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Abstract 

Background: It is widely acknowledged that modifications to existing control interventions are required if South 
Africa is to achieve malaria elimination. Targeting indoor residual spraying (IRS) to areas where cases have been 
detected is one strategy currently under investigation in northeastern South Africa. This seroprevalence baseline 
study, nested within a targeted IRS trial, was undertaken to provide insights into malaria transmission dynamics in 
South Africa and evaluate whether sero-epidemiological practices have the potential to be routinely incorporated 
into elimination programmes.

Methods: Filter-paper blood spots, demographic and household survey data were collected from 2710 randomly 
selected households in 56 study wards located in the municipalities of Ba-Phalaborwa and Bushbuckridge. Blood 
spots were assayed for Plasmodium falciparum apical membrane antigen-1 and merozoite surface protein-119 blood-
stage antigens using an enzyme linked immunosorbent assay. Seroprevalence data were analysed using a reverse 
catalytic model to determine malaria seroconversion rates (SCR). Geospatial cluster analysis was used to investigate 
transmission heterogeneity while random effects logistic regression identified risk factors associated with malaria 
exposure.

Results: The overall SCR across the entire study site was 0.012 (95% CI 0.008–0.017) per year. Contrasting SCRs, cor-
responding to distinct geographical regions across the study site, ranging from <0.001 (95% CI <0.001–0.005) to 0.022 
(95% CI 0.008–0.062) per annum revealed prominent transmission heterogeneity. Geospatial cluster analysis of house-
hold seroprevalence and age-adjusted antibody responses detected statistically significant (p < 0.05) spatial clusters 
of P. falciparum exposure. Formal secondary education was associated with lower malaria exposure in the sampled 
population (AOR 0.72, 95% CI 0.56–0.95, p = 0.018).

Conclusions: Although overall transmission intensity and exposure to malaria was low across both study sites, 
malaria transmission intensity was highly heterogeneous and associated with low socio-economic status in the 
region. Findings suggest focal targeting of interventions has the potential to be an appropriate strategy to deploy 
in South Africa. Furthermore, routinely incorporating sero-epidemiological practices into elimination programmes 
may prove useful in monitoring malaria transmission intensity in South Africa, and other countries striving for malaria 
elimination.
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Background
Uninterrupted implementation of effective control meas-
ures since 2001 has substantially reduced malaria trans-
mission intensity (MTI) in South Africa [1]. In 2012, with 
a national incidence below the World Health Organiza-
tion (WHO) malaria elimination threshold of <one case 
per 1000 population at risk [2], the Malaria Directorate 
reoriented programme focus from malaria control to 
elimination. In support of this shift in focus, a strategic 
plan aiming to halt local malaria transmission within 
South African borders by 2018 is now in place [3]. To 
date, this elimination programme has made steady pro-
gress but still faces challenges; one acknowledged obsta-
cle is the identification and targeting of malaria hotspots 
of transmission as a means of combating the disease [4].

The ability to stratify malaria risk and target areas with 
persistent, higher transmission intensities is integral to 
any effective elimination strategy [5, 6]. Several methods 
to determine MTI have been developed, although each 
is associated with its own set of shortcomings and chal-
lenges [7–9]. Health facility data, entomological inocula-
tion rates (EIRs) and parasite prevalence are three of the 
most commonly used surrogate indicators of MTI. How-
ever, a reliance on the detection of parasitic material in 
either humans or mosquitoes reduces the sensitivity of 
these methods in unstable and low transmission areas, 
where parasite carriage is generally low [10–12].

Since malaria antibodies persist for extended periods 
[13], often irrespective of parasite presence, and can be 
detected using a high throughput quantitative enzyme-
linked immunosorbent assay (ELISA), determining the 
prevalence of malaria antibodies is a cost-effective, sen-
sitive option for assessing MTI in low-transmission set-
tings [14–17]. Blood stage anti-malaria antibodies have 
been shown to be reliable markers of malaria exposure 
[18] and have been used in numerous sero-epidemiologi-
cal studies investigating the level of, and changes in, MTI 
along with geographical patterns in malaria exposure [15, 
19–23]. The main, serologically derived, measure of MTI 
in these studies is the seroconversion rate (SCR). The 
SCR is the average annual rate at which a population con-
verts from being seronegative to seropositive to malaria 
antigen(s), and has been used in various geographical 
settings to accurately determine both current and his-
torical changes in MTI [7, 10, 18, 19]. Across a range of 
geographical settings, the SCR has been shown to corre-
late well with both malaria incidence and EIRs [7, 24, 25], 
although this association has not been validated among 

very low transmission settings where few serological, 
entomological and health metric surveys have been con-
ducted simultaneously.

The study reported here forms part of a larger cluster, 
randomized, clinical trial investigating the efficacy of a 
targeted method of vector control delivery in response 
to passively detected cases [26]. This baseline, cross-
sectional, seroprevalence survey was undertaken to 
determine the level and spatial characteristics of malaria 
transmission, as well as provide insights into the risk fac-
tors associated with malaria exposure in northeastern 
South Africa.

Methods
Study site location
The study was conducted in the municipalities of Ba-
Phalaborwa and Bushbuckridge, situated in the malaria-
endemic provinces of Limpopo and Mpumalanga, South 
Africa, respectively (Fig. 1). Malaria transmission occurs 
predominately during the summer months from Septem-
ber to May [27], with the dominant parasite and vector 
being Plasmodium falciparum and Anopheles arabiensis, 
respectively [28]. The primary vector control interven-
tion is annual generalized indoor residual spraying (IRS) 
of households in all areas in which malaria cases occur, 
using pyrethroids or dichlorodiphenyltrichloroethane 
(DDT) [1].

Data collection
For the purposes of the targeted IRS, cluster randomized 
trial, the study area was divided into 56 study wards (13 
in Ba-Phalaborwa, 43 in Bushbuckridge) (Fig. 1). Health 
facilities which operated as passive reporting systems 
in these wards, accumulated the number of reported 
malaria cases between 2010 and 2015, which enabled 
historical incidence to be calculated in the study area. 
Following collection over 5 years, historical malaria inci-
dence was then averaged in each study ward. Between 
April and June 2015, a cross-sectional knowledge, atti-
tudes and practices (KAP) and serological survey was 
undertaken among 60–80 randomly preselected house-
holds in each study site ward. Study personnel visited 
each of the selected households, obtained consent, then 
administered questionnaires concerning IRS practices, 
travel history and recent outdoor activity to the head 
of each household or their representative. Households 
with no adults present were excluded from the survey. 
Answers to survey questions were referred to the other 
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consenting individuals residing in the household. Fin-
ger-prick dried blood spots (3MM Whatmann Paper) 
were collected from consenting adults (aged >18  years) 
and assenting children (aged >2–18  years) along with 
basic demographic information (age, gender education, 
employment status). Children under 2  years old were 
excluded from the survey. Parasite prevalence was not 
investigated in this study due to the very low reported 
mean incidence in the region (approximately one per 
1000 per annum), which makes prevalence surveys 
impractical.

Assay of P. falciparum antibodies
Bloodspots were stored at 4  °C as described previously 
[25]. Sera, eluted from the filter paper blood spots, were 
subjected to a previously described quantitative indi-
rect ELISA to detect IgG antibodies to blood stage P. 
falciparum apical membrane antigen-1 (PfAMA-1) and 
merozoite surface protein-119 (PfMSP-119) antigens [25]. 
In short, antibodies in 3-mm circular cuttings from fil-
ter paper blood spots were eluted in a 1/200 dilution of 
reconstitution buffer (phosphate buffer saline  +  0.5% 
Tween-20 + 0.05% sodium azide). Sera were then assayed 

Fig. 1 Location of the study sites situated within the municipalities of Ba-Phalaborwa and Bushbuckridge in northeastern South Africa. Passively 
reported malaria incidence data was obtained from health facilities between 2010 and 2015 then averaged among study site wards [43]
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in duplicate for antibodies against both PfAMA-1 and 
PfMSP-119 in 1/2000 and 1/1000 dilutions, respectively, 
to obtain two optical density (OD) values per sample. A 
serial dilution of pooled sera from a malaria hyperen-
demic African region was used as a positive control to 
standardize OD values.

Statistical analysis
Duplicate sample OD values were averaged and nor-
malized against a positive control curve generated from 
hyperimmune sera. Sample OD values that differed more 
than 50% were dropped, and when possible repeated. 
Samples were then dichotomized as either seroposi-
tive or seronegative using a two component finite mix-
ture model with five standard deviations as described 
in [7, 25]. Seropositive was defined as being positive to 
either PfAMA-1 and/or PfMSP-119. SCRs were obtained 
from age-specific seroprevalence curves generated from 
reverse catalytic models, while age-adjusted antibody 
responses for PfAMA-1 and PfMSP-119 were derived 
from log-transformed, normalized OD values as pre-
viously described in [15, 29]. Age-adjusted antibody 
responses were then averaged per household and catego-
rized, based equally around the median, as ‘lower than 
average’, ‘average’, ‘slightly higher than average’, ‘higher 
than average’, and ‘much higher than average’ to generate 
an antibody response heat map. Study ward percentage 
seroprevalence corresponds to the percentage of sam-
pled seropositive households (households that contained 
at least one member seropositive to PfAMA-1 and/or 
PfMSP-119) in each ward.

Statistical analysis was performed using Stata 13.0 
(Stata Corp, College Station, TX, USA) to identify poten-
tial risk factors associated with P. falciparum exposure 
among sampled participants. Odds ratios (ORs) asso-
ciated with being seropositive to either antigen were 
derived from random effects logistic regression models 
which adjusted for correlation at the study ward level. 
Correlation was adjusted for at the study ward level, 
opposed to the household level, as any correlation at 
household level is reflected in the model. Correlation at 
ward level therefore provides a more conservative assess-
ment of significance. Adjusted odds ratios (AORs) were 
derived using a multivariable model, including the fol-
lowing covariates: age, gender, education status, employ-
ment status, IRS practices, travel history, night-time 
outdoor activity, elevation, and study site (Ba-Phalaborwa 
and Bushbuckridge). Each statistically significant multi-
variate model was developed using the forward stepwise 
approach which compared multivariate models to the 
most significant univariate model using p-values derived 
from likelihood ratio tests.

Geospatial analysis
Household elevation was determined using point sam-
pling analyses in ArcGIS (v10.3.1). Sampled households 
with corresponding GPS coordinates were provided 
with elevation values derived from a 90-m resolution 
raster elevation data file (DIVA-GIS). Using the same 
raster elevation data file, average study ward elevation 
was calculated using zonal statistical methods in Arc-
GIS (v10.3.1). For geospatial analysis of seroprevalence, 
households containing only seronegative individuals, 
at least one seropositive individual as well as household 
averaged, age-adjusted antibody responses to P. falcipa-
rum PfAMA-1 and PfMSP-119 were geographically plot-
ted using ArcGIS software (v10.3.1). The spatial software 
SaTScan (v.9.4.2) was used to detect clusters of seroposi-
tive households and higher than average age-adjusted 
antibody responses to PfAMA-1 and PfMSP-119. In order 
to detect clusters of seropositive households (households 
with at least one seropositive individual), seropositive 
households were used as cases, while seronegative house-
holds were used as controls using the Bernoulli model. 
Higher than average, age-adjusted PfAMA-1 antibody 
responses were detected using the Normal model. The 
scan statistic involves a scanning window, which enu-
merates both the observed and expected cases (sero-
positive households or higher than average individual 
age adjusted responses) across the study area to calculate 
non-overlapping, statistically significant (p  <  0.05) clus-
ters with a maximum set radius of 3 km.

Results
Study enrolment
Of the 3522 visited households, 76.9% (2710) agreed 
to participate in the survey. Within these households, 
56.7% (4948/8728) of the eligible participants were pre-
sent and consented to filter-paper blood spot and demo-
graphic data collection. Among the non-consenting 
participants, 42.5% (425/999) refused without providing 
a reason. Serological analysis was successfully conducted 
on 97% (4783/4948) of the blood samples that were cor-
rectly labelled. Once assayed, 94.1% (4499/4783) of the 
serological data correctly matched with demographic 
data to enable serological analysis. This merged data 
then matched with 99.5% (4477/4499) of the survey data 
and were subjected to further statistical and geospatial 
analysis.

Population demographics
Adult females were over-represented in this study with 
75% (2651/3521) of those aged over 18 years being female 
and only 20% (956/4477) of all participants aged between 
two and 17  years. Unemployment was high among the 
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working-age population with 85% (2601/3057) of those 
aged between 18 and 65 years reporting as unemployed. 
Formal education was limited among the adult popula-
tion with 40% (1401/3521) of the study participants over 
18  years having received no formal secondary educa-
tion. Night-time outdoor activity was uncommon with 
only 21% (945/4477) of the surveyed population reported 
undertaking night-time outdoor activities the evening 
before the survey. Only 1.5% (65/4477) of the surveyed 
individuals reported travelling outside South Africa in 
the past 6 months. Lastly IRS activity was not widespread 
among the randomly selected households, only 41% 
(1109/2698) of households reported receiving IRS during 
the previous malaria season (Table 1).

Plasmodium falciparum antibody responses and associated 
risk factors
Seropositive cut-offs corresponding to the OD values of 
0.067 and 0.103 for PfAMA-1 and PfMSP-119, respec-
tively, dichotomized the sample population as seroposi-
tive or seronegative to P. falciparum. Overall antibody 
responses to both PfAMA-1 and PfMSP-119 were low 
among the 4499 study participants as no OD value 
exceeded a value of 0.5 and many seropositive OD val-
ues, particularly among those under 10  years, were just 
above the seropositive thresholds (Additional file  1). 
Approximately 13% (587/4499) of all sampled individuals 
were seropositive to PfAMA-1 and/or PfMSP-119, with 
9% (403/4499) and 6% (279/4499) seropositive to just 
PfAMA-1 and PfMSP-119 antigens, respectively, (Addi-
tional file 2).

Seroprevalence increased with age across both study 
sites. Statistically, individuals aged between 2 and 5 years 
were less likely to be P. falciparum seropositive com-
pared to individuals aged ≥41 years (AOR 0.22, 95% CI 
0.13–0.38, p < 0.001) (Table 1). P. falciparum seropreva-
lence was lower among individuals who attained formal 
secondary education or above than those who achieved 
up to formal primary education (AOR 0.72, 95% CI 0.56–
0.95, p = 0.018) (Table 1). There was weak evidence for 
an association between P. falciparum seroprevalence and 
being female, but no evidence for an association with 
employment status, recent IRS, recent travel outside of 
South Africa, night-time outdoor activity or household 
elevation (Table  1). Furthermore, no statistical associa-
tion was observed between these risk factors and sero-
prevalence to just AMA-1 or MSP-119 (Additional file 3).

Plasmodium falciparum transmission intensity and spatial 
distribution
MTI, as expressed by SCR, was estimated at 0.012 per 
annum across the entire study site (95% CI 0.008–0.017) 

(Fig.  2a). SCRs for separate antigens: PfAMA-1 and 
PfMSP-119 equated to 0.011 (95% CI 0.007–0.017) and 
0.003 (95% CI 0.002–0.005), respectively, per year (Addi-
tional file 2). MTI however, was not uniform across the 
study site, as SCRs corresponding to geographical dis-
tinct regions (grouped study site wards) varied consid-
erably, ranging from <0.001 (95% CI <0.001–0.005) to 
0.022 (95% CI 0.008–0.062) per annum (Fig. 2b, c). In the 
Ba-Phalaborwa study site alone, two regional SCR val-
ues were significantly different, equalling <0.001 (95% CI 
<0.001–0.005) and 0.009 (95% CI 0.006–0.016) per year 
(Fig. 2b).

Across both study sites, five statistically significant 
(p  <  0.05) clusters of seropositive households (house-
holds containing at least one seropositive individual) 
were detected (Fig. 3). Clusters of higher than average, 
age-adjusted antibody responses to both PfAMA-1 and 
PfMSP-119 were revealed in similar locations to clusters 
of seropositive households (Fig. 4). In total, 4/5 and 3/4 
clusters of higher than average, age-adjusted antibody 
responses to PfAMA-1 and PfMSP-119, respectively, 
spatially overlapped with clusters of seropositive house-
holds. This spatial overlap was less apparent between 
age-adjusted antibody responses to either PfAMA-1 
or PfMSP-119. In Ba-Phalaborwa, a cluster of higher 
than average, age-adjusted antibody responses to 
PfAMA-1 was identified but not to PfMSP-119. Unlike 
seroprevalence among all ages, malaria seroprevalence 
in children under 5  years showed no statistical evi-
dence (p  >  0.05) of clustering. Nonetheless most chil-
dren under 5 years were surveyed in houses situated in 
clusters of seropositive households containing all ages 
(Fig. 3a, b).

Ward‑level malaria incidence, elevation and Plasmodium 
falciparum seroprevalence
Very low malaria incidence between 2010 and 2015, aver-
aging 0.95 cases per 1000 population, was reported across 
the whole study region, with values ranging between 0.1 
and 3.8 per 1000 population among individual study site 
wards. Moreover, historical malaria incidence was heter-
ogenous across the study region as wards, that reported 
<one case per 1000 population, were often situated adja-
cent to each other (Fig. 1). Variation in elevation was also 
observed across the study site, with household elevation 
ranging from 363 to 815 m. Average study ward historical 
incidence and elevation was inversely associated (slope: 
−0.006, r: −0.58), highlighting lower incidence at higher 
ground elevation (Fig. 5). No statistically significant lin-
ear relationship was observed between historical malaria 
incidence and ward-level P. falciparum seroprevalence 
(Fig. 6).
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Discussion
This cross-sectional, baseline survey, nested within an 
ongoing targeted IRS trial [26], aimed to investigate the 
transmission dynamics, spatial distribution and risk fac-
tors associated with P. falciparum exposure within the 
study area using serological markers, the results of which 
are to be used to both inform elimination efforts in South 
Africa and assess whether sero-epidemiological methods 

have the potential to be routinely incorporated into elim-
ination programmes.

The overall low malaria risk in the northeast border 
regions of South Africa has been well documented [30], 
however until now no detailed population-based assess-
ment of transmission intensity had been conducted. This 
first sero-epidemiological, cross-sectional study investi-
gating exposure to malaria, estimated a P. falciparum SCR 

Table 1 Demographic characteristics and risk factors associated with P. falciparum seroprevalence

Seropositivity to either PfAMA-1 and/or PfMSP-119 across the study sites of Ba-Phalaborwa and Bushbuckridge. Individual level data: age, gender, education status and 
employment status. Household level data: household IRS between August 2014 and February 2015, travel outside South Africa in the past 6 months, outdoor activity 
last night and household elevation
a Adjusted for correlation at the study ward level
b Adjusted for Age, gender, study site and correlation at the study ward level

Risk factor Total P. falciparum seropositive Unadjusted Adjusted

%n n %n n %n 95% CI ORa 95% CI p value ORb 95% CI p‑value

Age (years)

 2–5 8.8 394 4.6 18 2.9–7.1 0.21 0.12–0.35 <0.001 0.22 0.13–0.38 <0.001

 6–15 10.7 481 10 48 7.6–13.0 0.48 0.34–0.69 <0.001 0.52 0.36–0.75 0.001

 16–40 45.8 2050 12.8 263 11.5–14.4 0.71 0.58–0.88 0.002 0.71 0.58–0.89 0.002

 ≥ 41 34.7 1552 17.1 266 15.4–19.1 1 1

Gender

 Male 30.3 1357 10.7 145 9.2–12.4 0.67 0.54–0.84 <0.001 0.77 0.62–0.97 0.057

 Female 69.7 3120 14.4 450 13.2–15.7 1 1

Education status

 Primary and below 49.5 2218 13.6 302 12.3–15.1 1 1

 Secondary and above 50.5 2259 13 293 11.7–14.4 0.89 0.73–1.08 0.239 0.72 0.56–0.95 0.018

Employment status

 Unemployment 86.7 3881 13.1 508 12.1–14.2 0.36 0.11–1.19 0.094

 Some employment 0.5 21 19.1 4 7.67–40.0 1

 Full employment 12.8 575 14.4 83 11.8–17.5 0.42 0.12–1.44 0.168

Household IRS between Aug 2014 and Feb 2015

 Yes 45.4 2034 11.8 239 10.4–13.2 0.93 0.73–1.18 0.537

 No 53.1 2375 14.8 351 13.4–16.3 1

 Not sure 1.5 68 7.4 5 3.18–16.1 1.05 0.40–2.81 0.916

Travel outside S. Africa in the past 6 months

 Yes 1.5 65 21.5 14 13.3–33.0 1

 No 98.5 4412 13.2 581 12.2–14.2 0.63 0.31–1.26 0.190

Outdoor nightime activity last night

 Yes 21.1 945 12.4 117 10.4–14.6 1

 No 78.9 3532 13.5 478 12.4–14.7 0.90 0.68–1.19 0.464

Household elevation (m)

 350–450 41.4 1855 9.1 168 7.8–10.5 0.57 0.32–0.99 0.057

 451–550 18.3 818 18.1 148 15.6–20.9 1

 551–650 29.0 1296 18.1 235 16.1–20.3 1.06 0.64–1.77 0.823

 651–750 11.4 508 8.7 44 6.5–11.4 1.01 0.49–2.08 0.969

Study site

 Ba-Phalaborwa 35.3 1580 6.8 107 5.6–8.1 0.23 0.09–0.63 0.004 0.26 0.10–0.74 0.012

 Bushbuckridge 64.7 2897 16.9 488 15.5–18.2 1 1

Total 100 4477 13.3 595 12.3–14.3
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Fig. 2 Plasmodium falciparum age-seroprevalence curves for the entire study site (a) and distinct geographical regions within each study site (b, 
c). Seroprevalence curves, fitted by maximum likelihood, represent the average annual rate at which this population become seropositive to either 
PfAMA-1 and/or PfMSP-119 characterized by a seroconversion rate (SCR). Red triangles: observed age-seroprevalence, solid lines: predicted seropreva-
lence and dotted lines: predicted seroprevalence upper and lower 95% confidence intervals. N: sample size
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of 0.012 per year, which translates to only 1.2/100 sampled 
participants becoming seropositive to malaria every year. 
This result suggests a low force of malaria infection in this 
region of South Africa, which is expected given the very 
low reported incidence in the area of approximately one 
case per 1000 per year and is similar to serological findings 
in nearby Swaziland [31]. Although a SCR revealed overall 

MTI to be low across the entire study area, variations in 
malaria incidence among study site wards and contrast-
ing SCRs between geographically distinct geographical 
regions highlight prominent heterogeneity of MTI in this 
area of South Africa. Similar spatial patterns in malaria 
transmission have been observed in other low transmis-
sion settings [5, 18, 21, 24, 32], although few have been 

Fig. 3 Spatial analyses of household P. falciparum seroprevalance across the Ba-Phalaborwa and Bushbuckridge study sites. a Spatial distribution of 
households containing ≥1 PfAMA-1 and/or PfMSP-119 seropositive individual(s). SaTScan™ derived statistically significant (p-values <0.05) clusters 
of seropositive households reveal regions where there are a higher number of seropositive households than expected. b Spatial distribution of 
households containing ≥1 PfAMA-1 and/or PfMSP-119 seropositive individual(s) aged 5 years and under
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conducted in very low endemic settings. It is therefore 
important to note that while measures of MTI, including 
SCRs, EIRs and incidence data, recorded over vast geo-
graphical areas provide a useful overall picture of malaria 
transmission, these measures do not necessarily reflect 
transmission intensity at the micro-epidemiological level. 

In the Ba-Phalaborwa study site for instance, an area that 
spans approximately 10 ×  20  km, most serological evi-
dence of elevated transmission intensity is focused in the 
northern half of this region. This suggests a MTI value 
across this area would not be representative of true trans-
mission at ground level.

Fig. 4 Spatial analyses of household-averaged, age-adjusted antibody responses to PfAMA-1 (a) and PfMSP-119 (b) across the Ba-Phalaborwa 
and Bushbuckridge study sites. Age-adjusted antibody responses were derived from log-transformed PfAMA-1/PfMSP-119 normalized OD values 
adjusted at 30 years. The resultant residual values were categorized as: as ‘lower than average’ (−2.370 to −0.499), ‘average’ (−0.500 to 0.500), ‘slightly 
higher than average’ (0.501–1.250), ‘higher than average’ (1.251–2.000) and ‘much higher than average’ (2.001–2.936). Statistically significant clusters 
(p-values < 0.05) of higher than average age-adjusted PfAMA-1/PfMSP-119 antibody responses are also shown
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Spatial clusters of P. falciparum seropositive house-
holds and elevated age-adjusted P. falciparum antibody 
responses suggest malaria transmission is not only het-
erogeneous across this study region, but concentrated in 
malaria hotspots. Hotspots are defined as areas which 
experience a significantly higher burden of malaria 
compared to the surrounding vicinity and may act as 
geographical reservoirs of the disease [6, 15, 29, 33]. To 
further characterize identified hotspots in the study 
region, malaria seroprevalence in study participants 
aged 5 years and under was used as a proxy for detecting 

recent malaria exposure. Households with seropositive 
individuals aged ≤5  years were predominately located 
within hotspots of seropositive households containing all 
ages, implying these malaria hotspots are likely persistent 
contributors to malaria transmission and not representa-
tive of historical exposure. It should be noted however 
that many OD values among seropositive children are 
only just above the seropositive cut-off value. Moreover, 
elevated antibody responses in children could be attrib-
uted to hypergammaglobulinaemia [34], a process in 
which antibody production is accelerated due to immu-
nological exposure to other antigens.

Previous studies have identified numerous favourable 
abiotic and biotic conditions that are believed to facilitate 
the existence of malaria hotspots, ranging from mosquito 
breeding site proximity to poor health care practices 
[5, 35–37]. In this study, poor formal education, a likely 
proxy for low socio-economic status (SES), was associ-
ated with increased malaria exposure. This association 
is consistent with the rationale that poor quality hous-
ing better enables mosquitoes to infect inhabitants [36, 
38]. Across the study region, increasing elevation was 
inversely associated with increasing historical malaria 
incidence, which is expected given lower temperatures 
at higher attitudes are believed to impede parasite sporo-
gony in the mosquito gut leading to reduced transmis-
sion [39]. The association between elevation and malaria 
seroprevalence in this study however was more ambigu-
ous, as no declining trend in malaria seroprevalence with 
increasing elevation was observed. This observation may 
suggest other factors, aside from elevation, including 
malaria importation, and successful control efforts have 
greater impacts on transmission dynamics in lower trans-
mission settings, although this requires further valida-
tion. Despite the ambiguity, it should be noted that both 
historical malaria incidence and malaria seroprevalence 
was reduced, although not significantly, above altitudes 
of 650 m.

In this survey, historical malaria incidence represents 
symptomatic cases that reported to health facilities 
between 2010 and 2015 while seroprevalence reflects 
those who have been exposed to the P. falciparum para-
site, potentially decades prior. Thus, the observed non-
linear relationship between increasing average ward-level 
incidence and increasing ward-level percentage seroprev-
alence could be explained by this study detecting previ-
ously exposed and/or asymptomatic individuals who may 
not have reported to health facilities between 2010 and 
2015. If this discordance between exposure and incidence 
is confirmed in more extensive surveys, it raises a ques-
tion for targeted vector control strategies: should these 
be directed at foci of higher case incidence or should they 
be directed at foci of higher exposure to malaria?
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Fig. 5 Scatter plot of average reported malaria incidence per study 
ward between 2010 and 2015 and average study ward elevation. 
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Following antigen stratification, seroprevalence and 
overall seroconversion was higher for PfAMA-1 com-
pared to PfMSP-119, a result shown elsewhere and 
thought to be the result of contrasting immunogenici-
ties between the two antigens [7, 32]. This disparity may 
account for the observed spatial discordance in age-
adjusted antibody responses towards each antigen in cer-
tain study site areas. In the Ba-Phalaborwa study site for 
instance, a cluster of elevated PfAMA-1, but not PfMSP-
119, antibody responses was detected. This discordance 
would explain why seroprevalence was lower in the Ba-
Phalaborwa study site and highlights the importance 
of using both these serological markers to more effec-
tively characterize malaria exposure, particularly in low 
endemic settings where antibody responses are low. Nev-
ertheless, given antigenic discordance has been observed 
elsewhere [40], this puts into question whether these two 
serological markers, alone, truly characterize malaria 
exposure correctly. Fortunately, identifying novel sero-
logical markers that accurately represent recent exposure 
to malaria is an area of continued investigation [41].

Limitations
Oversampling of unemployed adult females in this study 
may have resulted in results that are not fully repre-
sentative of the study population. Most notable is recent 
cross-border travel not being significantly associated 
with malaria exposure, despite a higher proportion of 
reported travellers being seropositive to malaria. This is 
attributed to few reports of travel, likely due to the lack 
of adult males surveyed who are thought to undertake 
more cross-border travel than adult females [42]. The low 
sampling rate of males may also have led to the finding 
of weak evidence that seroprevalence is higher in females 
than in males. Oversampling is likely a result of survey 
timing, as most surveys were conducted during week-
days when children and employed adult males were often 
absent.

Conclusions
This study verifies that serology is effective in charac-
terizing malaria transmission dynamics, even in a very 
hypo-endemic setting where antibody responses to 
malaria are low. Therefore, by routinely incorporating 
sero-epidemiological practices into elimination pro-
grammes, this offers countries embarking on malaria 
elimination the opportunity to both characterize and 
monitor malaria transmission. This survey, conducted in 
the northeastern region of South Africa, revealed MTI 
is both low and spatially heterogenous. This reinforces 
the notion that malaria elimination in South Africa is 
achievable, provided amendments to existing methods 
of control are adopted. Such prominent transmission 

heterogeneity suggests widespread control interventions 
are likely to have varying degrees of success while target-
ing interventions has the potential to be a more appropri-
ate, cost-effective and sustainable strategy for eliminating 
malaria. However, whether this strategy can cope with 
malaria epidemics remains unknown, and should be 
taken into consideration when South Africa pilots a new 
enhanced surveillance and response strategy in selected 
malaria hotspots.
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