
Huber et al. Malar J  (2016) 15:490 
DOI 10.1186/s12936-016-1537-6

RESEARCH

Quantitative, model‑based estimates 
of variability in the generation and serial 
intervals of Plasmodium falciparum malaria
John H. Huber1, Geoffrey L. Johnston2, Bryan Greenhouse3, David L. Smith4 and T. Alex Perkins5* 

Abstract 

Background:  The serial interval is a fundamentally important quantity in infectious disease epidemiology that has 
numerous applications to inferring patterns of transmission from case data. Many of these applications are apropos 
of efforts to eliminate falciparum malaria from locations throughout the world, yet the serial interval for this disease is 
poorly understood quantitatively.

Methods:  To obtain a quantitative estimate of the serial interval for falciparum malaria, the sum of the components 
of the falciparum malaria transmission cycle was taken based on a combination of mathematical models and empiri-
cal data. During this process, a number of factors were identified that account for substantial variability in the serial 
interval across different contexts.

Results:  Treatment with anti-malarial drugs roughly halves the serial interval due to an abbreviated period of human 
infectiousness, seasonality results in different serial intervals at different points in the transmission season, and vari-
ability in within-host dynamics results in many individuals whose serial intervals do not follow average behaviour. Fur-
thermore, 24.5 % of secondary cases presenting clinically did so prior to the primary cases being identified through 
active detection of infection.

Conclusions:  These results have important implications for epidemiological applications that rely on quantitative 
estimates of the serial interval of falciparum malaria and other diseases characterized by prolonged infections and 
complex ecological drivers.
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Background
The basic reproduction number R0, defined as the 
expected number of secondary cases arising from a single 
primary case in a susceptible population, is well known 
and of fundamental importance in infectious disease epi-
demiology. Despite extensive efforts to model, measure, 
and map R0 globally for falciparum malaria [1, 2], lit-
tle has been done to quantify its temporal analogue, the 
serial interval. Defined as the time between the clinical 
presentation of primary and secondary cases, the serial 

interval is also of fundamental importance [3]. Probabil-
istic descriptions of the serial interval provide a basis for 
identifying sources of infection [4], for assessing whether 
cases are causally linked [5, 6], for analysing incidence 
data to estimate temporal variation in transmission and 
its environmental drivers [7, 8], and for determining 
whether a pathogen can be declared eliminated [9].

For directly transmitted diseases, the serial interval 
can be measured through contact tracing or with house-
hold data [10, 11]. For malaria and other mosquito-
borne diseases, this would require the impossible task 
of tracing mosquito blood meals between people, so the 
serial interval must be estimated indirectly. Case data 
have been analysed with spatiotemporal statistics that 
are designed to estimate the serial interval by detecting 

Open Access

Malaria Journal

*Correspondence:  taperkins@nd.edu 
5 Department of Biological Sciences and Eck Institute for Global Health, 
University of Notre Dame, Notre Dame, IN, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7518-4014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-016-1537-6&domain=pdf


Page 2 of 12Huber et al. Malar J  (2016) 15:490 

autocorrelation in the appearance of cases (e.g., [12]), but 
the resolution of these estimates tends to be extremely 
crude. These statistics are generally not capable of cap-
turing heterogeneity in the serial interval distribution 
across different contexts, but heterogeneity in the ecol-
ogy of falciparum malaria across space, time, urban–rural 
gradients, and in  other respects is an important feature 
of its transmission [13, 14]. An alternative approach 
[15] with the potential to overcome these shortcomings 
involves using empirical data to characterize variability 
in components of the transmission cycle and applying 
principles of probability to combine those components to 
describe variability in the length of the transmission cycle 
as a whole, i.e., the serial interval [3].

For falciparum malaria, one analysis [7] has used such 
an approach to describe the generation interval, which 
differs from the serial interval because it pertains to the 
timing of infection rather than case detection. There are 
two important limitations of how this approach has been 
applied to falciparum malaria to date, however. First, 
applying the generation interval to case data is ques-
tionable, given that the generation interval is intended 
to quantify the timing between infections rather than 
cases. Second, there are a number of heterogeneities in 
the falciparum malaria transmission cycle that have not 
previously been incorporated into descriptions of its 
generation interval. A more comprehensive quantita-
tive understanding of the falciparum malaria generation 
interval and serial interval was achieved by considering: 
(1) differences in the timing of secondary infections aris-
ing from asymptomatic or untreated cases as compared 
with symptomatic cases treated with anti-malarial drugs; 
(2) variability in entomological parameters that affect 
the timing of transmission; (3) variability due to seasonal 
fluctuations in mosquito densities, and (4) inter-individ-
ual variability arising from stochastic variation in the tra-
jectory of a given person’s infectiousness over time.

Methods
Overview
To obtain random variables describing the genera-
tion interval (GI) and serial interval (SI) of falciparum 
malaria, random variables were first derived describing 
components of the GI and SI: the liver emergence period 
(LEP), the human-to-mosquito transmission period 
(HMTP), the extrinsic incubation period (EIP), the mos-
quito-to-human transmission period (MHTP), and the 
infection-to-detection period (IDP). The exact length of 
time required for each of these events to occur is inher-
ently random, which is why each must be treated as a 
random variable rather than as a period of fixed length. 
Furthermore, because these events must occur sequen-
tially for transmission to occur, the sum of these random 

variables must be calculated to describe the GI and SI as 
random variables. The GI is defined as the time between 
sequential infections, so it is therefore equal to the sum 
of the LEP, HMTP, EIP, and MHTP (Fig. 1). Because the 
SI is defined as the time between detection of sequen-
tial infections, it is defined as the sum of the GI, the IDP 
for the primary infection, and the IDP for the second-
ary infection. This approach was applied to quantifying 
GI and SI distributions under a variety of scenarios to 
describe variability in the GI and SI across a wide range 
of conditions typical of falciparum malaria transmission 
in different settings.

Probabilistic description of components of the generation 
and serial intervals
Liver emergence period (LEP)
The first period comprising the generation interval for 
falciparum malaria was defined as the LEP. Consistent 
with empirical findings [16], this interval between sporo-
zoites entering the skin and asexual merozoites emerging 
from the liver was modelled as a constant 6 days.

Human‑to‑mosquito transmission period (HMTP)
To simulate the trajectory of blood-stage parasites fol-
lowing their emergence from the liver, a simulation 
model developed by Johnston et  al. [17] was used. This 
model tracks parasite replication beginning in the first 
generation after emergence from the liver (e.g., from the 
sixth day). Once simulated gametocytes were sufficiently 
mature and abundant to infect mosquitoes [sequestra-
tion time~Normal (7  days, 1.5  days)], the probability of 
a person infecting a blood-feeding mosquito was mod-
elled as a non-linear function of their gametocyte density, 
consistent with Johnston et al. [17]. Time-varying game-
tocytaemia and its relationship with infectiousness then 
governed the infectiousness of a person until the infec-
tion was cleared by either the body’s immune response 
or with the aid of anti-malarial drugs. Because net infec-
tiousness varied substantially across simulations, 1000 
replicate gametocytaemia trajectories were generated 
from Johnston et al. [17, 18] and their average weighted 
by the net infectiousness of each was computed. This 
weighted average curve was then normalized to arrive at 
a probability density describing the HMTP.

The dynamics of gametocytaemia, the immune 
response, and the effect of anti-malarial drugs were simu-
lated with the model by Johnston et al. [18]. This model 
was parameterized using malaria therapy data from 
patients experiencing syphilis, similar to other within-
host models of Plasmodium falciparum infections in 
humans [19–22]. These patients had no prior immunity 
to malaria and were injected with P. falciparum in a con-
trolled setting to induce a fever and an immune response. 
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Consequently, the dynamics described by the model by 
Johnston et  al. [17, 18] are most reflective of P. falcipa-
rum infection dynamics of infections in adult males with 
no prior exposure. Elaborating on the model by Johnston 
et al. [17, 18] to better capture the dynamics of infections 
in individuals with prior exposure and immunity would 
require data from challenge studies that is not currently 
available. Thus, this quantification of the HMTP should 
be regarded as an upper limit, particularly for popula-
tions with extensive immunity to P. falciparum.

Because the number of mosquitoes blood-feeding on 
a given day can be highly variable [23], the time-varying 
probabilities of infection obtained from the Johnston et al. 

[17] model were multiplied with a potentially time-vary-
ing mosquito-to-human ratio, m(t). The default setting for 
m(t) was a constant, but for some analyses a time-varying 
function was used,

where A is peak amplitude, Φ is a Normal probability 
density, and σ corresponds to the width of the seasonal 
peak. To obtain a random variable describing the timing 
of a mosquito being infected by an infectious human, the 
time-varying infection probabilities were multiplied by 
m(t) and the resulting curve was normalized. The sum of 
the LEP and HMTP for a constant m(t) is shown in Fig. 1a.

(1)m(t) = Aφ(t, 180, σ)+ 1,

Fig. 1  Elements of the falciparum malaria transmission cycle (a–c) and their impact on variability in the generation interval (d, e). The first such ele-
ments that were delineated were the liver emergence period (LEP) and human-to-mosquito transmission period (HMTP), which differed for primary 
cases treated with anti-malarial drugs or not (a). The third element was the extrinsic incubation period (EIP), whose mean values differed across 
four representative sites (b). The fourth element was the mosquito-to-human transmission period (MHTP), the distribution of which differed for the 
same four sites due to differences in mean daily mosquito mortalities (c). Combining these elements produced four site-specific GI distributions for 
treated (d) and untreated (e) primary case scenarios. GI distributions with values of the entomological parameters averaged across sites are shown 
for comparison in d and e
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Extrinsic incubation period (EIP)
Once P. falciparum gametocytes have been transmitted 
from an infectious human to a susceptible mosquito, a 
period of time known as the extrinsic incubation period 
(EIP) must elapse before sporozoites are produced and 
disseminated to the mosquito’s salivary glands, where 
they can then be transmitted to a human. It was assumed 
that the EIP can be reasonably described by a Normal 
random variable with mean estimated from any of four 
sites [24] and standard deviation of 2.47 days, which was 
estimated based on data digitized from Macdonald [25]. 
Because the calculations were performed on a daily basis, 
the EIP was modelled as a random variable with prob-
ability mass,

where Φ is a Normal cumulative density (Fig.  1b). By 
setting the maximum possible EIP at 17  days, Eq.  (2) 
captures 99 % of the total possible EIPs under the distri-
bution of EIP that was considered.

Mosquito‑to‑human transmission period (MHTP)
After a mosquito has become infectious, the final step 
in the transmission cycle is for the mosquito to transmit 
parasites to a human. To make this a tractable quantity 
to model, three simplifying assumptions were made. 
First, no senescence or any other source of variability in 
mortality was assumed, such that mosquitoes are subject 
to a constant daily probability of survival p. Second, no 
assumption about the feeding status of a mosquito at the 
time it completes the EIP and becomes infectious was 
made, and the model assumed no correlation between 
feeding behaviour and lifespan. Third, no effect of mos-
quito age or time since completion of the EIP on the 
probability of successfully infecting a human upon blood 
feeding was assumed. Together, these assumptions imply 
that the elapsed time between completion of the EIP and 
the time at which a human is infected can be described as 
a geometric random variable with probability 1 − p. Esti-
mates for the mosquito mortality rate (i.e., 1 −  p) were 
taken from Killeen et  al. [24]. By setting the maximum 
possible mosquito lifespan at 30 days beyond completion 
of the lowest mean EIP that was considered, 99 % of the 
probability density of this random variable was captured 
(Fig. 1c).

Infection‑to‑detection period (IDP)
To calculate the serial interval distribution, one addi-
tional random variable was defined describing the 
interval between infection and either presentation at 
a clinic or detection by other means, such as active 
surveillance [26]. This interval is referred to as the 

(2)Pr (EIP = i) =
Φ(i)−Φ(i − 1)

Φ(17)−Φ(0)
,

infection-to-detection period (IDP). IDPs were mod-
elled in different ways for symptomatic (and presum-
ably treated) and asymptomatic (and presumably 
untreated) cases and are referred to as IDPS and IDPA, 
respectively. Common to both was the interval between 
sporozoites entering the skin and asexual parasites 
emerging from the liver, which was assumed to always 
be 6 days [17].

For symptomatic cases, another random variable was 
added corresponding to the interval between emergence 
of parasites from the liver and onset of fever, which was 
obtained as part of the simulation output of the model 
by Johnston et  al. [18]. The third random variable for 
symptomatic cases represented time elapsed before 
seeking treatment some number of days after the onset 
of fever, which was modelled as a Poisson random vari-
able with parameter λ = 3.07. This value was obtained by 
maximum-likelihood estimation using data on the timing 
of treatment seeking relative to fever onset among 1961 
falciparum malaria cases from Zanzibar (unpublished 
data). In combining the IDP for symptomatic cases with 
the HMTP, the model accounted for the fact that the 
HMTP is affected by the day on which drugs are admin-
istered, because early treatment shortens the duration 
of human infectiousness to mosquitoes [18]. To account 
for this, simulations of the HMTP were performed using 
the model by Johnston et al. [17, 18] with treatment days 
varying from 0 to 14. Each HMTP was then weighted by 
its respective IDPS probability and summed to arrive at a 
combined IDPS + HMTP distribution that accounted for 
this correlation.

For asymptomatic infections, it was assumed that they 
were identified through some form of active detection 
of infection at some point during their infection when 
their asexual parasitaemia levels exceeded 50  per  μL of 
blood. A probability distribution describing the prob-
ability that such a level of asexual parasitaemia exceeded 
this threshold on a given day was obtained by directly 
calculating the empirical density of the number of days 
in excess of 50 per μL from 1000 realizations of the simu-
lation model by Johnston et al. [17]. Equating IDPA with 
this distribution assumes that active detection of infec-
tion is attempted only once during the infection and 
that its timing is random with respect to day since infec-
tion. Such would be the case in the context of reactive 
case detection or during a single cross-sectional survey, 
for example. In the event that active detection occurs 
at some regular interval less than the total period of 
infection, IDPA would be shorter. Although this may be 
important for accurately characterizing IDPA in certain 
surveillance contexts, the impact on IDPA of these and 
potentially many other variations on surveillance systems 
are beyond the scope of this work.
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Calculation of generation and serial intervals
To obtain a probabilistic description of the generation 
interval, the LEP, HMTP, EIP, and MHTP random vari-
ables were summed by direct convolution, resulting in

where i, j, k, and l are dummy variables. In other words, 
Eq. (3) calculates the probability that i, j, k, and l sum to 
a particular value of the GI for all possible combinations 
of i, j, k, and l that would be compatible with a given sum 
GI = i + j + k + l. These different combinations are fur-
thermore weighted in Eq. (3) by the respective probabili-
ties that each component of the GI takes a given value of 
i, j, k, or l. Similarly, to obtain a probabilistic description 
of the serial interval, the GI and IDP random variables 
were summed, also by direct convolution, resulting in

Note that the IDP appears in Eq. (4) twice because one 
instance corresponds to the primary infection and the 
other corresponds to the secondary infection.

Sources of variability in generation and serial intervals
Using this framework, variability in GI distributions that 
arises from variability in model parameters in several 
ecological and epidemiological contexts was quantified. 
The analysis of variability in SI distributions was limited 
to the effects of anti-malarial drugs, given that treatment 
affects both components of the SI, i.e., the GI and the 
IDP. Other sources of variability in GI distributions, such 
as geographical, seasonal, and inter-individual variabil-
ity, are likely to generate similar variability in SI distri-
butions. For both GI and SI distributions, the mean and 
fifth and 95th percentiles  were routinely calculated and 
reported, as they can be readily calculated numerically.

Variability between individuals treated with anti‑malarial 
drugs or not
To address impacts of treatment with anti-malarial 
drugs on the generation interval of falciparum malaria, 
the model by Johnston et  al. [17, 18] was simulated to 
obtain human infectivity trajectories assuming no drug 
treatment and assuming a standard regimen of treat-
ment with artemisinin-based combination therapy 
(ACT). Treatment with ACT was modelled according 

(3)

GI (i + j + k + l)

=

∑

i

∑

j

∑

k

∑

l

(Pr(LEP = i)× Pr(HMTP = j)

×Pr(EIP = k)× Pr(MHTP = l))

(4)

SI
(
−i + j + k

)

=

∑

i

∑

j

∑

k

(
Pr (IDP = i)× Pr

(
GI = j

)
× Pr (IDP = k)

)
.

to default settings in Johnston et  al. [18]. In order to 
address variation in the lag between the manifesta-
tion of symptoms and the start of treatment, the day 
between the onset of fever and clinical presentation was 
varied from zero to 14 days, where a delay of zero days 
signified that the individual presented in the clinic the 
same day that the fever manifested. It was assumed that 
clinical presentation marked the first day of adminis-
tration of anti-malarial drugs. These infectivity curves 
were then weighted with their respective probabili-
ties from the Poisson distribution describing the time 
elapsed between fever onset and clinical presentation to 
arrive at a mean infectivity curve for individuals treated 
with anti-malarial drugs.

Geographic variability in entomological indices
To account for variability in entomological parameters, 
the GI distribution was calculated under four different 
parameterizations of the mean EIP and daily probabil-
ity of mosquito mortality corresponding to four differ-
ent sites, as reported by Killeen et  al. [24]. These sites 
and parameter values were: Kankiya, Nigeria (mean 
EIP  =  10.3, daily mortality  =  0.06); Kaduna, Nigeria 
(11.6, 0.10); Namawala, Tanzania (11.1, 0.17); and Butel-
gut, Papua New Guinea (8.9, 0.14). In cases where two 
estimates were reported by Killeen et al. [24], their aver-
age was used in the calculations.

Seasonal fluctuations in mosquito densities
To determine the extent to which seasonal fluctuations 
in mosquito densities could introduce variability into the 
GI distribution, m(t) was set equal to the time-varying 
function in Eq. (1) and used to calculate the resulting GI 
and SI distributions. These calculations were performed 
under four scenarios about the parameters in Eq.  (1): 
A = 1, σ = 14; A = 9, σ = 14; A = 1, σ = 120; and A = 9, 
σ = 120. Values of A equal to 1 and 9 led to two- or ten-
fold increases, respectively, in the ratio of high-season to 
low-season mosquito densities. Values of σ of 14 or 120 
lead to narrow or wide seasonal peaks in mosquito den-
sity, respectively.

Inter‑individual variability in gametocytaemia trajectories
To assess the extent of possible variability in different 
GI and SI distributions among different individuals with 
different realized HMTP distributions, 1000 unique 
realizations of HMTP distributions were simulated from 
the model by Johnston et al. under default settings [17, 
18]. These 1000 distributions were compared against 
the default HMTP distribution, which was obtained by 
computing the mean across these 1000 replicate dis-
tributions at each given day since the beginning of the 
HMTP.
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Results
Variability between individuals treated with anti‑malarial 
drugs or not
The overall shape of the GI distribution was dependent 
on the status of the primary infection with respect to 
anti-malarial drug treatment, with mean (5–95 percen-
tile) GIs of 49.1 (35.0–68.0) and 101.6 (43.0–219.0) days 
for treated and untreated primary infections, respectively 
(Fig. 1d, e). Overall, GIs arising from untreated primary 
infections were much longer, with 95  % of secondary 
infections being infected by day 68 for treated primary 
infections as opposed to 219 days for untreated primary 
infections.

SI distributions were formed by combining the genera-
tion interval distributions with the period between the 
time of infection by a mosquito and the detection of the 
infection for both the primary and secondary infections. 
This IDP for symptomatic infections, IDPS, was rela-
tively short, with mean (5–95 %) of 16.6 (12.0–22.0) days 
(Fig. 2a). The IDP for asymptomatic infections, IDPA, was 
relatively long and fat-tailed, with mean (5–95 %) of 69.8 
(11.0–163.0)  days (Fig.  2a). The IDPA distribution was 
also somewhat sensitive to the choice of the asexual para-
sitaemia threshold for detection (Fig. 3).

Combining GI and IDP distributions showed that there 
are four different types of SI distributions, all with some-
what different features (Fig.  2). For a primary infection 
that is symptomatic and presumably treated with drugs, 
secondary infections that are also symptomatic would 
be expected to appear 49.1 (33.0–69.0) days after detec-
tion of the primary infection (Fig.  2c). Secondary infec-
tions that are asymptomatic would be expected to appear 
102.2 (33.0–197.0) days after detection of a primary 
symptomatic infection (Fig. 2d), assuming that the infec-
tions are detected at all. For a primary infection that is 
asymptomatic and presumably only detected in the con-
text of an active epidemiological investigation, secondary 
infections that are symptomatic would be expected to 
appear 48.4 (−70.0 to 181.0)  days after detection of the 
primary infection (Fig. 2e). Secondary infections that are 
asymptomatic would be expected to appear 101.6 (−36.0 
to 261.0) days after detection of a primary asymptomatic 
infection (Fig. 2f ), assuming that either is detected at all. 
Of secondary infections that present clinically, 24.5 % are 
expected to be detected before the associated primary 
infection is detected, even in the event of active detec-
tion of infection during an epidemiological investigation 
(Fig.  2e). When both primary and secondary infections 
are asymptomatic and detected through active detec-
tion of infection, 11.5  % of secondary infections could 
be detected prior to detection of the primary infection 
(Fig. 2f ), assuming that both are detected at all.

Geographic variability in entomological indices
Using entomological parameters from four diverse sites 
(Fig. 1b, c), means and 5–95 percentiles of the GI distri-
butions varied from 46.1 (33.0–63.0) to 56.6 (37.0–89.0) 
for treated primary infections (Fig.  1d) and from 98.7 
(41.0–216.0) to 109.2 (46.0–228.0) for untreated primary 
infections in Butelgut and Kankiya, respectively (Fig. 1e). 
By comparison, the modes of the GI distributions ranged 
42–46 for treated primary infections and 58–70 for 
untreated primary infections (Fig.  1d, e). The long GI 
for Kankiya appears to be driven mostly by relatively low 
mosquito mortality, and the short GI at Butelgut appears 
to be driven by both a short EIP and relatively high mos-
quito mortality (Fig. 1b, c).

Seasonal fluctuations in mosquito densities
Differences in GI distributions owing to differences in 
timing relative to a seasonal transmission peak were 
more substantial, affecting not only the moments of 
the GI distribution but also its shape (Fig.  4). These 
effects were most pronounced for untreated primary 
infections, whose GI distributions spanned a broader 
portion of the year (Fig.  4, right column). Primary 
infections timed well before the seasonal peak tended 
to be associated with more secondary infections later 
than they would have in a constant environment, and 
the peak of the GI distribution for primary infections 
timed just before the seasonal peak tended to be more 
peaked and narrower than it would have been  other-
wise. The extent of these differences depended on the 
extent to which transmission was seasonally peaked 
(Fig. 4, second row).

Inter‑individual variability in gametocytaemia trajectories
The final source of variability in the GI distributions 
that was examined pertained to variability in the tim-
ing of infectiousness of humans to mosquitoes across 
1000 simulated primary infections with the same drug 
treatment status. For primary infections receiving anti-
malarial drugs, the distributions of the HMTP across 
different individuals were relatively uniform, with all 
individual trajectories rising and falling relatively quickly 
(Fig.  5a, b). For primary infections not receiving anti-
malarial drugs, distributions of the HMTP across differ-
ent individuals were much more variable. Unlike treated 
infections, untreated infections displayed simulated 
HMTP distributions with multiple peaks; the number, 
timing, and height of which varied considerably (Fig. 5c). 
These differences lead to broad variability in quantiles 
of the GI distribution. For example, the median GI var-
ied by over 100 days for the inner 95 % of individual GI 
distributions.
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Discussion
One of the first attempts to quantify the serial interval for 
falciparum malaria was by Macdonald [27], who posited 
that 36 days represents a minimum estimate based on hard 
biological constraints. Much more recently, Churcher et al. 

[7] posited a mean generation interval of 102 days for indi-
viduals who do not receive anti-malarial drug treatment 
and 33 days for those who do. The estimates presented here 
are in good agreement with the former (102 days) but not 
the latter (48 days). One reason for the nearly 50 % increase 

Fig. 2  Probabilistic descriptions of the infection-to-detection periods IDPS and IDPA between infection and detection of treated/symptomatic (a) 
and untreated/asymptomatic (b) cases, respectively. The SI random variable is obtained by summing the GI random variable with random variables 
describing the IDP once for the primary infection and once again for the secondary infection. Combining IDP random variables with the appropri-
ate generation interval random variables yielded four different estimates of the serial interval: treated primary case and either symptomatic (c) or 
asymptomatic (d) secondary case; untreated primary case and either symptomatic (e) or asymptomatic secondary case (f)
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in the estimate of the mean GI for treated primary infec-
tions relative to that by Chrucher et al. [7] has to do with 
differences in the assumptions about the delay between 
onset of symptoms and seeking of treatment. Although 
their means were nearly identical, the exponential distri-
bution used by Churcher et al. [7] resulted in appreciably 
more individuals seeking treatment on the same day as 
symptom onset than the Poisson distribution used in this 
study did. Collectively, this and other seemingly subtle dif-
ferences led to a large discrepancy between the means of 
this study’s and Churcher et al.’s [7] distributions for treated 
infections. The discrepancy between the distributions for 
untreated infections was smaller due to the dominance of a 
much lengthier period of human infectiousness.

An increasingly important application of probabilistic 
descriptions of the SI is the inference of transmission link-
ages between cases [5–7, 28]. Given the breadth of the SI 
distributions described here, using temporal information 
alone to link falciparum malaria cases may be inadvisable. 
First, even in the best-case scenario of a putative trans-
mission linkage between two known cases that promptly 
sought treatment, the SI distribution is sufficiently wide 
that distinguishing that linkage from others within a time 
period of a few weeks should be largely uninformed by 
temporal data alone. Second, the shape of the GI distribu-
tion differs considerably from person to person due to the 
complex within-host dynamics of P. falciparum infections 
[6, 29]. This may preclude the inference of transmission 

Fig. 3  Variability associated with differences in the asexual parasitaemia detection threshold for a secondary infection detected by active detection 
of infection. Panel a shows normalized probability densities for the infection-to-detection period IDPA as a function of the detection threshold 
(asexual parasites per μL of blood). Panel b shows normalized probability densities for the SI given an untreated primary case as a function of the 
corresponding IDPA distributions from a
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Fig. 4  Variability in the generation interval distribution in a seasonal environment for treated and untreated primary cases (columns) in seasonal 
environments with different properties (rows). Seasonality was imposed by forcing mosquito densities consistent with the grey shapes in the back-
ground of each panel, which vary in their amplitude and the distinctiveness of the seasonal peak at day 180 in each of 2 years. SI distributions are 
shown for primary infections occurring on days 1 through 360 in increments of 30
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linkages ensuing from primary cases whose infections 
do not follow average behaviour. Third, SI distributions 
associated with cases that were or were not treated with 
anti-malarial drugs differ substantially, with the latter 
even being negative in many cases (i.e., the secondary case 
is detected before the primary case is detected). Given 
that negative values are strictly impossible for GIs, this 
underscores the importance of being conscientious about 
the distinction between GIs and SIs when applying these 
methods to case data (as in [6]).

Probabilistic descriptions of GIs and SIs also have 
an important role to play in population-level models of 
infectious disease dynamics. Together with an estimate 
of epidemic growth rate, the GI distribution can be used 

to estimate the basic reproduction number and related 
quantities [8, 30, 31]. Any time that there are secular 
changes in factors that affect transmission within the 
timeframe of a single generation, however, there is a risk 
of being misled by a static description of the GI or SI dis-
tribution. Similar to the analysis herein of how seasonally 
varying mosquito densities affect the falciparum malaria 
GI, an analysis by Vynnycky and Fine [32] showed that 
not accounting for secular trends in contact rates over 
time led to an underestimate of tuberculosis transmission 
potential. This result underscores the conclusion that 
there is no one-size-fits-all description of GIs and SIs, 
particularly for long-lasting infections such as falciparum 
malaria.

Fig. 5  Variability in generation interval distributions ensuing from primary infections that do (b, d) or do not (a, c) receive anti-malarial drugs. a and 
b show normalized probability densities for mean and representative GI distributions from 15 realizations of the simulation model. c and d show 
quantiles of cumulative probability densities for 1000 realizations of the simulation model
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Conclusions
The study has highlighted a number of reasons why GI 
and SI distributions are variable for falciparum malaria 
and offered quantitative remedies to modelling many of 
these situations. To this end, code for reproducing the 
figures and for calculating GI and SI distributions over 
one or more generations of falciparum malaria cases is 
available online [33]. Like many topics in epidemiology, 
robust quantification of GI and SI distributions stands to 
benefit from careful and empirically well-grounded use 
of mechanistic models to describe constituent processes 
in the transmission cycle.
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