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Abstract 

Background: Parasite resistance to anti-malarials represents a great obstacle for malaria elimination. The majority 
of studies have investigated the association between single-nucleotide polymorphisms (SNPs) and drug resistance; 
however, it is becoming clear that the copy number variation (CNV) is also associated with this parasite phenotype. 
To provide a baseline for molecular surveillance of anti-malarial drug resistance in the Brazilian Amazon, the present 
study characterized the genetic profile of both markers in the most common genes associated with drug resistance 
in Plasmodium falciparum and Plasmodium vivax isolates. Additionally, these data were compared to data published 
elsewhere applying a systematic review of the literature published over a 20-year time period.

Methods: The genomic DNA of 67 patients infected by P. falciparum and P. vivax from three Brazilian States was 
obtained between 2002 and 2012. CNV in P. falciparum multidrug resistance gene-1 (pfmdr1), GTP cyclohydrolase 1 
(pfgch1) and P. vivax multidrug resistance gene-1 (pvmdr1) were assessed by real-time PCR assays. SNPs in the pfmdr1 
and pfcrt genes were assessed by PCR–RFLP. A literature search for studies that analysed CNP in the same genes of P. 
falciparum and P. vivax was conducted between May 2014 and March 2017 across four databases.

Results: All analysed samples of P. falciparum carried only one copy of pfmdr1 or pfgch1. Although the pfcrt K76T 
polymorphism, a determinant of CQ resistance, was present in all samples genotyped, the pfmdr1 N86Y was absent. 
For P. vivax isolates, an amplification rate of 20% was found for the pvmdr1 gene. The results of the study are in agree-
ment with the low amplification rates for pfmdr1 gene evidenced in the Americas and Africa, while higher rates have 
been described in Southeast Asia. For P. vivax, very low rates of amplification for pvmdr1 have been described world-
wide, with exceptions in French Guiana, Cambodia, Thailand and Brazil.

Conclusions: The present study was the first to evaluate gch1 CNV in P. falciparum isolates from Brazil, showing an 
absence of amplification of this gene more than 20 years after the withdrawal of the Brazilian antifolates therapeu-
tic scheme. Furthermore, the rate of pvmdr1 amplification was significantly higher than that previously reported for 
isolates circulating in Northern Brazil.
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Background
Malaria is an endemic disease and 3.2 billion people are 
exposed to its transmission in 95 countries and territories 
around the world. This disease is caused by five species of 
Plasmodium, with Plasmodium vivax having a wider geo-
graphic distribution and Plasmodium falciparum respon-
sible for the most severe malaria cases associated with 
high mortality rates [1]. According to the latest estimates, 
in 2015, approximately 143,000 cases were registered in 
the Brazilian Amazon region, with 87% of cases due to P. 
vivax [2].

One of the greatest challenges of malaria control is the 
parasite’s resistance to anti-malarials, defined as the abil-
ity of a parasite to survive and/or multiply in the presence 
of a drug [3]. In Brazil, the first case of drug resistance in 
P. falciparum malaria was reported in the early nineteenth 
century, to quinine (QN), the first drug used for malaria 
treatment [4]. It was only in the 1960s that an increased 
number of cases of P. falciparum chloroquine (CQ) resist-
ance began to be reported in the country, concomitant 
with other countries from South America and Asia [5, 6]. 
In the 1970s, the Brazilian government adopted sulfadox-
ine-pyrimethamine (SP) as the first-line treatment; how-
ever, in the late 1980s, the rate of SP resistance was close 
to 90% [7]. From the late 1980s to 2000, Brazil applied 
various therapeutic schemes, and in 2007 the artemisinin-
based combination therapy (ACT) was adopted according 
to the WHO recommendations to treat uncomplicated 
P. falciparum malaria [6]. Despite the reports of low sus-
ceptibility in Asia [8–11] and South America [12], ACT 
remains effective in Brazil [13]. Concerning P. vivax 
malaria, even though this species has been the most prev-
alent in Brazil for decades, it is only in the last few years 
that this species has developed low levels of drug resist-
ance [14–17] and cases of severe malaria [18, 19] have 
been reported in the Amazon region. Thus, CQ plus pri-
maquine (PQ) is still effective in this area [20].

Anti-malarial resistance studies and surveillance can be 
conducted using in vitro parasite culture, animal models, 
in vivo methods and molecular genotyping [21]. The lat-
ter aims to identify and monitor genetic polymorphisms 
related to parasite resistance. Such markers are mainly 
SNPs, which are characterized by the substitution of a 
single nucleotide, and CNVs. CNV refers to an increase 
or decrease in the copy number of a gene in the genome; 
CNVs are extensively found in humans, mice, Drosophila 
and other eukaryotes [22, 23].

The importance of copy number variation in the Plas-
modium genome was noticed when an elevated copy 
number of the mdr1 (multidrug resistance gene-1) gene 
was reported and associated with multidrug resistance 
in P. falciparum isolates in Asia in the late 1980s [24]. 
The pfmdr1 gene encodes a protein localized in the para-
site digestive vacuole named P-glycoprotein homolog 
1 (P-gh1), and many studies have shown a strong asso-
ciation between pfmdr1 and the multidrug resistance 
phenotype, such as to mefloquine (MQ), QN and halo-
fantrine (HF) [25–27]. Another gene related to SP resist-
ance in P. falciparum and characterized by copy number 
variation is gch1 (GTP cyclohydrolase 1), a gene encod-
ing the enzyme GTP cyclohydrolase 1 that catalyzes the 
first step in the folate biosynthesis pathway [28–30]. 
Regarding CNV in P. vivax, the amplification of pvmdr1, 
orthologous to pfmdr1, seems to also be related to drug 
resistance [31, 32]. Due to the challenges of conducting 
in  vitro studies in P. vivax, the understanding concern-
ing the resistance to anti-malarials for this species is less 
comprehensive.

Despite the increased importance of CNV over the last 
decades, SNPs are the first polymorphisms associated 
with drug resistance in Plasmodium. In P. falciparum 
some SNPs have a major role in the drug resistance phe-
notype, e.g., K76T polymorphism in the pfcrt (P. falcipa-
rum chloroquine-resistant transporter) gene and N86Y, 
Y184F, S1034C, N1042D, D1246Y in the pfmdr1 gene 
[33, 34], while only the mutation Y976F in the pvmdr1 
gene was related to clinical resistance to CQ in P. vivax in 
Southeast Asia and Papua New Guinea [35–37].

Many questions remain about the genetic basis of 
resistance in P. falciparum and P. vivax. A majority of 
studies has investigated the association between SNPs in 
the genome of Plasmodium and resistance to anti-malar-
ials. However, it has become clear that the copy number 
variation is also associated with this parasite phenotype. 
The present study  characterized the genetic profile of 
CNV in genes associated with drug resistance in P. fal-
ciparum and P. vivax isolates to provide a baseline for 
molecular surveillance of anti-malarial drug resistance 
in the Brazilian Amazon region. Moreover, SNPs in the 
same P. falciparum genes were assayed and correlated to 
the genetic profile observed for CNV. Finally, the genetic 
variability described in Brazilian isolates was compared 
to data published elsewhere applying a systematic review 
of the literature.
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Methods
Subjects and sample collection
Sixty-seven patients infected by P. vivax or P. falciparum 
from three Brazilian states (31 from Mato Grosso, 26 from 
Rondônia and 10 from Amapá) were included in this study 
(Table 1). Epidemiological data indicate that malaria trans-
mission in these areas is generally hypo- to meso-endemic 
[13]. In Rondônia and Amapá, the individuals were locally 
infected. However, individuals from Mato Grosso may have 
acquired the infection in other localities of the Amazon 
region because there is no transmission in the municipal-
ity of blood collection. The eligibility criteria included (i) 
patients with symptomatic P. vivax or P. falciparum single 
infection with any parasitaemia by microscopic examina-
tion; (ii) the absence of severe complications of malaria; and, 
(iii) if the patient was female, the absence of pregnancy. The 
confirmation of Plasmodium spp. infection by microscopy 
was based on Giemsa-stained thick blood smears evalu-
ated by well-trained microscopists in accordance with the 
malaria diagnosis guidelines of the Brazilian Ministry of 
Health. DNA samples were extracted from peripheral blood 
collected in EDTA-containing tubes for parasite genomic 
analysis using QIAamp DNA kit (QIAGEN, Chatsworth, 
CA, USA). Samples were collected between August 2002 
and May 2012. Molecular detection and identification of 
Plasmodium species were confirmed later by nested PCR 
amplification of the 18S rRNA gene in the laboratory to 
exclude mixed malaria infections [38].

Copy number estimation of Plasmodium spp. genes
The copy number variation of Plasmodium genes was 
determined by quantitative real-time PCR (qPCR) using 
specific hydrolysis probes and oligonucleotide primers for 
each gene. Probes and primers previously described were 
used for amplification of pfmdr1 [27], pfgch1 [28] and 
pvmdr1 [31]. Amplification reactions were performed in a 

total volume of 10 µL in the presence of 5 µL of  Taqman® 
Universal PCR Master Mix 2× (Applied Biosystems, AB, 
Foster City, CA, USA), 1 µL DNA (≈100 ng/µL), 900 nM 
(pfmdr1, pfgch1 and pvmdr1) or 300  nM (pftubulin and 
pvtubulin) of forward primer, 900  nM of reverse primer 
(for all genes), and 200 nM (pfmdr1, pfgch1 and pvmdr1) 
or 250  nM (pftubulin and pvtubulin) of the probe. The 
cycling parameters for PCR were as follows: initial dena-
turation at 95 °C for 10 min, 40 cycles of 15 s at 95 °C and 
1  min at 60  °C. The PCR was performed in triplicate in 
the Applied Biosystems Viia7 real-time PCR system (AB) 
in 384 plates. The single-copy β-tubulin gene was used as 
a reference gene (normalizer) [27, 31], and a field sample 
with a single copy of the target gene was used as a cali-
brator. The ΔΔCt method was used to estimate the copy 
number of pfmdr1 and pvmdr1 genes relative to a stand-
ard calibrator sample. For the  pfgch1  gene, a calibra-
tion curve was used with plasmids containing the pfgch1 
insert. The samples were considered to have a copy num-
ber equal to 1 when the value of the relative quantifica-
tion was between 0.5 and 1.5, and values with a minimum 
relative quantification  >1.5 were defined as amplified. 
Only samples with a cycle threshold <32 and a Ct stand-
ard deviation  <0.3 were considered in the analysis. Each 
experiment was performed in triplicate, and gene amplifi-
cation was determined by at least two independent exper-
iments. The accuracy of the qPCR assay was determined 
from at least three independent experiments, each per-
formed in triplicate, of 19% of the total samples assayed 
and for the reference laboratory isolate W2mef (2 copies 
for pfmdr1 and 1 copy for pfgch1) (Additional file 1).

Detection of single nucleotide polymorphisms in the pfcrt 
and pfmdr1 genes
PCR followed by restriction fragment length polymor-
phism analysis (RFLP) was performed to identify SNPs 

Table 1 Description of samples included in this study by period of collection, gender, age and parasitemia

a  First line treatment for uncomplicated P. falciparum malaria during sample collection: QN + doxycycline + PQ (2001–2007) and ACT (after 2007). Treatment scheme 
for P. vivax therapy: CQ + PQ [6]
b  State of sample collection and number of isolates analysed
c  Interquartile range
d  Parasites/µL

Region (N)b Period Gender (male,  %) Median age,  
years  (IQRc)

Parasitemia, geometric 
mean (range)d

Patients infected by P. falciparuma

 Amapá (10) 2004–2005 60 35 (27–46) 1306 (605–2500)

 Rondônia (4) 2008 75 42 (32–52) 5004 (1520–24,650)

Mato Grosso (18) 2002–2012 83 36 (26–43) 1505 (62–56,660)

Patients infected by P. vivaxa

 Mato Grosso (13) 2005–2012 92 35 (17–49) 4816 (992–17,500)

 Rondônia (22) 2008 73 41 (23–50) 1840 (95–10,770)
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at codons 76 of pfcrt and 86 of pfmdr1, according to 
Durand et al. [39] and Lopes et al. [40], respectively. The 
amplicons were submitted to enzyme digestion with ApoI 
(New England BioLabs, Ipswich, MA, USA) for 2  h at 
50 °C. Then, the enzyme was inactivated by exposure to 
a temperature of 80  °C for 20 min at and the fragments 
were visualized on a silver-stained 12% polyacrylamide 
gel.

Systematic review
A literature search was conducted between May 2014 
and March 2017. An advanced search was made using 
key words (Plasmodium, copy number, resistance, gene, 
copy number resistance and gene copy). These key words 
were identified in the title, abstract and text, according 
the search algorithm of each database. Manual exclusion 
criteria included: studies with other Plasmodium spe-
cies than P. falciparum and P. vivax; studies with labo-
ratory strains grown in  vitro; other systematic reviews; 
and studies with genes related to anti-malarial resistance 
other than pfmdr1, pfgch1 and pvmdr1. All duplicate arti-
cles and review articles were excluded; the clinical stud-
ies were included in this systematic review. The title, 
abstract and methods section of all 309 articles (Addi-
tional file 2) were scanned to identify the studies accord-
ing to the inclusion criteria. From the eligible studies the 
following data were extracted: author, year of sample col-
lection (when available), country where the study was 
performed, sample number and the frequency of CNV in 
parasite population by gene assayed.

Results and discussion
Copy number estimation of mdr1 and gch1 of Plasmodium 
falciparum
31 samples of patients infected by P. falciparum were 
evaluated for copy number variation in the pfmdr1 gene 
and 25 samples for pfgch1. Parasite isolates were sampled 
in three regions of Brazil (the Mato Grosso, Rondônia 
and Amapá states) over a period of 10 years (Table 1). For 
both genes analysed in this study all P. falciparum iso-
lates carried only one copy of the gene (Fig. 1; Additional 
file 3A, B).

Polymorphisms in pfmdr1 are related to resistance to 
several anti-malarials, including CQ, MQ, QN and HF 
[41]. An increase in the copy number of this gene is the 
most important determinant of resistance to MQ and 
to reduced artesunate sensitivity in vitro [26, 27, 42]. In 
Brazil, P. falciparum resistance to anti-malarials has been 
reported since 1910 (QN—1910; CQ—1960s; SP—1980s; 
amodiaquine and MQ—1990s) [6]. Another study also 
assessed the presence of CNV in the pfmdr1 gene from 
samples collected over four decades in Brazil (from 1984 
to 2011), in which patients were treated with QN plus 

tetracycline, MQ or ACT [43]. During that period, the 
rate of pfmdr1 amplification reached 42%. Particularly, 
the usage of drugs such as MQ, which is related to selec-
tion of resistant parasites with pfmdr1 amplification, 
could be an explanation for the observed high rates of 
amplification. A noticeable difference between the pre-
sent study and that by Inoue et al. is the region and the 
period of sample collection (2000s herein), which could 
lead to the observed differences in genetic diversity. 
Accordingly, geographical foci of P. falciparum with dis-
tinct population structures have been described in the 
Brazilian Amazon region [44]. However, as data from 
the previous study have not been shown by region, dif-
ferences in CNV distribution due to the location of the 
infection could not be assessed here. Alternatively, cases 
of a decline in resistant isolates by the withdrawal of drug 
pressure could have occurred as previously reported in 
Africa [45, 46]. The genome of P. falciparum is known 
to be plastic [47], which means that the parasite can 
experience rapid and extensive variation in response to 
changes in its environment; this is also known as pheno-
typic plasticity [48]. In a short timescale, this phenotypic 

Fig. 1 Polymorphism analysis in genes of P. falciparum and P. vivax 
isolates from different Brazilian Amazon regions. a Copy number vari-
ation in genes of P. falciparum and P. vivax. Only samples with relative 
quantification above 1.5 were considered amplified. Amplification 
rates for each gene are indicated in the graph. b Frequency of the 
76T mutant allele in pfcrt and N86 wild-type allele in pfmdr1. The 
frequencies of wild-type and mutated alleles are shown in black and 
gray, respectively
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plasticity can modify or produce new phenotypes. Thus, 
this phenomenon enables parasites to maximize fitness 
by mechanisms such as differential gene expression [49]. 
An example was shown by Preechapornkul et  al. where 
strains containing a single copy of the gene preferentially 
survived in the absence of MQ compared to those who 
had multiple copies [25]. Parasites that had fewer cop-
ies had a greater survival rate due to this energy demand 
generated by P-gh1. This protein acts as an efflux pump 
that transports substrates against a concentration gra-
dient with ATP hydrolysis [50]. In Brazil, MQ was offi-
cially introduced in 1987 for the treatment of CQ- and 
SP-resistant P. falciparum, and few years later, in 2001, 
MQ was substituted with the combination of QN plus 
doxycycline, followed by primaquine (PQ) as a first line 
therapy [6]. At this time, MQ plus PQ was instituted as 
a second line drug combination, and only after 2006 did 
the ACT become adopted in Brazil [6]. Thus, the lower 
pressure exerted by MQ may have led to selection of par-
asites bearing no genetic amplification after the first dec-
ade of the 2000s.

Plasmodium falciparum resistance to SP is associated 
with SNPs in two genes in the folate pathway, dihydro-
folate reductase (dhfr) and dihydropteroate synthetase 
(dhps) [51, 52]. However, polymorphisms in these genes 
may alter their efficiencies. The pfgch1 gene encodes 
the first enzyme of this pathway and an increased copy 
number of this gene may act as a compensatory mecha-
nism since it is associated with a greater number of point 
mutations in dhfr and dhps [28, 53, 54]. Few studies have 
evaluated the role of CNV in resistance to SP, particu-
larly in the Americas. The present study was the first to 
evaluate gch1 CNV in P. falciparum isolates from Brazil. 
Samples analysed here date from the 2000s, more than 
twenty years after the withdrawal of SP in the Brazilian 
therapeutic scheme in the late 1980s. Thus, the absence 
of amplification of the pfgch1 gene in the Brazilian iso-
lates may be the result of antifolates withdrawal, which 
could have favored the spread of parasites bearing a sin-
gle copy of the gene. In fact, the presence of CNV in this 
gene seems to not be advantageous in the absence of the 
drug pressure, having impact on parasite growth [53]. 
Still, since the evolution of antifolate-resistant parasites 
is multifaceted and complex and the activity of the gch1 
gene is linked with other enzymes (e.g., dhps and dhfr), 
further analysis is required to confirm the significance of 
gch1 CNV on the gain in SP resistance.

Analysis of single nucleotide polymorphisms in the crt 
and mdr1 genes of Plasmodium falciparum
The samples of P. falciparum were assayed for two poly-
morphisms in pfcrt (K76T) and pfmdr1 genes (N86Y). 
Twenty-seven samples (84% [27/32]) were successfully 

genotyped (10 from Amapá, 16 from Mato Grosso and 1 
from Rondônia) for both genes. For pfcrt gene, all sam-
ples carried the polymorphism at codon 76, while the 
substitution N86Y in the pfmdr1 gene was absent (Fig. 1). 
The fixation of the 76T allele is in agreement with other 
studies in Brazil [43, 55, 56], despite the withdrawal of 
CQ from national treatment guidelines in the mid-1980s 
[57]. The presence of the 76Y allele is in accordance with 
the description of isolates resistant to CQ in the same 
regions analysed here [43, 55]. The K76T mutation has 
been proven essential to CQ resistance, as demonstrated 
by transfection experiments and it was suggested that 
this mutation in the pfcrt gene confers resistance to CQ 
by reducing the amount of drug in the digestive vacuole 
of the parasite [33, 34, 58, 59].

Field studies have observed a significant association 
between the pfcrt (76T) and pfmdr1 (86T) alleles, sug-
gesting a joint contribution of these two genes to CQ 
resistance [60, 61]. Reinforcing these findings, the study 
by Veiga et  al. using zinc-finger nucleases to genetically 
modify the pfmdr1 gene confirmed the contribution of 
the N86Y substitution to CQ and amodiaquine resist-
ance. In contrast, this substitution increased parasite 
susceptibility to MQ and lumefantrine [62]. Addition-
ally, an association between the 86Y mutant and reduced 
susceptibility to artemether was found using in vitro tests 
[63], although other studies have reported contradic-
tory results with the N86Y substitution associated with 
increased artemether sensitivity [45, 64, 65]. In samples 
analysed here, the N86Y substitution was absent, a simi-
lar result to that observed by other studies that have also 
reported low frequency or absence of this substitution in 
pfmdr1 in Brazil [43, 55, 56]. On the other hand, Inoue 
et  al. reported the emergence of the 86Y mutant in 25 
and 43% of isolates from Brazil and Guyana, respectively, 
over the last few decades. These findings led the authors 
to hypothesize that the increase in prevalence of the 
86Y mutant could be related to the indiscriminate use of 
ACT in Guyana and the high flow of gold mine workers 
between Brazil and this neighboring country. Although 
not analysed here, other polymorphisms (e.g. Y184F, 
S1034C, N1042D and D1246Y) that influence parasite 
response to different drugs such as CQ, MQ, QN, HF and 
artemisinin [41, 66, 67] are found with high frequency in 
South America [43, 55, 68–70]. In this way, it seems that 
the markers of CQ resistance may differ between South 
America and other endemic areas. Thus, it is necessary to 
define better and more reliable polymorphisms to char-
acterize South American samples.

Copy number estimation of mdr1 of Plasmodium vivax
To characterize the pattern of copy number variation 
of P. vivax isolates from the Brazilian Amazon region, 
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thirty-five samples collected in various time periods and 
from two different areas (the states of Mato Grosso and 
Rondônia) were analysed. Overall, an amplification rate 
of 20% (7/35) was found for the pvmdr1 gene (Fig.  1). 
In Mato Grosso, six of 13 (46%) isolates had multiple 
copies of the pvmdr1 gene (Additional file  3C). Despite 
being collected in the state of Mato Grosso, the prob-
able locality of infection for these individuals carrying 
isolates with multiple copies of pvmdr1 included oth-
ers areas of the Amazon region, including the states of 
Pará and Rondônia, as well as the neighboring country 
French Guiana. In addition, the majority of these iso-
lates were collected in the 2010s decade. For 22 sam-
ples collected in Rondônia only one (4%) had multiple 
copies of the pvmdr1 gene (Additional file 3C). Overall, 
pvmdr1 copy number variation was not related to para-
sitaemia (median: 3150 [IQR 2935-12,000 parasites/μ] 
for individuals carrying isolates with multiple copies vs. 
2483 [992-6175 parasites/μ] for samples with one copy of 
pvmdr1; Mann–Whitney U test, P = 0.201) or age (mean: 
32 [SD 14.8  years] for samples with multiple copies vs. 
37 [15.1  years] for samples with one copy of pvmdr1; 
Student’s t test, P = 0.469). Among samples with multi-
ple copies of pvmdr1, the recurrence of the disease was 
reported in two individuals from Mato Grosso in a period 
of 45 days to 3 months after the initial infection.

In Brazil and in several other malaria endemic areas 
CQ and PQ are still the main drugs used to treat P. vivax 
[71]. However, resistance to CQ has been reported in 
the Brazilian Amazon [14–17]. Similar to P. falciparum, 
the copy number variation on pvmdr1 is supposed to be 
related to drug resistance [31]. In Brazil, only one study 
described pvmdr1 copy number variation, showing an 
amplification rate of 0.9% in isolates from the state of 
Acre [72]. Furthermore, the authors have not observed 
any relation between SNPs described in pvmdr1 and 
CQ resistance. In this study, pvmdr1 amplification was 
observed in 20% of patients infected in different areas 
of Northern Brazil. One individual was declared to have 
been infected in French Guiana, where a high number 
of isolates with multiple copies of the pvmdr1 gene has 
previously been reported [73, 74]. The clinical features 
of age and parasitaemia, which are important predictors 
of patient’s response to the treatment [27, 75, 76] did not 
differ between individuals carrying parasites with one or 
multiple copies of pvmdr1 in the present study. Thus, for 
the two individuals bearing isolates with multiple copies 
of the gene who also had episodes of recurrence, there is 
the possibility of treatment failure due to parasite resist-
ance to anti-malarials. However, as the individuals were 
not followed up after drug therapy with plasma drug level 
and parasitaemia measurements, the authors could not 
exclude the possibility of inadequate drug absorption. 

Additionally, the authors could not exclude the possibil-
ity of recurrence due to CQ or PQ-impaired metabo-
lism by variants of cytochrome P450 isoenzymes [77], 
as the genes that encode the enzymes were not assayed 
here. On the other hand, a new infection seems to be 
unlikely since these individuals reside in an area without 
active transmission of malaria and did not travel to other 
endemic areas in the Brazilian Amazon after their initial 
infections.

As previously suggested for other geographical loca-
tions, pvmdr1 amplification could be associated with 
MQ pressure [31, 78] in a mixed infection context, when 
this drug was used alone or in combination to treat P. 
falciparum malaria. Accordingly, P. vivax resistance to 
MQ has been reported in the Brazilian Amazon region 
[16, 55, 79]. In P. falciparum, resistance to MQ has been 
associated with increased copy number of pfmdr1 [27]. 
The mechanisms of MQ resistance seem to be similar 
between P. vivax and P. falciparum. In areas of South-
east Asia with intense and sustained MQ pressure, gene 
amplifications of pvmdr1 were significantly more com-
mon than in those patients from other localities where 
there had been less parasite exposure to MQ [31]. Addi-
tionally, Suwanarusk et al. reported amplification of 21% 
in the pvmdr1 gene in P. vivax isolates from Thailand, 
which was associated with a twofold increase in MQ  IC50 
[32]. Mefloquine and CQ seem to exert selection pres-
sure in opposite direction on pvmdr1, with gene ampli-
fication associated with an increase of susceptibility 
to CQ [32]. Therefore, the observed pattern of pvmdr1 
copy number variation in the Brazilian Amazon region 
and elsewhere would be the result of pressure exerted 
by the two drugs. For Brazilian samples, an increase in 
the prevalence of pvmdr1 amplification was observed 
over the 7-years period analysed. However, this finding 
requires further investigation as it might indicate that 
the P. vivax population is undergoing an increased sus-
ceptibility to CQ.

Copy number variation in Plasmodium spp.: a systematic 
review of the literature
A total of 309 articles were selected from four databases 
(PubMed, Malaria Journal, Science Direct and CAPES), 
and 82 of these were included in the systematic review 
according to the established criteria. The data of articles 
included in this study are available in supplementary 
material (Additional file 4). Studies from four continents 
constituted the review, where Asia and Africa were the 
regions with the majority of selected articles (88%). The 
majority of the studies were about P. falciparum, related 
to copy number variation in pfmdr1. Only two stud-
ies analysed the pfgch1 gene. For the pvmdr1 gene, eight 
studies were eligible for inclusion.
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The distribution of resistant isolates to anti-malarials 
is different between the endemic regions of the world, 
as well as the profile of CNV in genes of the parasite. 
In the Americas and Africa, the amplification of pfmdr1 
is not common and is restricted to certain locali-
ties. Thus, the majority of the studies in the Americas 
reported an absence of pfmdr1 amplification in P. fal-
ciparum isolates; the amplification rates varied from 
6 to 38% (Fig.  2; Additional file  4) [43, 69, 80–83]. For 
some countries such as Brazil and French Guiana, there 
was approximately 30% pfmdr1 amplification (between 
2 and 4 copies) in the samples analysed. In contrast, 
in Africa, the prevalence of isolates carrying one copy 
of pfmdr1 reached almost 100% in different countries, 
with the exception of Ethiopia (Fig.  2). Unlike these 
regions, Asian countries present a high rate and dis-
tribution of isolates with pfmdr1 amplification (Fig. 2). 
The studies show that on the Thailand-Myanmar bor-
der, the amplification rate is greater, reaching 100% [84, 
85]. In general, Southeast Asian countries had a greater 
prevalence of P. falciparum isolates with pfmdr1 ampli-
fication, while isolates from Southwest Asia showed no 
gene amplification [86–90]. Taken together, these dif-
ferences in gene amplification rates may be the result of 
the adoption of different treatment regimens for malaria 
by different countries over the years. In fact, there is 
evidence that amplification of the pfmdr1 gene in P. fal-
ciparum has arisen as multiple independent events, sug-
gesting that this region of the genome is under strong 
selective pressure [91]. Since gene amplification has a 
cost to the parasite’s fitness [25, 92], the drug pressure 
withdrawal could also have favored parasites without 

gene amplification contributing to the genetic variabil-
ity observed.

Regarding pfgch1, only two studies evaluated the pro-
file of CNV in field isolates. In Africa, Kiwuwa et al. have 
not detected any amplification in the 21 isolates analysed 
[93]. However, in Southeast Asia a significant difference 
in the rates of pfgch1 amplification was reported for iso-
lates from Thailand (72%) and Laos (2%), countries that 
have contrasting selection histories with antifolate drugs 
[28]. Whereas SP was not extensively used in Laos until 
2006, despite their use as official second line treatment 
for malaria [94], Thailand has had a longstanding history 
of antifolate use [95]. This geographical differentiation on 
pfgch1 CNV suggests local adaptations to drug pressure, 
which has been experimentally corroborated [53].

As described for P. falciparum, there is a difference 
regarding the distribution of CNV allelic frequencies of P. 
vivax isolates in the endemic areas. In the Americas and 
Africa, only a few studies have assessed pvmdr1 CNV, 
finding very low rates of amplification (1–3%) (Fig. 3) [72, 
74, 83, 96]. Conversely, a higher rate (up to 59%) of iso-
lates harboring multiple copies of pvmdr1 was reported 
in French Guiana, where MQ was widely used alone or in 
combination with artesunate for treatment of uncompli-
cated P. falciparum malaria, and therefore P. vivax were 
subjected to indirect selection pressure by the drug [73, 
74]. In Asia, pvmdr1 amplification was reported in Cam-
bodia (4 to 33%) [37, 74] and in Thailand (7–39%) [37, 
97]. Commonly, in these areas where pvmdr1 amplifica-
tion is frequent, there has been intense current or past 
use of mefloquine to treat uncomplicated P. falciparum 
malaria [37, 74].

Fig. 2 Global pattern of mdr1 copy number variation in P. falciparum isolates. The frequency of isolates carrying one or multiple copies of pfmdr1 is 
indicated by green and red pie charts, respectively. Only the studies that analysed more than 100 isolates are shown in the map. The size of the pie 
charts is proportional to the number of isolates analysed in each study
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Conclusion
For P. falciparum isolates, no amplification was found for 
pfmdr1 or pfgch1, but the SNP K76T associated with chlo-
roquine resistance was present. Notably, the rate of pvmdr1 
amplification observed in this study was significantly higher 
than previously reported for isolates circulating in North-
ern Brazil. Furthermore, a wide variation in the amplifica-
tion rate of pvmdr1 was observed between the two study 
sites in Brazil. In a global view, in the Americas and Africa 
the amplification rates of the mdr1 gene of P. falciparum 
were generally very low, with a few exceptions. In Asia, 
particularly in Thailand and Cambodia, the highest rates of 
pfmdr1 amplification were reported. In general, P. falcipa-
rum showed the highest rates of gene amplification; how-
ever, it is important to highlight that especially for P. vivax, 
the available information is restricted and may not reflect 
the actual picture of genetic variability for this species.
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