Ŝ1(t) 
and Ŝ2(t) be survival estimates for the new and standard 
treatment regimens respectively at time t. Let γ be the 
corresponding relative risk of failure for new treatment 
compared to the standard regimen (estimated as hazards 
ratio from Cox’s model) and let � = Ŝ1(t)− Ŝ2(t) be the 
non-inferiority margin. Under the assumption of propor-
tional hazards [51],

The upper limit for non-inferiority based on relative 
risk then can be derived based entirely on the efficacy of 
the reference (standard) arm as:

Non-inferiority is demonstrated if the 95% CI 
for the estimated hazards ratio remains below the 

Ŝ1(t) = [Ŝ2(t)]γ ⇒ γ =
ln

(

Ŝ1(t)

)

ln

(

Ŝ2(t)

)

γ =
ln

(

Ŝ2(t)−�

)

ln

(

Ŝ2(t)

)

non-inferiority limit on the relative risk scale [48]. Fur-
ther recommendations on interpretation of the results 
of the non-inferiority tests for Phase III studies is pro-
vided elsewhere (see Table  1 of Bormann et  al. [48]). 
Figure 7 shows the relative risk non inferiority margin 
corresponding to survival estimates  >  90% in the ref-
erence treatment (Additional file  1: Section G). If 5% 
difference is considered an appropriate non-inferiority 
margin in K–M scale, then on relative risk scale, when 
the existing treatment has an efficacy of 97%, the upper 
limit of the 95% CI for the derived hazards ratio for the 
new treatment should not exceed 2.7. One advantage of 
demonstrating non-inferiority on the relative risk scale 
as opposed to absolute differences in K–M is that the 
influence of baseline covariates can be adjusted when 
deriving the hazards ratio using Cox’s regression model 
as outlined by Tunes da Silva et al. [51]. However, one 
should be careful when performing such comparison 
between regimens with different half-lives and must 
validate the assumption of hazards being proportional. 
When the assumption of proportionality doesn’t hold, 
an alternative approach is to construct the test based 
on the complementary log–log transformation of the 
two survival estimates at time t. Logarithm of the haz-
ard ratio corresponds to the difference between K–M 
survival estimates on the complementary log–log scale. 
The 95% confidence interval (on the complementary 
log log scale) for this difference can be calculated using 
expression in Additional file 1: Section E. The estimated 
confidence interval can then be transformed into a 
relative ratio (hazard ratio) scale by exponentiation (a 
working example is presented in Additional file 1: Sec-
tion H).

Fig. 7  Upper limit of non-inferiority margin based on the relative risk. 
Relationship between non-inferiority margin on the relative risk scale, 
and the margin on the survival difference (difference of two Kaplan–
Meier estimates) scale, Δ
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Conclusions
Significant resources have been spent to overcome rec-
ognized difficulties in estimating anti-malarial efficacy by 
standardizing methodological procedures and these have 
facilitated the monitoring of anti-malarial drug resistance 
over time and geographical location. However, even a 
robust design and analysis requires that the derived point 
estimates of efficacy are interpreted with caution and the 
confidence interval around such point estimates should 
be given equal importance when interpreting the result 
of a study. The study design, transmission setting, labo-
ratory and genotyping procedures, patient demograph-
ics and adherence to protocols all need to be considered. 
Uncertainty associated with PCR genotyping can be 
ameliorated to a certain extent if allelic distribution and 
clonality of infection in the study population is known. 
This allows for adjustment of pre and post treatment 
alleles matching purely by chance; various modelling 
approaches have been proposed for estimating the haplo-
type frequencies and for adjusting drug efficacy estimates 
and novel genotyping approach has been recently sug-
gested [10, 52–56]. For comparative studies, the results 
are confounded by the elimination half-lives of the drugs 
and the transmission setting in which the study is con-
ducted. Advances in statistical methodologies and the 
availability of the methods in standard software programs 
have ensured that some of the issues raised in this review 
can now be easily addressed (Table 4). However, the true 
extent of the problem associated with these limitations is 
likely to have been overlooked, especially when individ-
ual trials are small and failures are few. It is important to 
define the extent of this bias, as derived efficacy estimates 
form the basis for driving policy decisions. The remit of 
the WorldWide Antimalarial Resistance Network Meth-
ods Study Group is well placed to answer some of these 
issues that will facilitate better methodologies and prac-
tices [44].
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Table 4  Challenges in estimating antimalarial drug efficacy and possible alternatives

Challenges Current approach Alternative approach Software

Competing risk event Censored on the day of event [3] Cumulative incidence function cmprsk package R [30]
(Additional file 1: Section B)

Interval censoring Ignored Interval censored survival estimates survival package R [57]
(Additional file 1: Section C)

K–M for multicentre studies No specific recommendation Use of meta-analysis approach [40] MetaSurv package R [41]
(Additional file 1: Section D)

Comparing K–M estimates Current comparison based on whole 
survival curve (log-rank test)

Comparison at a fixed point in time 
based on complementary log–log 
transformation [42]

R script available as additional file
(Additional file 1: Section E)

Demonstrating non-inferiority Based on the cured proportion Based on the difference of two K–M 
estimates after complementary log–
log transformation (or on hazards ratio 
scale)

R script available as additional file
(Additional file 1: Sections F, G, H)
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