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Abstract 

Background:  Malaria transmission in arid and semi-arid regions of Kenya such as Baringo County, is seasonal and 
often influenced by climatic factors. Unravelling the relationship between climate variables and malaria transmission 
dynamics is therefore instrumental in developing effective malaria control strategies. The main aim of this study was 
to describe the effects of variability of rainfall, maximum temperature and vegetation indices on seasonal trends of 
malaria in selected health facilities within Baringo County, Kenya.

Methods:  Climate variables sourced from the International Research Institute (IRI)/Lamont-Doherty Earth Observa-
tory (LDEO) climate database and malaria cases reported in 10 health facilities spread across four ecological zones 
(riverine, lowland, mid-altitude and highland) between 2004 and 2014 were subjected to a time series analysis. A 
negative binomial regression model with lagged climate variables was used to model long-term monthly malaria 
cases. The seasonal Mann–Kendall trend test was then used to detect overall monotonic trends in malaria cases.

Results:  Malaria cases increased significantly in the highland and midland zones over the study period. Changes 
in malaria prevalence corresponded to variations in rainfall and maximum temperature. Rainfall at a time lag of 
2 months resulted in an increase in malaria transmission across the four zones while an increase in temperature at 
time lags of 0 and 1 month resulted in an increase in malaria cases in the riverine and highland zones, respectively.

Conclusion:  Given the existence of a time lag between climatic variables more so rainfall and peak malaria transmis-
sion, appropriate control measures can be initiated at the onset of short and after long rains seasons.
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Background
Malaria is a global health problem that causes an esti-
mated 438,000 deaths annually; 88% of which occur in 
the sub-Saharan Africa [1]. Seventy-five percent of the 
malaria clinical episodes worldwide occur in Africa with 
a corresponding high public health burden [2]. Up to 35.4 
million disability adjusted life years (DALYs) are lost in 
the sub-Saharan Africa region alone due to malaria mor-
tality and morbidity [3].

In Kenya, malaria is among the leading causes of mor-
bidity and mortality and is responsible for almost half of 
all outpatient attendance and 20% of all admissions to 

health facilities [4]. Pregnant women and children under 
five years old are most vulnerable to malaria infections 
[5] with an estimated 170 million working days being lost 
to malaria in Kenya each year [6].

The high burden of malaria in Kenya and the larger 
sub-Saharan Africa region may be associated with a num-
ber of factors among them climatic and environmental 
[7]. Given that malaria is vector-transmitted, with a com-
plex life cycle in both the mosquito and human, trans-
mission and patterns of malaria infection are dependent 
on both environmental and climatic factors [8]. A study 
by Githeko et al. [9] showed that inter-annual and inter-
decadal climate variability influences the epidemiology 
of vector-borne diseases directly, while temperature and 
rainfall have long been known to influence seasonal and 
inter-annual variability of malaria [10].
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The effect of temperature on the life history traits of 
mosquitoes and malaria transmission has been reported. 
Temperature can affect the development time of mos-
quito larvae, the probability of mosquito survival and 
the development time of malaria parasite (Plasmodium 
falciparum) in infected mosquitoes either positively or 
negatively [11]. A rise in temperature to a certain thresh-
old can accelerate the metabolic rate of vectors, increase 
egg production and increase frequency of blood meals, 
while temperatures below or above these thresholds can 
be detrimental to mosquitoes and parasite development 
[12]. Several mechanistic models concur that effect of 
temperature on malaria transmission is non-linear, lim-
ited to temperatures between 16 and 34  °C with a peak 
at 25 °C [13–15]. The non-linear temperature sensitivities 
throughout the mosquito life cycle have a large impact 
on the adult population dynamics and, therefore, on the 
mosquitoes’ ability to act effectively as malaria vectors.

Rainfall influences vector longevity indirectly by creat-
ing wet conditions that favour vector breeding. This in 
turn influences the geographical range and seasonal vari-
ability of disease vectors [16]. The relationship between 
malaria incidence and rainfall is non-linear, implying 
that an increase in precipitation would not necessarily 
increase malaria cases [17]. Moderate rainfall has a posi-
tive effect on mosquito abundance, while intense pre-
cipitation can wash away mosquito breeding sites, and 
therefore reduce malaria transmission shortly following 
heavy rains [18]. The Normalized Difference Vegetation 
Index (NDVI) is a spectral measure of amount, relative 
greenness, phenological characteristics and productivity 
of vegetation [19]. It is defined as the difference between 
the visible (RED) and near-infrared (NIR) bands over 
their sum, (NIR−RED)/(NIR + RED). It is a robust indi-
cator of vegetation condition which allows valid compari-
sons of seasonal and inter-annual variations in vegetation 
growth and activity [20]. In the study area, the seasonal 
NDVI variations are linked to rainfall. NDVI values 
range between −1 to +1 An NDVI value of zero means 
no green vegetation and close to +1 (0.8–0.9) indicates 
the highest possible density of green leaves. NDVI can be 
used as a surrogate for precipitation based on their close 
correlation [21]. The capability of NDVI time-series to 
monitor and predict vector-borne diseases depends on 
the correlation between disease incidence, vegetation 
greenness and precipitation [22].

The nature of vector biological processes and the degree 
to which the vectors depend on environmental and cli-
matic factors makes malaria transmission somewhat 
region specific [23]. In Kenya, there are four epidemio-
logical zones whose diversity in malaria transmission and 
risk is determined by altitude, rainfall patterns and tem-
perature. The zones include: the endemic Lake Victoria 

and coastal regions, epidemic-prone Western highlands, 
seasonal transmission arid and semi-arid areas, and low 
risk central highlands [24]. Parts of Baringo County being 
semi-arid experience seasonal malaria transmission [25], 
while the presence of numerous seasonal and permanent 
water bodies provides suitable breeding microhabitats for 
malaria vectors at certain times of the year.

This study was thus necessitated by the lack of infor-
mation on the interactions of climatic and environmen-
tal factors, and their role in driving the transmission 
and prevalence of malaria across the different ecological 
zones of Baringo County, which has been hampering the 
planning of intervention strategies against malaria. The 
study modelled the effect of climatic variations on the 
prevalence and long-term trend of malaria so as to iden-
tify the seasonal climatic drivers of malaria transmission 
in the different ecological zones of Baringo County.

Methods
Study area
This study focused on Baringo County, Kenya, located 
between 35.602°E, 36.277°E and 0.541°N, 0.723°N, at alti-
tudes ranging between 870 and 2499  m above sea level 
(asl). The county covers 11,075 km2 with an estimated 
population of 555,561 as at 2009 [26]. The average annual 
rainfall ranges between 300 and 1500 mm while air tem-
perature varies between 16 °C in the highland areas and 
42  °C in the lake ecosystem [27]. Rainfall pattern is tri-
modal, with the long rains received during March–May 
(MAM) and two short rains seasons that are experienced 
between June–August (JJA) and October–December 
(OND). This study focused on the central part of Baringo 
County (Fig.  1) encompassing three sub-counties (Bar-
ingo North, Baringo Central and Baringo South). The 
study area was sub-divided into four ecological zones 
on the basis of hydrology, altitude, vegetation cover, soil 
types, and precipitation. The four zones were the lowland 
zone lying at an elevation of 1000  m  asl and surround-
ing the permanent water bodies (L. Baringo, L. Bogoria 
and L. 94), the mid-altitude zone lying between 1000 and 
1500 m asl, the highland zone, lying between 1,500 and 
2,300  m  asl and the riverine zone (bordering the Kerio 
River) at altitudes ranging between 1100 and 1200 m asl 
[28].

Selection of health facilities
Ten health facilities were selected across the four zones 
based on availability of health records and the catchment 
population served; with those serving larger populations 
being selected. The facilities included: Kabarnet County 
Hospital, Kituro Health Centre and Kabartonjo sub-
county Hospital in the highlands; Sabor Dispensary and 
Kipcherere Health Centre in the mid-altitudes; Marigat 
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sub-county Hospital and Kampi ya Samaki Health Cen-
tre in the lowlands; and Barwessa, Salawa and Keturwo 
Health Centres in the riverine zone. The available data-
sets varied per region. The highland and mid-altitude 
zones had data spanning for a period of 10 years (2004–
2013) while lowland (2005–2013) and riverine (2006–
2014) zone had data spanning 9 years.

Retrospective data extraction
Malaria data
Retrospective health records of clinically-diagnosed 
and treated malaria cases between 2004 and 2014 were 
extracted from the registers in the 10 health facilities. Daily 
counts of malaria cases among all age groups and gender 
were entered in MS Excel and computed into monthly data 
sets for analyses. Only two out of the 10 health facilities 
that were studied had some missing data, i.e. Marigat sub-
county Hospital which had 13% (14/108  months) of the 
data missing and Keturwo Health Centre which had 8.3% 
(9/108 months) of the data missing. The missing data were 
imputed on aggregated monthly data sets using predictive 

mean matching method using mice package in R 3.0.3 sta-
tistical software [29].

Imputation of missing data
The unavailable monthly data was assumed to be missing 
at random (MAR) before multiple imputation was con-
ducted. Predictive mean matching (PMM) method was 
used to enable imputation of the missing values based on 
the observed values. Through this method the missing val-
ues were imputed by means of nearest neighbour values 
with distances based on the expected values of the miss-
ing variables [30]. Unlike other imputation methods, the 
PPM method produces acceptable estimates and preserves 
the underlying distribution of the observed data especially 
for quantitative variables that are not normally distributed. 
Compared with other methods, PMM produces imputed 
values that are much more like real values. The major pit-
fall with PMM however is that there is no mathematical 
theory to justify it and only a handful studies have evalu-
ated its performance, meaning that it is still not clear how 
well it compares with alternative methods [31].

Fig. 1  a Map of the study area showing the location of Baringo County in Kenya, b the sub-county administrative units within Baringo County with 
the study area shaded out green, and c the ecological zones within the study area and the health facilities from which malaria prevalence data was 
collected
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Climate and environmental data
Monthly average rainfall, inferred maximum air tem-
peratures and enhanced vegetation indices over the study 
period were sourced from the International Research 
Institutes of Climate and Society’s database [32]. The 
monthly average rainfall data used was obtained from 
University of California Santa Barbara (UCSB) Climate 
Hazards Group InfraRed Precipitation with Station Data 
(CHIRPS) v2p0 [33]. Annual precipitation was averaged 
from monthly estimates for each year. Inferred maximum 
air temperature (Tmax) and minimum land surface tem-
perature (Tmin) used as proxy for minimum and maxi-
mum air temperatures were obtained from the United 
States Geological Survey (USGS) LandDAAC MODIS 
1  km 8  day version 005 datasets [34, 35]. Sixteen-day 
MODIS Enhanced Vegetation Index (EVI) composites 
from MODIS-Terra MOD13Q1 at 250 m spatial resolu-
tion [35] were used to derive 15 years temporal profiles.

For all data sets, the spatial averages limited to the spa-
tial extent of the ecological zones were downloaded in 
expert mode. The 8- and 16-day composites were aver-
aged into monthly means for each year.

Data analysis
Exploratory data analysis was used to visualize seasonal 
patterns of climate variables in relation to malaria cases 
across the four zones. A smoothing line was added to the 
patterns to get good visual information. Locally weighted 
regression was used to smoothen the data points with 
a smoother span of 0.67, tricube as weighted function, 
number of iterations for robust fitting 3 and an order of 
the polynomial of 1.

The Seasonal Mann–Kendall trend test was used to 
detect malaria monthly trends over the study period. 
Pair wise comparison of monthly means of malaria cases 
was carried out in order to draw simultaneous inference 
about the dominant malaria seasons using Tukey mul-
tiple comparison procedure. Additive decomposition 
of malaria cases and climatic variables were conducted 
in order to estimate the trend component. The trend 
was determined using moving averages as the smooth-
ing method. The sample cross correlation function was 
used to identify lags of climate variables that were useful 
predictors of malaria cases. Dominant cross correlations 

between malaria cases and climate variables were 
selected and included in the regression model. A negative 
binomial regression model with lagged climate variables 
was used to model the monthly malaria cases. Model fit 
was assessed by checking the autocorrelation function 
and partial autocorrelation function of the model resid-
uals. Variance inflation factors (VIF) were computed to 
check multi-collinearity. The analyses were done using 
dyn and trend packages in R [36, 37].

Ethics statement
Ethical approval to access hospital registers for data extrac-
tion was obtained from the Kenyatta National Hospital/Uni-
versity of Nairobi Ethical Review Committee (P70/02/2013) 
and also from the Ministry of Health (Ref.: CNTY/GEN/
Vol.1/83) and Department of Medical Services (Ref: BCG/
CDH/GEN/VOL.II/2015), Baringo County.

Results
Long‑term mean monthly malaria cases (2004–2014)
The long-term (2004–2014) mean monthly malaria cases 
varied across zones. On average, the observed monthly 
malaria cases were highest in the highlands and lowest 
in mid-altitudes. Low variability was observed in mid-
land zone while high variability was observed in the other 
three zones. Highest and lowest malaria cases per zone 
were however recorded in different months and years 
over the study period. Table  1 summarizes the data for 
each zone over the study period.

Yearly cumulative malaria cases (2004–2014) and trends
The highest yearly cumulative malaria cases were 
recorded in 2012 (11,249 cases) in the highland, 2008 
(971 cases) in the mid-altitude, 2009 (9275 cases—over 
9 year period) in the lowland and 2010 (7119 cases—over 
9 year period) in the riverine zone. Health records for the 
year 2004 in the lowland and the year 2004 and 2005 in 
the riverine zone were however not available. The Sea-
sonal Mann–Kendall trend test showed a significant 
increasing trend in malaria cases over the study period 
in the highland (z =  2.5, p =  0.0142) and mid-altitude 
(z = 2.5, p = 0.0141) zones while no change was observed 
in the lowland (z = −0.5, p = 0.609) and riverine zones 
(z = −0.6, p = 0.567) (Fig. 2). However, further analysis 

Table 1  Long-term malaria cases (2004–2014)

The means and SE relate to monthly malaria cases over the 2004–2014 period

Zones Overall mean SE Highest cases (month, year) Lowest cases (month, year)

Highland 694.25 19.8 1799 (Oct 2012) 285 (May 2009)

Mid-altitude 65.9 2.8 197 (Oct 2009) 20 (Apr 2006)

Lowland 577.5 22.4 1318 (Aug 2006) 126 (Jan 2005)

Riverine 434 16.3 979 (Nov 2009) 110 (May 2014)
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showed a significant decrease in malaria cases in the riv-
erine zone between 2011 and 2014 (z = −3.2, p = 0.0012).

Malaria seasonality over 10 year period
Three malaria peak seasons were observed in the river-
ine, highland and mid-altitude zones, while two seasons 
were observed in the lowland zone (Fig.  3). Pair wise 
mean comparison tests for the monthly malaria cases 
in each zone yielded different results. In the highland 
zone, the month of October experienced significantly 
higher malaria cases compared to December (esti-
mate = 315.8, CI 9.95–621.65). Mean differences for the 
other months were statistically insignificant. In the mid-
altitude zone, there were significant differences in mean 
monthly malaria cases for the month of July and April 
(estimate  =  42.3, CI 3.06–81.54), July and December 
(estimate = 40.7, CI 1.46–79.94), October and February 

(estimate  =  43.4, CI 4.16–82.64), October and March 
(estimate  =  41.7, CI 2.46–80.94) and, October and 
August (estimate =  50.2, CI 10.96–89.44). The months 
of July and October recorded significantly higher malaria 
cases in the highland and mid-altitude zones, a period 
corresponding to the short rainy seasons of June–August 
and October–November. There were however no signifi-
cant differences in mean monthly malaria cases in the 
lowland and riverine zones.

Relating malaria cases to climatic variables
Long‑term trends of malaria cases against climatic 
variables
In the highland zone, peaks in malaria cases followed low 
peaks of rainfall while declines were associated with high 
peaks of rainfall and decrease in maximum tempera-
tures. Decline in malaria cases between September and 

Fig. 2  Long-term yearly malaria cases pattern with a lowess smoothline in the highland, mid-altitude, lowland and riverine zones
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December 2006 corresponded to heavy precipitation and 
reduced maximum temperature recorded the previous 
months (Fig.  4). In the mid-altitude zone, malaria cases 
and rainfall followed a similar upward trend between 
2006 and 2007, before declining between 2008 and 2009 
following extremely low rainfall amounts and increased 
maximum temperatures recorded over the same period. 
Again in 2012, malaria cases rose following increased 
rainfall and slight increase in maximum temperatures 
recorded that year (Fig. 5). In the lowland zone, malaria 
cases increased following an increase in rainfall and a 
decrease in maximum temperature between 2006 and 
2007. A sharp decline in malaria cases was however noted 
between 2007 and 2008 following high rainfall and low 

temperatures (Fig. 6). In the riverine zone, malaria cases 
increased between 2006 and 2007 and again between 
2009 and 2010 following increased rainfall, while a 
decrease in malaria cases was reported between 2011 and 
2013, corresponding to high rainfall amounts and low 
temperatures received over the same period (Fig. 7).

Identification of possible climatic and environmental 
predictors of malaria cases
Using the sample cross correlation function, it was estab-
lished that rainfall at lags 1 and 2 months across all zones 
and also at lag 0 in the lowland zone had the most domi-
nant cross correlation with malaria cases. Temperature at 
lag 0 in the lowland and riverine zones, and lag 1 in the 

Fig. 3  Monthly averages with 95% confidence intervals depicting malaria peak seasons over the study period (2004–2014)
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highland, mid-altitude and riverine zones had the most 
dominant cross correlation with malaria cases. Enhanced 
Vegetation Index at lag 0 in the highland, mid-altitude 
and lowland zones and lag 1 and 2 in the highland and 
riverine zones had the most dominant cross correlations 
with malaria cases. Based on the CCF, a negative bino-
mial regression model was built, and it was observed that 
rainfall lagging 2 months in all the zones were statistically 
significant at 5% level of significant. However, rainfall in 
midland was highly significant as compared to the other 
zones. Further it was observed that maximum tempera-
ture at lag 0 in the riverine zone and lag 1 in the high-
land zone were significant. Joint significance of rainfall 

and temperatures in highland and riverine can be attrib-
uted to high variations in malaria cases in these zones 
(Table 2).

Discussion
Climatic factors are considered important in the spatial 
and temporal distribution of vector borne diseases as 
they determine vector distribution, and influence inter-
annual variability, epidemics and long-term trends [15]. 
There is a strong discernible link between malaria out-
breaks, temperature [13] and rainfall [38]. In the cur-
rent study, malaria cases generally increased in highland 
and mid-altitude zones but decreased in the riverine and 

Fig. 4  Long-term trends in malaria cases against rainfall and maximum temperature in the highland zone (2004–2013)

Fig. 5  Long-term trend of malaria cases against rainfall and temperatures in the mid-altitude zone (2004–2013)
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lowland zones from the year 2011 onwards during the 
study period (Fig.  2). Two malaria peak seasons were 
identified in the lowland zone while three malaria peak 
seasons were identified in the other zones, largely follow-
ing climatic seasons in the study area. Statistically signifi-
cant differences in monthly malaria peaks was recorded 
in the highlands and mid-altitude zones suggesting sea-
sonal malaria transmission. However there was no sta-
tistical significance in malaria peaks in the lowland and 
riverine zones, suggesting that malaria transmission in 
these two zones is perennial rather than seasonal as pre-
viously thought [24].

The mean monthly rainfall for this study showed posi-
tive significant correlation with malaria cases at 2 months 
lag across all zones while the mean maximum tempera-
ture showed positive significant correlation with malaria 
cases in two zones, the highlands and the riverine zones. 
Previous studies examining the link between climate and 
malaria established lagged associations between climate 
variables (temperature and rainfall) and malaria cases 
over time periods ranging from weeks to months [10, 18, 
39–42]. These studies attributed the lags to the creation 
of mosquito breeding habitats, the time required by mos-
quitoes to develop to adulthood, acquire and transmit 

Fig. 6  Long-term trend of malaria cases against rainfall and temperatures in the lowland zone (2005–2013)

Fig. 7  Long-term trend of malaria cases against rainfall and temperatures in the riverine zone (2006–2014)
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malarial infection, and for symptoms to arise in the 
human host as the most probable cause.

According to Confalonieri et al. [43], periods of unusu-
ally high rainfall, altered humidity or warmer tempera-
tures can result in modified distribution and duration of 
malaria, as well as increased transmission; even in areas 
where control is strong. Consistent with the current find-
ings, Small et al. [44] cited precipitation and temperature 
as key drivers of malaria case variations across Africa, 
while acknowledging the complexities of some climatic 
factors.

The difference in environmental relationship to malaria 
cases across the zones is attributed to variations in envi-
ronmental factors between the zones. The mid-altitude 
zone has no rivers or water bodies and rainfall is there-
fore the only source of surface water that serves as breed-
ing points for malaria vectors. Although the other zones 
have permanent water bodies in the form of lakes, rivers, 
swamps, dams and water pans, rainfall still contributes 
to malaria cases through creation of additional seasonal 
breeding sites for malaria vectors.

Consistent with our study findings, Chaves et  al. [38] 
cited increased microhabitats resulting from relative 
humidity caused by moderate rainfall. These conditions 
increase the longevity of adult mosquitoes by prolong-
ing vector life span. Paaijmans et al. [45] highlighted the 
complex interrelationship between precipitation and vec-
tors, noting that drought may eliminate mosquito habi-
tats, while floods could create isolated pools suitable for 
vector breeding. The relatively low annual rainfall in the 
mid-altitude zone and the general absence of permanent 
water bodies contributed to the observed low but vary-
ing numbers of recorded malaria cases; possibly due to 
the varying climatic conditions. All in all, there is a gen-
eral consensus that rainfall can influence malaria trans-
mission either positively by creating suitable habitats or 
negatively by flushing breeding sites depending on its 
intensity [46, 47].

Temperature plays a key role in malaria transmission 
by influencing vector and parasite life cycles. Studies 
have highlighted the biological amplification nature of 
temperature on mosquitoes [48]. This study showed that 
the mean maximum temperatures within the four zones 
varied. While the mean maximum temperature signifi-
cantly influenced malaria cases at lag 0 in the riverine 
zone and lag 1 in the highlands, it was non-significant in 
the mid-altitude and lowland zones. The difference in the 
contribution of maximum temperature to malaria cases 
between zones is attributed to the differences in prevail-
ing temperatures in the four zones. Being colder, temper-
ature was probably the limiting factor in malaria vector 
development in the highland and riverine zones; hence a 
rise in the maximum temperature increased vector and 
parasite development rates [40]. Since temperature influ-
ences the development and survival rates of both vectors 
and parasites, malaria transmission rates tend to increase 
with increasing temperature but up to a given threshold 
[49].

Craig et  al. [14] put the optimal temperatures for 
malaria transmission at between 22 and 32  °C, while Bi 
et al. [50] reported temperatures of between 20 and 30 °C 
as being optimal for Anopheles survival and that tempera-
tures below 16 °C and above 30 °C have a negative impact 
on mosquitoes survival. Chikodzi [51] noted that tem-
peratures above 32  °C can cause high vector population 
turnover, with thermal death for mosquitoes expected to 
occur around 41–42 °C.

Vegetation index often acts as a surrogate for precipi-
tation and surface temperatures and has been correlated 
to vector borne diseases [22]. In this study, vegetation 
cover followed a positive trend with the amount of pre-
cipitation received. In this study, EVI did not play any 
significant role in malaria transmission across the four 
zones.

Table 2  Rainfall, temperature and  EVI lags in  relation 
to malaria cases in the four zones

Significance codes: * p value ≤0.05, ** p value ≤0.01

Estimate Std. error Z value p value

Highland

 Rainfall (lag 1) −0.0004 0.00047 −0.871 0.3838

 Rainfall (lag 2) 0.0009 0.00045 2.078 0.0378*

 Temperature (lag 1) 0.0387 0.01700 2.278 0.0227*

 EVI (lag 0) 0.6225 1.08295 0.575 0.5654

 EVI (lag 1) 1.6205 1.27888 1.267 0.2051

 EVI (lag 2) −1.3151 0.91188 −1.442 0.1493

MID-altitude

 Rainfall (lag 1) −0.0012 0.00121 −0.964 0.3352

 Rainfall (lag 2) 0.0025 0.00080 3.140 0.0017**

 Temperature (lag 1) 0.0074 0.02860 0.259 0.7954

 EVI (lag 0) 0.3339 1.14059 0.293 0.7697

Lowland

 Rainfall (lag 0) 0.0013 0.00100 1.299 0.1938

 Rainfall (lag 1) 0.0010 0.00127 0.810 0.4179

 Rainfall (lag 2) 0.0018 0.00089 2.026 0.0427*

 Temperature (lag 0) 0.0547 0.03213 1.703 0.0886

 EVI (lag 0) −1.5132 1.43254 −1.056 0.2908

Riverine

 Rainfall (lag 1) 0.0005 0.00070 0.746 0.4553

 Rainfall (lag 2) 0.0016 0.00080 1.966 0.0493*

 Temperature (lag 0) 0.0631 0.02262 2.788 0.0053**

 Temperature (lag 1) −0.0120 0.02784 −0.431 0.6662

 EVI (lag 1) −0.7258 1.77546 −0.409 0.6827

 EVI (lag 2) 0.6631 1.14723 0.578 0.5633
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Conclusion
This study established seasonality in malaria transmis-
sion over the study period (2004–2014) in the highland 
and mid-altitude zone. Malaria transmission in the low-
land and riverine zone was shown to be perennial. Peak 
malaria cases followed increased rainfall with a time lag of 
2 months across the study area and increased maximum 
temperatures with a time lag of 0 and 1  months in the 
riverine and highland zones respectively. The observed 
time lags between peak malaria cases and climatic vari-
ables are particularly important in forecasting malaria 
outbreak using local weather data. Therefore, monitoring 
rainfall and temperature trends and early recognition of 
anomalies in weather patterns can provide a fairly accu-
rate forecast of transmission risk within Baringo County, 
and hence inform timely action including vector control 
measures.
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