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Abstract 

Background:  The introduction of new malaria control interventions has often led to the evolution of resistance, 
both of the parasite to new drugs and of the mosquito vector to new insecticides, compromising the efficacy of the 
interventions. Recent progress in molecular and population biology raises the possibility of new genetic-based inter-
ventions, and the potential for resistance to evolve against these should be considered. Here, population modelling 
is used to determine the main factors affecting the likelihood that resistance will evolve against a synthetic, nuclease-
based driving Y chromosome that produces a male-biased sex ratio.

Methods:  A combination of deterministic differential equation models and stochastic analyses involving branching 
processes and Gillespie simulations is utilized to assess the probability that resistance evolves against a driving Y that 
otherwise is strong enough to eliminate the target population. The model considers resistance due to changes at the 
target site such that they are no longer cleaved by the nuclease, and due to trans-acting autosomal suppressor alleles.

Results:  The probability that resistance evolves increases with the mutation rate and the intrinsic rate of increase 
of the population, and decreases with the strength of drive and any pleiotropic fitness costs of the resistant allele. In 
seasonally varying environments, the time of release can also affect the probability of resistance evolving. Trans-acting 
suppressor alleles are more likely to suffer stochastic loss at low frequencies than target site resistant alleles.

Conclusions:  As with any other intervention, there is a risk that resistance will evolve to new genetic approaches to 
vector control, and steps should be taken to minimize this probability. Two design features that should help in this 
regard are to reduce the rate at which resistant mutations arise, and to target sequences such that if they do arise, 
they impose a significant fitness cost on the mosquito.

Keywords:  Malaria, Gene drive, Resistance, Anopheles gambiae, Vector control, Driving Y chromosome, Branching 
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Background
Any attempt to control a harmful species, whether it be 
a disease-causing microbe or a crop-competing weed, 
must consider the potential for resistance to evolve—for 
example, to antibiotics or herbicides. The evolution of 
resistance has been a recurring theme over decades of 
malaria control efforts, both by the Plasmodium parasite 
to new drugs [1, 2] and by the Anopheles mosquito vector 
to new insecticides [3]. Any new intervention to control 

or help eliminate malaria must, therefore, be assessed in 
terms of how sustainable impacts are likely to be in the 
face of potential selection for resistance.

Recent progress in molecular and population biology 
has raised the possibility of new interventions for vector 
control using genetic approaches to disrupt the survival or 
reproduction of the mosquitoes, or to render them unable 
to transmit the parasite [4–7]. One possible approach is 
to make a synthetic driving Y chromosome by inserting, 
onto the Y, a gene encoding a nuclease that recognizes and 
cleaves a repeated sequence found only on the X chromo-
some, and have the appropriate control sequences such 
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that the gene is only expressed during spermatogenesis 
[8–10]. The idea is that expression of the gene at this time 
will disrupt transmission of the X chromosome, leading to 
a preponderance of Y-bearing sperm and male offspring, 
which will themselves carry the nuclease gene. As long as 
the nuclease gene does not affect male fitness too strongly, 
the modified Y chromosome is expected to increase in 
frequency within a population, eventually replacing the 
wild-type Y. As it does so, the population sex ratio will 
become increasingly male-biased, which will have a direct 
impact in reducing disease transmission (because only 
females bite people and transmit disease). Since females 
are also likely to be most responsible for the productivity 
of the population, a male-biased sex ratio may also lead 
to a reduction in the total number of mosquitoes, further 
reducing transmission, and if the Y drive is sufficiently 
strong, then spread could lead to elimination of the popu-
lation [9, 10]. Recently, there have been promising proof-
of-principle demonstrations in Anopheles gambiae that 
cleavage of the X chromosome during spermatogenesis 
can lead to male-biased sex ratios with little or no effect 
on male fertility, both using engineered meganucleases 
[11] and with a CRISPR-based nuclease [12].

The spread of a driving Y may be expected to select 
for resistant genotypes. One obvious form of resistance 
would be changes in the target sequence such that it is 
no longer cleaved by the nuclease, as has been modelled 
and observed in the context of homing-based gene drive 
constructs [9, 10, 13–19]. In addition, since the spread 
of a driving Y will produce a male-biased sex ratio, there 
can be selection for autosomal suppressors that restore a 
50:50 sex ratio [20, 21]. In the context of investigating a 
potential population modification (as opposed to popula-
tion suppression) strategy for Aedes mosquitoes, Huang 
et al. [22] show using deterministic models that release of 
a driving Y can result in the spread of X-linked and auto-
somal resistance.

Though resistance to a driving Y may evolve, it is not 
inevitable. For example, resistant genotypes may arise suf-
ficiently rarely that the population is eliminated by the driv-
ing Y before resistance evolves. Or resistance may have 
sufficiently large pleiotropic fitness effects that prevent it 
from spreading. To investigate further the likelihood that 
either target site resistance or a trans-acting suppressor 
will evolve to a driving Y, a population genetic and popu-
lation dynamic model is developed. Stochastic effects 
are incorporated by extending the time-inhomogeneous 
branching process method of Uecker and Hermisson [23], 
which has also been used recently to analyse the evolu-
tion of resistance to homing-based gene drive elements 
that spread without causing population suppression [16]. 
Results are checked by fully stochastic Gillespie simulations 
[24]. The models identify a number of factors affecting the 

probability resistance evolves and rescues the population, 
including the mutation rate, the intrinsic rate of increase of 
the population, the strength of drive and the pleiotropic fit-
ness costs of the resistant allele. In seasonally varying envi-
ronments, the probability of resistance evolving is affected 
by the time of release of the driving Y males. Trans-acting 
suppressor alleles are more likely to suffer stochastic loss at 
low frequencies than target site resistant alleles.

Methods
Population biology and the driving Y
A continuous time differential equation model with sepa-
rate sexes is developed, with explicit recruitment (birth) 
and death rates. Total recruitment rates depend on the 
number and fitness of females, under the assumption 
that males and fertilization are not limiting [25]. In such 
a model, the generation time is equal to the inverse of the 
death rate, and to keep this constant in the face of tem-
porally variable population densities and environments, 
logistic density dependence is imposed on the recruit-
ment rates (as a convenient way of modelling density-
dependent mortality during the larval stage, which, for 
tractability, is not explicitly modelled here). Thus, the 
pre-release population model is:

where M(t), F(t) and N (t) = M(t)+ F(t) are male, 
female, and total population numbers, Rm =  λ/μ is the 
intrinsic growth rate of the population with density-
independent birth rate λ and death rate μ, and γ is the 
density-dependent rate constant per generation time. 
Time is normalized by the average generation time 1/μ. 
In this model, the equilibrium total population size in 
the absence of control is N0 = (Rm − 1)/γ . Definitions 
of parameters and variables for the model are given in 
Table 1.

Males with a driving Y chromosome are released into 
the population at time t = 0 in amount h0. The driving Y 
is assumed to have no effect on survival or mating suc-
cess, and is transmitted to a proportion m of a male’s 
progeny, rather than the Mendelian 50%. Denoting the 
number of driving Y males at time t as H(t), the popula-
tion dynamics are then captured by the following set of 
equations:

(1)
dM(t)

dt
= [Rm − γN (t)]F(t)−M(t)

dF(t)

dt
= [Rm − γN (t)]F(t)− F(t)

dH(t)

dt
= 2[Rm − γN (t)]

mH(t)

H(t)+M(t)
F(t)−H(t)

(2)
dM(t)

dt
= [Rm − γN (t)]

M(t)

H(t)+M(t)
F(t)−M(t)
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As previously shown [25], there are two possible out-
comes: either the sex ratio distortion is sufficient to elim-
inate the population (if m > mcrit = 1− 1/(2Rm)) or else 
the driving Y goes to fixation, replacing the wild-type Y, 
and the population persists at a lower equilibrium density 
(here, equal to N1 = [2(1−m)Rm − 1]/[2(1−m)γ ]). In 
this paper, the focus is on the case where m is sufficiently 
high to eliminate the population (i.e., for the determin-
istic model, the population tends to zero as time goes to 
infinity), and the likelihood that resistance evolves and 
rescues the population before then is determined.

Model I: Target site resistance
For a driving Y chromosome that encodes a nuclease 
that recognizes and cuts a sequence on the X chromo-
some, the simplest form of resistance would be a change 
in the target site such that it is no longer recognized and 
cut by the nuclease. The An. gambiae sequences tar-
geted by Galizi et  al. [11, 12] are within the ribosomal 
DNA repeat, and are repeated hundreds of times on the 
X, but for simplicity in this initial analysis, it is supposed 
that there are only two types of X chromosomes possi-
ble, susceptible or fully resistant. It is further assumed 
that resistant alleles do not pre-exist in the population 
before release of the driving Y, nor do they arise spon-
taneously, but they do arise with probability u in the 
X-bearing gametes of driving Y males (i.e., they arise due 

dF(t)

dt
= [Rm − γN (t)]

M(t)+ 2(1−m)H(t)

H(t)+M(t)
F(t)− F(t)

to large-scale non-homologous repair of the cut sites, 
followed perhaps by some form of gene conversion or 
unequal crossing-over). Resistant mutations of this sort 
have previously been observed in yeast cells harbouring a 
meganuclease targeting their rDNA [26]. Also assumed is 
that the nuclease is only expressed during spermatogen-
esis, so mutant Xs arise singly, not in clusters, and that 
the occurrence of such a mutation does not affect the 
proportion of X-bearing sperm produced by a male—it 
is only when the mutant X occurs in subsequent gen-
erations with a driving Y that the resistance is manifest. 
There are, therefore, two types of Y and two types of X, 
giving four types of males and three types of females and 
a system of seven differential equations (Additional file 1: 
Eq. A1.2).

Model II: Trans‑acting suppressor mutation
Also considered is the case of a trans-acting mutation 
on an autosome that suppresses the expression or activ-
ity of the nuclease. Such a mutation would not have a 
transmission advantage over the wild-type allele, but still 
can spread by natural selection, which favours a 50:50 
sex ratio at autosomal loci [27]. It is unclear at this time 
how such a mutation might arise, and for simplicity it is 
assumed that it is fully dominant (i.e., there is complete 
suppression of the nuclease with only a single copy of the 
allele); that the mutation does not pre-exist in the pop-
ulation before release of the driving Y; and that it arises 
with probability v in all individuals, not just in the prog-
eny of driving Y males. There are now six types of male 

Table 1  Description of model parameters and variables

Symbol Definition

Rm Intrinsic growth rate of the population, λ/μ

λ Density-independent birth rate

μ Density-independent death rate

γ Density-dependent rate constant per generation time

m Proportion of progeny of driving Y males that inherit the driving Y

u The fraction of female progeny of a driving Y male that inherit an X chromosome with a resistant mutation (Model I)

v The chance of a suppressor mutation arising on an autosome (per individual per autosome, for all births, male or female) (Model II)

w Fitness parameter for mutations (relative to fitness one for wild-types and driving Y males without the resistant gene). Model I: w for 
heterozygote females, w2 for homozygous females and hemizygous males; Model II: w for heterozygotes, w2 for homozygotes

a Amplitude of seasonal variation in parameter for density-dependence, γ(t)

N0 Equilibrium wild-type population size (before release of driving Y and in absence of mutation)

h0 Release amount of driving Y males

H(t),M(t), F(t) Driving Y, wild-type male and wild-type female population sizes (non-mutant)

N(t) Total population size

P1 Probability that at least one mutation arises and establishes, preventing population elimination

PMut Probability that at least one mutation arises (regardless of its fate)

PCon Conditional probability that if one or more mutations arise, at least one establishes

pest(ta) Probability that a single mutation arising at time ta after release of the driving Y will establish (in the absence of other mutations)
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and three types of female, and a system of nine differen-
tial equations (Additional file 1: Eq. A1.8).

Stochastic methods
The deterministic equation models implicitly assume the 
population is effectively infinite, and so any mutation 
rate greater than zero ensures that resistant alleles will be 
created and, if sufficiently fit, get established and rescue 
the population. Any real population is finite, and there-
fore it is possible that the population is eliminated before 
a resistant mutation occurs, or if a mutation does occur 
before the population is eliminated, it may not establish 
due to stochastic loss. To estimate the probability that a 
resistant mutation arises and establishes before the popu-
lation is eliminated, the branching process method first 
used in population genetics by Fisher [28] and Haldane 
[29] is applied. The more recent analysis by Uecker and 
Hermisson [23], applied by them to evolutionary rescue of 
a declining resident population by a single mutant type, is 
followed and extended to include differentiation between 
mutant types (males with/without the driving Y and 
females). It turns out that the linearization needed for the 
branching process model is only valid for a subset of the 
parameter space of interest, and fully stochastic Gillespie 
simulations (averaged over 106 runs, N0 =  106) are used 
to extend beyond this parameter space and to confirm 
results (see Additional file 1: Section A3, for details).

The main quantity of interest is the probability that at least 
one resistant (or suppressor) mutation arises and establishes 
in the population, preventing elimination. This is denoted as 
P1, and for Model I, where u is the fraction of female prog-
eny of a driving Y male that inherit an X chromosome with 
a resistant mutation, the branching process yields:

where v is the chance of a suppressor mutation arising on 
an autosome (per individual per autosome, for all births, 
male or female), and the integral term now includes prob-
abilities of establishment of three mutant heterozygote 
types as FS, MS and HS (female, wild-type male and driv-
ing Y male mutants). For simpler systems with one mutant 
type, a closed-form integral solution for the probability of 
mutant establishment pest(ta) is possible using the Method 
of Characteristics [23, 30]; however, in general, analytical 
solutions are not possible for a Y drive model with differ-
ent rates of transmission of the allele in different mutant 
types. Therefore, pest,n(ta) is calculated for each mutant 
type n by first deriving a partial differential equation for 
the probability generating function for the relevant multi-
type branching process, and then employing the Method 
of Characteristics to transform the PDE into a set of cou-
pled first order non-linear ordinary differential equations, 
one for each mutant type, that may be solved numerically 
to give each pest,n(ta) [Additional file 1: Eq. A2.9 (Model I) 
and Eq. A2.15 (Model II)]. These may be substituted into 
P1 in (3) and (4) above [see Additional file 1: Sections A2.1 
(Model I) and A2.2 (Model II) for further details].

To better understand the factors affecting this prob-
ability, results are also presented for two component 
probabilities: the probability that at least one resistant 
mutation arises before elimination, regardless of its fate 
(denoted PMut), and the conditional probability that if one 
or more mutation arises, at least one survives stochastic 
loss and the population is rescued (denoted PCon). PMut 
is calculated for the resistant X-chromosome mutation 
(Model I) by integrating over the time-dependent pop-
ulation-wide rate at which FR mutant individuals arise 
(Additional file 1: Eq. A2.11), which yields:

(3)
P1 = 1− exp



−2(1−m)(uN0)

∞
�

0

pest,FR(τ )(Rm − (Rm − 1)N (τ ))F(τ )H(τ )

H(τ )+M(τ )
dτ





Above, pest,FR(τ ) is the probability that a single X chro-
mosome mutation that arises at time ta = τ in a daughter 
(denoted FR) of a driving Y male will escape stochastic 
loss and establish; it is weighted by the rate at which new 
FR mutant individuals arise over time. The rate is a func-
tion of the non-mutant deterministic populations which 
are calculated from (2), in (3) shown normalized with N0 
and with substitution of γ = (Rm − 1)/N0. Analogously 
for Model II for the trans-acting suppressor mutation, 
the following expression is obtained:

(4)

P1 = 1− exp



−2(vN0)

∞
�

0

(Rm − (Rm − 1)N (τ ))F(τ )

�

pest,FS (τ )

�

M(τ )+ 2(1−m)H(τ )

H(τ )+M(τ )

�

+pest,HS (τ )

�

2mH(τ )

H(τ )+M(τ )

�

+ pest,MS (τ )

�

M(τ )

H(τ )+M(τ )

��

dτ

�

The non-mutant populations are calculated from (2), 
here again shown normalized by N0. For trans-acting 
suppressor mutations (Model II), PMut is calculated 
from the total rate that suppressor mutations arise in 
autosomes over all individuals (see Additional file 1: Eq. 
A2.16):

(5)

PMut = 1− exp



−2(1−m)(uN0)

∞
�

0

(Rm − (Rm − 1)N (τ ))F(τ )H(τ )

H(τ )+M(τ )
dτ




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Finally, PCon, the conditional probability of establish-
ment, is calculated as:

Results
Model I: Target site resistance
Cost‑free resistance
In the absence of resistance, release of a driving Y in this 
model leads either to population suppression or popu-
lation elimination, depending on the transmission rate 
of the driving Y (m) and the intrinsic rate of increase 
of the population (Rm). Assuming that m =  0.95 (con-
sistent with the results of Galizi et  al. [11, 12]), and 
Rm =  6 (consistent with the analyses of Deredec et  al. 
[10]), then the model population tends to elimination, 
with time course calculated from (2) and shown in Fig. 1 
(assuming an initial release of h0 =  0.05 N0, i.e. 5% of 
the pre-release equilibrium population size). As can 
be seen, the population size drops rapidly, such that it 
is only ∼= 30% of its original size after 10 generations, 
and ∼= 0.2% after 30 generations. The number of driv-
ing Y males initially increases due to the drive, and then 
decreases due to the reduction in total population size. 
The total number of driving Y males born over the time 
to elimination is ∼= 4 N0 , and the number of daughters of 
these males is ∼= 0.2 N0 (see Additional file 1: Eq. A2.12). 
As it is assumed that mutations to target site resistance 
can only occur in the meiotic cells of driving Y males, 

(6)

PMut = 1− exp



−4(vN0)

∞
�

0

(Rm − (Rm − 1)N (τ ))F(τ )dτ





(7)PCon =
P1

PMut

and would only be transmitted to their daughters, these 
numbers give some indication of the opportunity for 
resistance to arise.

The stochastic model for the evolution of resistance 
requires one more parameter, the product of the initial 
population size (N0) and mutation parameter u (i.e., the 
fraction of female progeny of a driving Y male H(t) that 
inherit a mutant resistant X chromosome (0 ≤  u ≤  1). 
If one considers the baseline value of uN0 = 1, then the 
probabilities of three possible outcomes can be calcu-
lated from the model: no resistant mutation arises and 
the population is eliminated (1− PMut

∼= 80% for base-
line parameter values); at least one mutation does arise, 
but none establish, and the population is eliminated 
(PMut − P1 ∼= 13%); and at least one mutation arises 
and establishes, and the population persists indefinitely 
(P1 ∼= 7%). The overall probability the population is 
eliminated is 93%. For these parameter values, the popu-
lation is usually eliminated by the driving Y before a sin-
gle resistant mutation occurs, and even when one does 
arise, most of the time the mutation is lost and the popu-
lation is still eliminated. In the Additional file 1: Figure 
A3.1 presents some exemplar runs from the Gillespie 
simulations (106 runs, N0 =  106) for which at least one 
resistant mutation survives stochastic loss and the popu-
lation recovers.

In those cases when resistance does evolve, it evolves 
quickly, and the number of females in the target popu-
lation is suppressed for a relatively short time (e.g., it 
remains below 33 and 5% of its pre-release equilibrium 
value for 17.6 (median 17.3, interquartile range 16–19) 
and 12.3 (median 11.9, interquartile range 10.5–13.6) 
generations on average, respectively (full simulation 
model used, 105 runs). To put these numbers into con-
text, An. gambiae mosquitoes may have 10–18 genera-
tions per year, depending on temperature [31, 32]. As 
an aside, it is noted for comparison that if, for exam-
ple, m = 0.9, which is insufficient to eliminate the tar-
get population, resistance will always evolve (assuming 
u  >  0), and the population will be suppressed below 
33% of its initial density for an average of 90.4 (median 
62.5, interquartile range 28–122) generations before 
it recovers. It never goes below 5% of its initial value 
(detailed results in Additional file  1: Figure A3.2, Sec-
tion A3).

In this model, there are three parameters that affect 
the probability that resistance evolves before the popula-
tion is eliminated: the product of the mutation rate and 
population size (uN0), the intrinsic rate of increase of the 
population (Rm), and the transmission rate of the driving 
Y (m). Now, the effect of varying each of these parame-
ters individually on the probability of resistance evolving 
is investigated.

driving-Y male
wild-type male

wild-type female
total

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

time (mosquito generations)

Po
pu

la
tio

n

Fig. 1  Example time course for population elimination for the 
deterministic model in the absence of mutation, after introduction 
of a driving Y chromosome at t = 0. Populations are normalized by 
the wild-type pre-release population N0, and parameter values are 
Rm = 6, m = 0.95, h0 = 0.05, γ = (Rm − 1)/N0
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Varying uN0  From (5) in the limit of low uN0 ≪ 1, the 
probability that at least one mutation arises before elimi-
nation, PMut, is proportional to uN0:

Since the probability that a single mutation establishes 
does not depend on uN0 in (3), the probability a mutation 
arises and establishes, allowing the population to persist 
(P1), is also proportional to uN0 for uN0 ≪ 1:

This agrees with simulation results of Marshall et  al. 
[19] for population-suppressing homing-based gene 
drive that show a linear relationship between 1/N0 and 
the cleavage-resistant allele generation rate leading to a 
given elimination probability. For sufficiently small values 
of uN0, the conditional probability therefore also does not 

PMut
∼= 2(1−m)(uN0)

∞
∫

0

(Rm − (Rm − 1)N (τ ))F(τ )H(τ )

H(τ )+M(τ )
dτ

P1 ∼= 2(1−m)(uN0)

∞
∫

0

pest,FR (τ )(Rm − (Rm − 1)N (τ ))F(τ )H(τ )

H(τ )+M(τ )
dτ

vary with uN0, as expected due to the proportionality of 
both P1 and PMut on uN0, such that uN0 cancels out in (7). 
Figure 2a confirms these dependencies for varying uN0.

Varying Rm  Increasing Rm while keeping everything else 
the same leads to an increase in the population size, as 
N0 = (Rm − 1)/γ, and therefore in uN0, and consequently 
has much the same effects as an increase in uN0, as ana-
lysed above. Here it is asked, for populations of the same 
size but that differ in Rm (and therefore also differ compen-
satingly in γ), how are they expected to differ in the prob-
ability of evolving resistance? Increasing Rm in this way 
increases the time for a driving Y to eliminate the popula-
tion, and therefore increases the opportunity for resist-
ant mutations to arise before elimination (Fig. 2b, black 
lines). In addition, the probability that a mutation arising 
at a specified time ta becomes established (in the absence 
of others), pest(ta), increases as Rm increases (Additional 
file 1: Section A2.1, Figure A2.2a). This is because at higher 
Rm the recruitment (birth) rate of new resistant mutants is 
higher, reducing the probability of stochastic loss. Since at 

Fig. 2  PMut (black lines), P1 (red lines), and Pcon (blue lines) for resistant cost-free mutations. a Probabilities P1 and PMut increase with increasing uN0, 
for Rm = 6 and m = 0.95 (solid lines) or Rm = 12 and m = 0.98 (dotted lines). b All probabilities increase with increasing Rm, for m = 0.95 (solid lines) 
and m = 0.98 (dotted lines), with uN0 = 1. Curves only extend as far as Rm = 1/[2(1 − m)(1 − u)] (see Additional file 1: end of Section A1.1b) above 
which the strength of Y drive m < mcrit and population elimination does not occur. c Probabilities decrease with increasing m (strength of Y drive), 
for Rm = 6, uN0 = 1. d Probabilities increase with increasing mutant fitness parameter w, for Rm = 6,m = 0.95 (solid lines) and Rm = 12,m = 0.98 
(dotted lines), and uN0 = 1. The deterministic model shows that the population will be eliminated for w ≤ 0.563 for m = 0.95, and for w ≤ 0.452 for 
m = 0.98. For all plots, h0 = 0.05. Error bars at low Rm ,w and high m show the standard error for simulations (averaged over 106 runs, N0 = 106), when 
the branching process model does not apply; if not shown, error is within thickness of plot line
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higher Rm the probability of a mutation arising is higher, 
and its subsequent probability of surviving stochastic loss 
is also higher, the overall probability P1 that resistance 
evolves increases with increasing Rm (red lines in Fig. 2b).

Varying m  Increasing the transmission rate of the driv-
ing Y (m) reduces the probability of at least one mutation 
arising before elimination (Fig.  2c, black lines). Again, 
there are several reasons for this. Firstly, there is a fac-
tor (1 − m) in the mutation rate because the proportion 
of mutant females born from driving Y males decreases 
according to the sex bias (1 − m) (Eq. 3). At the limit of 
m =  1, no mutations can arise at all because driving Y 
males only create other males. Secondly, with larger m 
there is less time for mutations to occur, since the driving 
Y eliminates the population more quickly. Close to mcrit 
(for these parameters, mcrit =  0.9167), the population is 
eliminated very slowly, providing more opportunity for 
a mutation to occur. The probability pest(ta) that a single 
resistant mutation (that arises in a female at time ta) gets 
established in a population is also affected by m (Addi-
tional file 1: Figure A2.2b). So, with stronger Y drive, the 
probability that a resistant mutation occurs before elimi-
nation is lower, and if one does occur, the probability it 
establishes is lower, and thus the overall probability of 
resistance evolving is lower (Fig. 2c, red line).

Costly resistance
Thus far, it has been assumed that resistance is cost-free, 
with no pleiotropic effects on other fitness components. 
Now the case of resistance having a cost is considered. 
This is modelled as a decrease in fertility of females with 
the resistant gene, and decreased participation in mating 
for males with the gene (Additional file 1: Section A1.1). 
There are four genotypes carrying one or more resistant 
alleles, and the system of equations (Additional file 1: Eq. 
A1.2) has separate parameters for all of them. However, 
for simplicity of analysis here, these are collapsed to a sin-
gle parameter, assuming that heterozygous females have 
fitness w < 1, and homozygous females and hemizygous 
males have fitness w2 (relative to fitness one for wild-
types and driving Y males without the resistant gene).

To find the equilibria for a nonzero mutation rate, the 
time derivatives in the deterministic differential equa-
tions in the presence of mutation (Additional file  1: Eq. 
A1.2) are set to zero. Focussing initially on the determin-
istic model, Fig. 3 is a contour plot showing the fate of the 
resistant mutation and the resulting effect on the equilib-
rium number of females in the population as a function 
of w and Rm, assuming m = 0.95 and u = 10−6 (see Addi-
tional file 1: Section A1.1b, for calculation of equilibria). 
The resistant allele fixes deterministically in the popu-
lation for w1 < w ≤ 1, and establishes at intermediate 

equilibrium with the wild-type for 0 ≤ w < w1 (w1, which 
is independent of Rm, is given in Additional file 1: Section 
A1.1b). The total population goes extinct (shaded area) if 
fitness is below w = wex (100% suppression of population, 
solid line), i.e. where net total population growth is not 
positive. Above w = wex, the total population is nonzero 
and reduced, and the dotted contour lines in Fig. 3 show 
the percentage suppression of the total female popula-
tion size, compared to its size when there is no fitness 
cost (N0/2). Therefore, a resistant mutation might estab-
lish, and even spread to fixation, but still not rescue the 
population if it is too costly. As expected, populations 
with higher Rm can be rescued by mutations with higher 
cost than populations with lower Rm. Moreover, as the 
strength of Y drive m is increased, the minimum fitness 
required for fixation of the mutation, w1, decreases, as 
does wex (above Rm = 1/w1

2), since the higher the Y drive, 
the more of an advantage the resistant allele has over the 
sensitive allele in transmitting to the next generation and 
in restoring the 50:50 sex ratio, and thus a higher fitness 
cost can be tolerated (Additional file 1: Figure A1.2). It is 
also found that there is very weak dependence of these 
results on the mutation parameter u, assuming it is low 
(u ≪  1). Although the focus is on high m (strength of 
drive) for population suppression and elimination, it is 
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Fig. 3  Deterministic equilibrium as a function of the fitness of the 
resistant mutation w (for heterozygous females, with fitness w2 for 
homozygous females and hemizygous males) and the intrinsic rate 
of increase of the population (Rm). The population is rescued in the 
white area, where dotted curves represent the percentage sup-
pression of the total female population size, compared to its size 
when there is no fitness cost (N0/2). The population is eliminated in 
the shaded area under the curve of 100% population suppression 
(w = wex, solid black line). For w1 = 0.627 < w ≤ 1, the resistant muta-
tion tends to fixation, and in the white area the population is rescued 
(with reduced size equal to w

2
Rm−1

w2γ
), whereas in the shaded area, the 

population is eliminated. For 0 < w ≤ w1, the resistant mutation tends 
to an intermediate equilibrium, which again rescues the population 
only in the white area. For Rm ≥ 10.0001, the population is always 
nonzero, since the Y drive is not sufficient to eliminate the popula-
tion. Parameters are m = 0.95, u = 10−6
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possible to compare results for allele frequencies to the 
model of Huang et  al. [22] for population modification 
using Y-linked drive and X-linked resistance. For u = 0, 
using the analytical expressions for allele frequencies 
for general fitnesses, a region of low m where the resist-
ant X chromosome mutation cannot spread is similarly 
found, m < 1−

wFR
wHR

2(2−wFR
)
, which becomes the condition of 

Huang et  al. (Equation  (5), [22]) if their expressions for 
resistant heterozygote fitnesses are substituted.

Now the effect of fitness costs in the stochastic model 
is considered. Here, fitness costs do not affect the rate at 
which mutations arise (PMut), which is constant, but do 
reduce the probability of surviving stochastic loss and 
ultimate establishment (P1, Fig.  2d). For high costs, the 
branching process cannot be used (as explained in Addi-
tional file 1: Section A2.3), and in this region full simu-
lations are used. The conditional probability that at least 
one mutation survives stochastic loss if one or more 
mutations arise is also less for higher cost. Thus, higher 
fitness cost of the mutation (i.e., lower density-dependent 
recruitment rate for the heterozygotes) results in lower 
probability that a mutant mosquito will survive early 
stochastic loss, because it will be less able to pass on the 
allele before dying. In summary, the costlier resistance 
is (i.e., the lower w), the lower the probability that it will 
evolve, and if it does evolve, the lower the impact on the 
driving Y intervention.

Seasonal cycles
It has been shown above that a key parameter affecting 
the probability of resistance evolving is the initial popula-
tion size, through the combined parameter uN0. In many 
locations, the number of mosquitoes shows dramatic 
fluctuations between wet and dry seasons [33, 34]. Pre-
vious theory has shown that the probability a beneficial 
mutation establishes and goes to fixation can be affected 
by such fluctuations, and can depend upon when in a 
seasonal cycle the mutation arises [35, 36]. Seasonal-
ity can also affect the time to elimination by a driving Y, 
depending on when in the cycle the releases are made 
[13]. To investigate the consequences of seasonal fluctua-
tions in mosquito numbers for the evolution of resistance 
to a driving Y, periodic variation is incorporated into the 
model of mosquito demography via a sinusoidal time 
dependence in the parameter γ for density dependence in 
the mosquito recruitment rate, such that instead of being 
a constant, it varies seasonally:

Here, a is the amplitude of the oscillations in γ(t), 
and T is the seasonal period, in mosquito generations 
in (8) to be consistent with time t, which is normalized 

(8)γ(t) = γ0[a]

(

1+ a sin

[

2π t

T

])

with generation time (1/μ). An increase in γ(t) (and thus 
reduction in recruitment rate) during the dry season 
could arise from a reduction in the number or productiv-
ity of breeding sites at this time. The effects of seasonal-
ity are investigated by varying the amplitude a, and as a 
is varied, γ0[a] is adjusted such that the mean population 
size over the cycle is kept constant (Additional file 1: Sec-
tion A1.1a).

As an example, Fig.  4a shows the periodically-vary-
ing female population, with amplitude a chosen to give 
a peak/trough ratio of female mosquito numbers of 
100:1, and a representative mosquito generation time of 
1/µ = 20 days. Figure  4a also shows the deterministic 
female wild-type population for an initial amount of syn-
thetic driving Y males, h0, introduced at different times 
of year. In Fig. 4a, the time of the first release (going into 
low season) is benchmarked as year one, with other sam-
ple releases at trelease  =  3  months (population trough), 
6  months (rising population) or 9  months (coincides 
with population peak) after year one. The female popula-
tion (versus time) after introduction of the driving Y fol-
lows different paths to extinction depending on the time 
of year that the driving Y is released, trelease. For no sea-
sonality, for these parameters, it takes roughly one year 
(i.e. T = 18.25 mosquito generations) for the driving Y to 
crash the population to ∼= 1% of its initial value for typical 
parameters.

Depending on the point in the yearly cycle that the 
driving Y is released, any mutation that then arises will 
encounter different changing conditions (i.e., popula-
tion sizes and growth rates), which will in turn affect the 
probability that it will establish. In Fig. 4b, PMut, P1 and 
Pcon are shown as functions of the times of synthetic driv-
ing Y release, trelease, into the wild-type population during 
the year. The interplay between the yearly seasonal vari-
ation and dynamics of the driving Y establishment and 
extinction of the population strongly influences mutant 
creation and survival probabilities. The probability PMut 
that a mutation arises (and subsequently may or may 
not survive) is highest when the driving Y is released 
at trelease ∼= 7.8 months after each yearly benchmark in 
(Fig. 4b), which is well into the high season, so that subse-
quently the peak of the driving Y male coincides with the 
population peak and maximizes the rate of mutant crea-
tion. But mutants that are likely to have arisen during the 
population surge at high season subsequently experience 
periods of dropping recruitment rate, and thus decreased 
chance of the mutation establishing, so conversely Pcon is 
at its lowest for driving Y release at trelease ∼= 7.8 months 
after each yearly benchmark.

The combination of these effects results in P1, the prob-
ability that at least one mutant will arise and survive, and 
the population will persist, being less for all release times 
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for high seasonal variation (peak/trough ratio =  100:1) 
than for no seasonal variation, and at two times of the 
year (just before the population peak and just before the 
trough), it is approximately tenfold less. For low-ampli-
tude seasonal variation (not shown), there are some indi-
vidual release times in the year for which P1 is greater 
than in the equivalent non-seasonal model; however, 
P1 averaged over all times of driving Y release is always 
less than for the model with no seasonality for all ampli-
tudes of variation (Fig. 5). Thus, comparing populations 
with the same mean population size, seasonal variation 
decreases the overall chance of successful mutation and 
population rescue (when averaged equally over all possi-
ble release times).

Model II: Trans‑acting suppressor
Cost‑free suppression
Now the possibility is considered that a mutation arises 
on an autosome that suppresses the expression or activ-
ity of the driving Y. As before, to analyse the fate of new 
mutations, a combination of a branching process model 
and Gillespie stochastic simulations is used (averaged 
over 106 runs) (Additional file 1: Section A3). Here muta-
tions can arise in all individuals, not just the daughters of 
driving Y males, though for simplicity it is still assumed 
that no mutations exist before release. v (0 ≤  v ≤  1) is 
defined as the chance of the suppressor mutation arising 
on the relevant autosome (per individual per autosome, 
for all births, male or female).
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With baseline parameters of Rm  =  6, and m  =  0.95, 
∼ 7.3 N0 individuals are born between release of the driv-
ing Y and elimination of the population (see explanation 
after Additional file 1: Eq. A2.17); and so there are more 
individuals in which suppressor mutations can arise than 
for target site resistance mutations. However, the prob-
ability of a new suppressor mutation surviving stochas-
tic loss is less than for a resistant mutation at all times 
of arising [compare pest(ta) in Additional file  1: Figures 
A2.1b (Model I) and A2.4b (Model II)]. A contributing 
factor is that the suppressor is on an autosome rather 
than on the X-chromosome: firstly, new suppressor 
mutations arise in males and females rather than only in 
females, and secondly, mutant males HS and MS pass the 
suppressor mutation equally to males and females while 
HR and MR pass on the resistant X-chromosome at the 
same rate but only to females. Consequently, when the 
mutation is rare, the proportion of time spent in a male 
vs female mutant is higher for the suppressor mutation 
than for the X-chromosome mutation, and since mutant 
males have a lower probability of stochastic survival than 
females (see Additional file  1: Figure A2.4b), early sup-
pressor mutant populations are overall less likely to sur-
vive than resistant ones. Despite the lower probability of 
each mutation establishing, the greater opportunity for 
mutations to arise means that for equal mutation rates 
(i.e., u = v), a suppressor is more likely to establish than a 
target site resistance allele. With vN 0 = 1 and for baseline 
parameters, PMut

∼= 1 and P1 ∼= 0.6.

The effect of varying the underlying parameters vN 0, 
Rm, and m is now considered. The effects are much like 
those for the target site resistance model, and for much 
the same reasons, though quantitative details differ. From 
(6) in the limit of low uN0 ≪  1, PMut is proportional to 
vN 0, PCon is largely independent of vN 0, and therefore 
P1 is proportional to vN 0. These results are shown for 
baseline parameters in Fig.  6a. As Rm increases (while 
keeping N0 constant), the time to eliminate the popula-
tion increases, giving more opportunity for suppressor 
mutations to arise, and if they do arise, then they have 
a higher probability of establishing because low-density 
recruitment rates are higher, resulting in a higher overall 
probability of a suppressor establishing (Fig. 6b). As the 
transmission rate of the driving Y (m) increases, the time 
to elimination decreases, and therefore the opportunity 
for a suppressor to arise decreases. A difference from the 
target site resistance model is that even for m = 1, muta-
tions can arise in the suppressor model, while for the pre-
vious model, mutations only arise in females fathered by 
driving Y males, and therefore none can arise for a 100% 
male sex bias. The conditional probability of a mutation 
surviving also decreases with increasing m, and therefore 
the overall probability P1 also decreases (Fig. 6c).

Costly suppression
The case of the suppressor allele having a cost is now 
considered. For simplicity, it is assumed that heterozy-
gous females and males have fitness w < 1, and homozy-
gous females and males have fitness w2.

Focussing firstly on the deterministic model, Fig.  7 is 
a contour plot showing the fate of a suppressor and the 
population as a function of w and Rm (see Additional 
file  1: Section A1.2a, for calculation of equilibria from 
the system of deterministic equations). With a fitness 
cost to the suppressor mutation, one difference to the 
resistant model is that the region where the allele with 
the suppressor mutation is fixed, 1 > w ≥ w1 = 1− v, 
is extremely narrow for v ≪ 1 and is not discernible on 
Fig.  7 with baseline parameters (m  =  0.95, v  =  10−7). 
Below w1 (all visible areas on the plot), the suppressor 
allele is at intermediate equilibrium with the wild-type 
allele. Also shown are curves of constant percentage sup-
pression of the total female population (dotted lines). The 
population is eliminated in the shaded area below the 
100% extinction line w = wex. There is little dependence 
of the results on v for v ≪ 1, and an insignificant decrease 
in w1 and wex with increasing Y-drive m (not shown). 
Thus again, unless fitness cost to the mutation is too high 
and/or Rm is low, a suppressor mutation may establish 
and spread, leading to population rescue.
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Note that trans-acting suppressors are less toler-
ant of fitness costs than target site resistant alleles (e.g., 
the shaded area is larger in Fig. 7 than in Fig. 3). This is 
because the resistant X-chromosome has a direct trans-
mission advantage compared to sensitive alleles in the 
presence of the driving Y [passed to half rather than 
(1 −  m) of offspring from a driving Y male]. The auto-
somal allele has no such transmission advantage over the 
wild-type, although in both cases the mutation restores 
the 50:50 sex ratio. This difference also fits with the 
already noted difference that suppressors have a lower 
probability of establishing than target site resistant 
alleles. Finally, as expected, increasing the fitness cost of 
a suppressor reduces the probability of it surviving sto-
chastic loss and establishing (Fig. 6d).

Discussion
This paper has considered driving Y chromosomes that 
are capable of eliminating a closed, random-mating 
population, and modelled the factors affecting the prob-
ability that resistance evolves before that happens. This 

Fig. 6  PMut (black line), P1 (red line) and PCon (blue line) for the trans-acting suppressor mutation. a Probabilities increase with increasing vN0 for 
Rm = 6, m = 0.95 (solid lines) and for Rm = 12, m = 0.98 (dotted lines), and w = 1. b Probabilities increase with increased intrinsic growth rate Rm 
(for m = 0.95, w = 1, vN0 = 0.1). c Probabilities decrease with increased Y-drive m (for Rm = 6, w = 1, vN0 = 0.1. For all plots, h0 = 0.05. d Probabili-
ties decrease with lower fitness w (for Rm = 6, m = 0.95). The deterministic model shows that the population will be eliminated for w ≤ 0.61. For 
all plots, h0 = 0.05, vN0 = 0.1. The error bars at low Rm and w show the standard error for simulations (averaged over 106 runs, N0 = 106), when the 
branching process model does not apply; if not shown, error is within thickness of plot line
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Fig. 7  The percentage suppression of the total female population 
(dotted lines) as a function of the fitness of the resistant suppressor 
mutation (w for heterozygotes, w2 for homozygotes) and the intrinsic 
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)

 
(zone too narrow to appear on plot), the suppressor autosome tends 
to fixation; below w = w1 (all visible areas of plot) it tends to an 
intermediate equilibrium, which rescues the population only in the 
non-shaded area. For m = 0.95, v = 10−7
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topic of ‘evolutionary rescue’ has previously been studied 
in the context of populations threatened by a change in 
the external environment [23, 37–41]; the key differences 
here are that the risk to the population is a driving Y, with 
its own particular dynamics, and whose mechanism of 
action can itself give rise to one form of resistance. The 
models have identified several factors affecting the proba-
bility resistance evolves. Some are properties of the target 
population, in particular the size and the intrinsic rate of 
increase; all else being equal, higher values of both these 
parameters make resistance more likely. Other parame-
ters are properties of the driving Y, and highlight two pri-
mary routes to minimizing the risks of resistance [9]. The 
first strategy is to target essential sites such that resistant 
alleles are likely to have pleiotropic fitness costs (previ-
ously analysed in the context of homing-based gene drive 
construct [9, 10, 13, 16]). This factor makes the rDNA 
repeat a more attractive target than some less important 
or nonfunctional repeat on the X chromosome; targeting 
functional sites within the rDNA repeat may also be bet-
ter than targeting nonfunctional sites in the same repeat, 
though a fuller description of the mutations caused by 
rDNA-targeting nucleases would be helpful here. The 
second strategy is to ensure the mutation rate to resist-
ance is low. In the context of a nuclease-based driving 
Y, targeting a sequence present in hundreds of copies 
will be better in this regard than targeting a single copy 
sequence (which may not lead to preferential inheritance 
of the Y in any case). Presumably u could be further low-
ered by targeting a second sequence within the rDNA 
repeat. With no obvious limit to the number of sites that 
can be targeted in the rDNA, management of target site 
resistance would seem to be achievable.

The modelling has also revealed two other factors that 
can reduce the probability of resistance evolving. Increas-
ing the transmission rate of the driving Y (m) reduces 
the opportunity for resistant mutations to arise. Note, 
though, in spatial models without resistance, suppression 
may be maximised at an intermediate optimum m [13, 
42]. Releasing the construct at the right time of year can 
also reduce the probability of resistance evolving. In this 
model, this occurred just before the peak of abundance 
and also just as it was entering the trough, but other 
models of population fluctuation and other release rates 
ought to be examined. Note too that if releases are made 
in one location with the intention that the construct 
spread to other locations, one will have little control over 
when those migration events occur.

The evolution of trans-acting suppressors was also 
briefly considered. It is difficult to predict the most likely 
molecular mechanisms for such suppressors, and in the 
absence of a clear expectation, a simple model is consid-
ered in which mutations do not pre-exist in population 

before release, but can arise in any individual, not just in 
progeny of driving Y males. Pre-existing mutations could 
be included in the analysis using the approach of Hermis-
son and Pennings [43]; see also [16]. It is also possible 
to imagine ways that a suppressor mutation might arise 
from the nuclease gene, which would only be possible 
in the progeny of driving Y males—for example, a dupli-
cated or retro-transposed copy of the nuclease gene that 
interferes with the original gene at the RNA level (e.g. 
RNAi), or at the protein level (e.g., competitive binding of 
a non-active enzyme).

Several of the modelling assumptions used here are 
worth highlighting. First, it is assumed that resistance is 
all-or-nothing. This is a reasonable first step, but partial 
target site resistance may occur if the target site is present 
in hundreds of copies, as in the rDNA repeat. Indeed, the 
action of the nuclease would likely lead to many different 
alleles being produced, with different degrees of resist-
ance and different pleiotropic fitness effects. The overall 
probability of resistance evolving would then be a sum 
across possible alleles of P1 calculated for each allele, 
where P1 for the ith allele would depend on the mutation 
rate ui and fitness effects wi for that allele. Ideally, for all 
possible mutations, either the fitness, the mutation rate, 
or the degree of resistance provided is sufficiently low 
as to have a low probability of rescuing the population. 
Unfortunately, there is likely to be a limit to how thor-
oughly one will be able to test for resistance and suppres-
sors in the lab, before release in the field. If high fitness 
resistance is seen in the lab, it will likely arise in the field, 
but the failure to see it in the lab will not guarantee it will 
not arise in the field.

It is also assumed that the driving Y has no fitness 
effects except the sex ratio distortion, so its frequency 
increases monotonically in the deterministic model as 
long as there are any susceptible genotypes remaining in 
the population (i.e., there is no complex dynamics, such 
as cycling [22, 44]). In the context of evolution of resist-
ance, the main impact of a driving Y that has a cost on 
survival or mating success would likely be to slow down 
the spread of the driving Y and therefore slightly increase 
the probability of resistance evolving. A further assump-
tion is that the daughters of driving Y males, which could 
harbour resistant mutations, have normal fitness. Galizi 
et  al. [11] found that the ~5% of females produced had 
low fitness, presumably due to disruption of the rDNA. 
If the same were true of resistant types (e.g., they were 
also missing many rDNA repeats), then the effective 
transmission of the Y chromosome could be closer to 
one, reducing the probability of resistance evolving. It is 
further assumed that each offspring is derived from an 
independent mating, rather than, as usual with Anoph-
eles gambiae, females mating only once in their life; 
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incorporating this effect into the model would increase 
the amount of stochasticity, and reduce the probability of 
resistance evolving.

Finally, another assumption is that the population is 
closed and random-mating, whereas real An. gambiae 
populations exist over a landscape. Previous modelling 
has used a range of approaches to investigate the spa-
tial spread of a driving Y [13, 25, 42], and these mod-
els should be extended to investigate the evolution of 
resistance. Some insight into the likely dynamics can be 
gained even from the current model. For example, con-
sider a landscape of, say, 10,000 patches, each of which 
individually is a randomly mating population. If a driv-
ing Y is released into all of them, and P1 = 0.001 for each 
patch, then it would be expected to spread and eliminate 
9990 patches, and for resistance to evolve in ten of them; 
depending on how mosquitoes move on the landscape, 
those resistant types could eventually spread out from 
those patches and recolonize the landscape. The dura-
tion of protection offered by the driving Y will then vary 
from patch to patch, being shortest in those patches 
where the resistance first evolves, and longest in the last 
patch to be recolonized. If the patches vary, the model-
ling suggests resistance is more likely to arise in patches 
with a higher density of mosquitoes and, separately, that 
have a higher Rm; these could act as source populations 
for the others. An interesting precedent in this regard is 
given by the evolution of insecticide resistance, in which 
the same nucleotide change has arisen and established 
multiple times in different genetic backgrounds [45], 
which implies that the (continental scale) population size 
of An. gambiae is larger than the inverse of the nucleo-
tide mutation rate [46]. Note that on a landscape, it may 
be difficult for multiple resistant types to establish. In 
this example, if there is simultaneous release of a sec-
ond construct that is sufficiently different from the first 
that resistance to one would not provide resistance to 
the other, then resistance to the second may also arise in 
ten patches, but if they are a different ten patches, then 
there may be no opportunity for the multiply-resistant 
type to evolve, and the population could be eliminated 
across the landscape. But even in the absence of resist-
ance, there can be complex landscape dynamics between 
local elimination and recolonization [13, 42] which war-
rant further analysis.

It will be worthwhile investigating the interactions 
between genetic technologies and other interventions 
more broadly. There is an automatic synergy between 
different interventions that reduce population size in 
terms of reducing the probability of resistance evolving: 
anything that reduces population size, like bed nets or 
IRS, will reduce the probability that resistance evolves 
to a driving Y. Likewise, release of a driving Y will likely 

reduce the probability that resistance evolves to new 
insecticides, or even to new anti-malarial drugs.

Conclusions
As with any other form of vector control, it is impor-
tant to consider how the effectiveness of novel genetic 
approaches may be limited by the evolution of resist-
ance. Previous studies have examined the sustainabil-
ity of strategies using the homing reaction to a target 
population [14–16] or eliminate it [9, 10, 13]; here, the 
likelihood that resistance to a nuclease-based population-
suppressing driving Y evolves before elimination is inves-
tigated. The modelling has demonstrated that resistance 
is more likely to evolve if the target population is large 
and has a high intrinsic rate of increase. The probability 
of resistance can be minimized by releasing insects car-
rying constructs for which mutations having a substantial 
effect on the rate of drive are unlikely to arise and/or have 
large pleiotropic fitness costs.
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