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Abstract 

Background: Although malaria control intervention has greatly decreased malaria morbidity and mortality in many 
African countries, further decline in parasite prevalence has stagnated in western Kenya. In order to assess if malaria 
transmission reservoir is associated with this stagnation, submicroscopic infection and gametocyte carriage was 
estimated. Risk factors and associations between malaria control interventions and gametocyte carriage were further 
investigated in this study.

Methods: A total of 996 dried blood spot samples were used from two strata, all smear-positives (516 samples) and 
randomly selected smear-negatives (480 samples), from a community cross-sectional survey conducted at peak trans-
mission season in 2012 in Siaya County, western Kenya. Plasmodium falciparum parasite presence and density were 
determined by stained blood smear and by 18S mRNA transcripts using nucleic acid sequence-based amplification 
assay (NASBA), gametocyte presence and density were determined by blood smear and by Pfs25 mRNA-NASBA, and 
gametocyte diversity by Pfg377 mRNA RT-PCR and RT-qPCR.

Results: Of the randomly selected smear-negative samples, 69.6 % (334/480) were positive by 18S-NASBA while 
18S-NASBA detected 99.6 % (514/516) smear positive samples. Overall, 80.2 % of the weighted population was 
parasite positive by 18S-NASBA vs 30.6 % by smear diagnosis and 44.0 % of the weighted population was gametocyte 
positive by Pfs25-NASBA vs 2.6 % by smear diagnosis. Children 5–15 years old were more likely to be parasitaemic 
and gametocytaemic by NASBA than individuals >15 years old or children <5 years old while gametocyte density 
decreased with age. Anaemia and self-reported fever within the past 24 h were associated with increased odds of 
gametocytaemia. Fever was also positively associated with parasite density, but not with gametocyte density. Anti-
malarial use within the past 2 weeks decreased the odds of gametocytaemia, but not the odds of parasitaemia. In 
contrast, recent anti-malarial use was associated with lowered parasite density, but not the gametocyte density. Use 
of ITNs was associated with lower odds for parasitaemia in part of the study area with a longer history of ITN interven-
tions. In the same part of study area, the odds of having multiple gametocyte alleles were also lower in individuals 
using ITNs than in those not using ITNs and parasite density was positively associated with gametocyte diversity.
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Background
Scale-up of malaria control interventions in endemic 
countries has resulted in drastic declines in malaria mor-
bidity and all-cause mortality in many African countries. 
In western Kenya, after decades of malaria prevention 
and treatment measures, such as insecticide-treated 
nets (ITNs), intermittent preventive treatment in preg-
nancy (IPTp) and artemisinin-based combination therapy 
(ACT), the prevalence of Plasmodium falciparum in chil-
dren below 5 years of age as diagnosed by blood smears 
declined from 60 % in 2003 to 26 % in 2008, but rose to 
41  % in 2009 [1]. Malaria prevalence was 38  % in chil-
dren <5 years in 2010 [2]. It is unclear if this reversal and 
stagnation in malaria prevalence in this area is associated 
with submicroscopic infections and the sexual stage res-
ervoir, gametocytes.

Malaria transmission relies on sexual stage para-
sites, the gametocytes that derive from a small fraction 
of asexual parasites. Immature forms of P. falciparum 
gametocytes (stage I–IV) are sequestered in organ tissue, 
mainly in the bone marrow [3]. The gametocyte matura-
tion process in the bone marrow requires 10–12 days [3, 
4], and mature gametocytes then release into peripheral 
blood and persist with an average circulation time of 4.6–
6.5 days [5–7] using microscopy. An average duration of 
gametocytaemia has been reported at 55  days (95  % CI 
28.7–107.7) using molecular methods following non-
ACT drug treatment [6]. The mature gametocytes (stage 
V) which are responsible for parasite transmission from 
human to mosquitoes often circulate at low densities [8]. 
In this context, sensitive molecular detection tools could 
improve detection of low densities of gametocytes and 
submicroscopic infections to identify potential transmis-
sion reservoir. RNA-based detection methods, such as 
real-time quantitative nucleic acid sequence based ampli-
fication (NASBA) technology, are widely used and highly 
sensitive with a quantitative detection limit of about 20 
parasites/ml blood for research purposes [9]. The Pfs25-
NASBA can detect 3- to 10-fold more gametocytes than 
microscopy [10]. It has been shown by the highly sensi-
tive molecular methods that the gametocyte reservoir is 
much larger than previously detected or reported [8, 10].

Gametocyte production and epidemiology could be 
associated or influenced by several factors that include 
transmission intensity, exposure to interventions like 
ITNs and anti-malarial drugs, host age/immunity, asex-
ual parasite density, anaemia, multiplicity of infection 
[4, 11–15]. In high malaria transmission areas, gameto-
cyte carriage is most prevalent in children under 5 years 
of age [4] and declines with increasing age in parallel 
with asexual parasite prevalence and densities due to 
increased host anti-parasite immunity [16, 17]. In areas 
of low transmission intensity, gametocyte prevalence is 
low among all age groups [18] and the density of game-
tocytes relative to that of asexual parasites increases 
with age [4, 19]. Studies have reported a positive associa-
tion between gametocyte density and the proportion of 
infected mosquitoes [20]. However, some reports have 
shown that mosquito infection is not directly propor-
tional to the density of gametocytes in human blood and 
submicroscopic gametocytes could also infect mosqui-
toes and sustain malaria transmission [4, 10, 20–22].

Anti-malarials are also found to affect malaria trans-
mission [4, 15, 23, 24]. Artemisinin derivatives are very 
effective in clearing asexual parasites and reduce imma-
ture gametocytes, but may not affect mature gametocytes 
[25, 26]. Artemether-lumefantrine (AL), was officially 
introduced in Kenya in 2004 as the first-line drug for 
treatment of uncomplicated malaria but extensively 
implemented in 2006 including western Kenya [27]. 
In western Kenya, a large proportion of asymptomatic 
infections are associated with submicroscopic parasite 
densities [28]. A cohort study conducted in rural Kisumu 
County in western Kenya has reported that treatment of 
asymptomatic parasitaemic individuals with AL reduced 
the proportion of individuals who became gametocytae-
mic during the first 12 weeks of follow-up [29]. However, 
other studies showed that residual submicroscopic game-
tocytes after treatment with ACT occurred commonly 
in Kenya and was associated with a longer duration of 
gametocyte carriage and a higher transmission potential 
[7, 28].

ITNs have been deployed for over 16 years and remain 
the primary malaria intervention in western Kenya. ITNs 

Conclusion: A large proportion of submicroscopic parasites and gametocytes in western Kenya might contribute to 
the stagnation in malaria prevalence, suggesting that additional interventions targeting the infectious reservoir are 
needed. As school aged children and persons with anaemia and fever were major sources for gametocyte reservoir, 
these groups should be targeted for intervention and prevention to reduce malaria transmission. Anti-malarial use 
was associated with lower parasite density and odds of gametocytaemia, but not the gametocyte density, indicating 
a limitation of anti-malarial impact on the transmission reservoir. ITN use had a protective role against parasitaemia 
and gametocyte diversity in western Kenya.
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significantly reduce malaria morbidity and all-cause mor-
tality in children less than 5 years old [30, 31]. ITNs also 
suppress the mosquito populations and reduce their abil-
ity to transmit malaria by 70–90 % [32]. An earlier study 
has shown that multi-clone P. falciparum gametocytes can 
persist three times longer than those from single-clone 
infections [33]. Multiple clone infections may increase the 
male clones in female-biased sex ratio of gametocytes [4, 
34] and clones with a male-biased ratio were more infec-
tious to mosquitoes in  vitro [34, 35]. However, although 
ITNs have proved to be an efficacious and cost-effective 
vector control intervention to reduce clinical disease and 
malaria transmission, their long term impact on gameto-
cyte carriage and gametocyte diversity is unknown.

Given the complex biology and epidemiology of 
gametocytes that could be influenced by multiple fac-
tors including ITN use and anti-malarial treatment, the 
objectives of this study were: (1) to estimate the level of 
submicroscopic infection and gametocyte carriage in cir-
culating blood, measured by molecular tools, in a region 
of western Kenya, where malaria transmission has stag-
nated since 2009, (2) to assess the risk factors associated 
with gametocytaemia, and (3) to determine the associa-
tions between malaria control interventions and gameto-
cyte carriage. Results from this study could be useful in 
understanding and improving the interventions on trans-
mission reservoirs and in providing the information for 
development of new strategies for transmission reduc-
tion and elimination of malaria.

Methods
Study area and population
This study was part of a community-based annual cross 
sectional survey to evaluate impact of malaria con-
trol interventions on malaria parasitaemia and anaemia 
within the KEMRI/CDC Health and Demographic Sur-
veillance System (HDSS) [36]. The cross sectional survey 
was conducted during peak malaria transmission sea-
son from June to July of 2012 in the two adjacent areas 
of Asembo (Rarieda district) and Karemo (Siaya district), 
Nyanza region of western Kenya. Use of ITNs has been 
consistently high in the Asembo area since 1997 while 
ITNs were introduced in Karemo in 2004 and scaled up 
in 2006. The entomological inoculation rate (EIR) esti-
mated by pyrethrum spray catches has been consist-
ently at  <10 infectious bites per person per year since 
2008 (CDC, unpublished data) although recent estimates 
of EIR through human landing catch indicate the pyre-
thrum spray catches may underestimate EIRs [37].

Survey data collection and sample selection
The sampling frame for year 2012 survey included all 
households in the study areas with at least one child 

under 5 years old. From this sampling frame, households 
were selected randomly via probability sampling and all 
individuals above 1 month of age were sampled in each 
selected household. A total of 1779 samples was collected 
for this survey. Self-reported information on age, fever, 
ITN and recent anti-malarial use were collected based 
on the study questionnaire. Participants were catego-
rized into three age groups (<5 years old, 5–15 years old, 
and  >15  years old). Fever was defined as self-reported 
fever within the past 24 h. ITN use was defined as having 
slept under an ITN the night prior to the survey. Recent 
anti-malarial (AM) use was defined as receiving anti-
malarials (96 % had taken AL) in any dosage at any time 
within the 2 weeks prior to the survey. During the survey, 
finger prick blood sample was collected to prepare blood 
smears to determine the presence of parasitaemia and 
gametocytaemia by microscopy [38]. Haemoglobin level 
was determined using portable HemoCue photometers 
(HemoCue AB, Angelholm, Sweden).

In addition, 50 µL of whole blood was collected into 
each spot of a Whatman 903 filter paper and dried over-
night at room temperature. The dried blood spot (DBS) 
was sealed tightly with desiccants and a moisture indica-
tor, and shipped to the CDC laboratory in Atlanta, USA 
within 2  months after sample collection and stored at 
−80 °C until use.

For the present study, a total of 999 DBS samples from 
1779 samples collected during the survey were tested 
to determine submicroscopic infection and gametocyte 
carriage. Among them, 446 samples were from Asembo, 
including all 221 smear-positive and a random selection 
of 225 from 600 smear-negative samples, and 553 sam-
ples were from Karemo, including 298 smear-positive and 
255 from 660 randomly selected smear-negative samples. 
Random sampling of the smear negative samples was 
performed by Random Sample Excel Professional plus 
2010 in Excel, based on the sample size calculated by the 
program online [39].

Laboratory tests
Nucleic acid extraction
Total RNA was extracted from DBS samples using 
QIAshredder and RNeasy mini kits (QIAGEN, Valencia, 
CA) according to the QIAGEN protocols. A whole spot 
from a DBS sample was cut and used for RNA extraction. 
After RNA extraction, DNase digestion on one of three 
aliquots of RNA sample was performed with Ambion 
DNA-free DNA removal kits (Thermo Fisher Scien-
tific, Waltham, MA) for use in Pfg377 reverse transcrip-
tion polymerase chain reaction (RT-PCR) and RT-qPCR 
assays. The other two RNA aliquots without Ambion 
DNA-free kit treatment were used for 18S-NASBA and 
Pfs25-NASBA assays.
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Total parasite load detected by 18S‑NASBA
The mRNA transcripts of 18S small subunit rRNA gene 
of P. falciparum were measured for detection of malaria 
infections and submicroscopic parasites. The primers 
and molecular beacon probes of 18S-NASBA used were 
based on previously published methods [9]. The assay 
was performed on EasyQ analyser (BioMerieux, Dur-
ham, NC) using the Nuclisens Basic Kit in a total reaction 
volume of 10 µL per reaction at 41  °C for 90 min. Posi-
tivity was calculated with the time-to-positivity based 
on the time-point of amplification at which the fluores-
cence passed a given threshold (above the mean fluores-
cence of three negative controls plus 20SD) as described 
by Schneider et al. [9]. In order to quantify the parasite 
density in samples, a standard curve was made in dupli-
cate by 10-fold dilution series (104–10−2 parasites/µL of 
blood) from cultured 3D7 ring stage parasites. The limit 
of quantification (LOQ) for 18S-NASBA was 0.01 para-
sites/µL blood based on the standard curve established in 
this laboratory.

Mature stage V gametocyte detected by Pfs25‑NASBA
Pfs25 mRNA was used to detect stage V gametocytes 
circulating in the host blood and Pfs25-NASBA was per-
formed as previously described [10, 40, 41]. The Pfs25-
NASBA assay was carried out in a volume of 10 µL per 
reaction and 2.5  µL of isolated RNA was used in each 
reaction. Positivity was calculated with the time-to-pos-
itivity at the fluorescence passed a given threshold, the 
mean fluorescence of three negative controls plus 20SD 
[10]. In order to measure the gametocyte density, a stand-
ard curve was made in duplicate by 10-fold serial diluted 
3D7 stage V gametocytes (from 1.8  ×  104–1.8  ×  10−2 
gametocytes/µL) in culture blood (Johns Hopkins Uni-
versity, Malaria Research Institute, Baltimore MD). The 
limit of quantification (LOQ) for Pfs25-NASBA was 
0.018 gametocytes/µL based on the standard curve estab-
lished in this laboratory.

Gametocyte diversity assessed by Pfg377 RT‑PCR 
and RT‑qPCR
For detection of gametocyte diversity, Pfg377 reverse 
transcription polymerase chain reaction (RT-PCR) was 
performed according to a published protocol [42]. The 
Pfg377 mRNA are only expressed in female gametocytes 
from stage III onward [43, 44] and the Pfg377 gene con-
tains four regions of repetitive sequence, the most poly-
morphic being region 3. This assay was designed based 
on the most polymorphic region 3, which encodes seven 
degenerate amino acid repeats (21 base pairs) for identi-
fication of multiple gametocyte clones within host [43]. 
Pfg377 RT-PCR was performed using SuperScript III one-
step RT-PCR system with platinum Taq RNA polymerase 

(Thermo Fisher Scientific, Waltham MA). Concurrently, 
a conventional DNA PCR was performed using the same 
RNA sample to rule out contamination with genomic 
DNA. RT-PCR products were run on a 4  % UltraPure 
agarose 1000  gel (Thermo Fisher Scientific, Waltham 
MA) with 50-bp molecular weight standards. DNA band 
sizes were visualized and measured using the gel imag-
ing system and Labworks image acquisition and analysis 
software v4.6 (UVP BioImaging Systems, Upland, CA). 
Multiple gametocyte alleles was assessed based on num-
ber of bands and differences in band size [45].

For quantification of Pfg377 mRNA, quantitative 
reverse transcription (RT-qPCR) of Pfg377 was per-
formed as described previously [46]. The standard curve 
was made with the purified RNA from stage IV and V 
mature gametocytes by 10-fold dilution series from 104 
to 100 gametocytes per µL of blood. All specimens were 
tested in duplicate; the mean Ct and number of game-
tocytes were obtained automatically on the Stratagene 
Mx3005P qPCR system (Agilent Technologies Inc., Santa 
Clara, CA). The limit of quantification (LOQ) for Pfg377 
RT-qPCR was one parasites/µL based on the standard 
curve established in this laboratory.

Data sources and statistical analysis
Data sources
The 18S-NASBA was used for measuring total parasite 
load and Pfs25-NASBA was used for measuring gameto-
cyte carriage in both Asembo and Karemo study areas. In 
addition, Pfg377 RT-PCR and RT-qPCR were performed 
only on the samples collected in Asembo area for explor-
ing the gametocyte diversity due to funding constraints. 
Because NASBA uses different approaches for determi-
nation of positivity and quantification of parasite density 
(see NASBA method section above), the positive values 
for samples with extremely low parasite density could 
have been below the cut-off of quantitative standard 
curve, in such positive samples a density was assigned at 
the midpoint between the cut-off and zero.

Data analysis
All data management was performed in SAS 9.3 (SAS 
Institute Inc., Cary, NC). Population weighted prevalence 
of parasitaemia and gametocytaemia was calculated via 
PROC SURVEYFREQ, accounting for field and labora-
tory sampling scheme and within-household clustering 
via Taylor series linearization [47]. Model selection and 
analysis was performed via the MuMIn package [48] 
and survey packages [49] in R (Version 3.1.3, R Develop-
ment Core Team, Vienna, Austria) via RStudio (Version 
0.98.1073, RStudio Team, Boston, MA).

Multivariable analysis was performed to evaluate 
participant characteristics associated with parasite or 
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gametocyte presence and density, as well as character-
istics associated with presence of multiple gametocyte 
alleles. Model selection was based on the generalized 
linear model (GLM) with either Gaussian distribution 
for continuous outcomes or binomial distribution with a 
logit link as appropriate for binary outcomes. Best fitting 
models were selected by lowest Bayesian information cri-
terion (BIC) [50], and full models were then run in the 
survey package [49] (svyglm and svycontrast) to obtain 
appropriate odds ratios and confidence intervals for clus-
tered data. Means and confidence intervals (95 % CI) for 
parasite density were calculated based on the observed 
marginals.

Association between gametocyte presence and par-
ticipant characteristics was restricted to individuals who 
were 18S positive and, therefore, considered infected. 
Data on parasite and gametocyte density were log10 
transformed prior to analysis, so estimates are presented 
as geometric means. Study area was included as a class 
variable in all models. Where there was no interaction 
or main effect of study area, overall estimates were pre-
sented. Where there was significant impact of study area, 
area-specific results were presented. Age category of par-
ticipants was included in all models. The sample collec-
tion time was included as a class variable where lowest 
BIC models included week to account for trends across 
the sampling timeframe. Anaemia was evaluated as a 
potential predictor in models for gametocytaemia only. 
Interactions were not evaluated for gametocyte diversity 
due to small sample size.

Results
Characteristics of study participants
Three smear-positive samples from Karemo were 
excluded from analysis due to absence of information on 
fever in previous 24 h, leaving 550 samples from Karemo 
in this analysis. Thus, characteristics of participants for 
the study described here were from 996 individuals with 
complete data. Among 996 participants, 19.8  % of par-
ticipants reported fever in the past 24 h while 67.5 % of 
individuals reported sleeping under an ITN the night 
prior to the survey. Among the 996 participants, 17.8 % 
had used anti-malarials within the 2  weeks prior to the 
survey, of which more than 96 % used was AL. Using the 

haemoglobin cut-off of  <11.0 g/dl, 40.3  % of individuals 
were considered anaemic.

Parasite and gametocyte profiles by 18S‑ and Pfs25‑NASBA 
in Asembo and Karemo
Out of the 996 samples from Asembo and Karemo, 848 
(85.1  %) were 18S-NASBA positive (Table  1). Among 
them, 69.6 % (334/480) of smear-negative samples tested 
demonstrated submicroscopic infection when meas-
ured by 18S-NASBA (Table 1). In Asembo, 18S-NASBA 
detected 220 (99.6 %) positives from 221 smear-positive 
samples and identified 135 (60.0  %) positives from 225 
smear-negative samples tested (Table 1). In comparison, 
18S-NASBA detected 294 (99.7  %) positives from 295 
smear-positive samples and 199 (78.0  %) positives from 
255 smear-negative samples tested in Karemo (Table 1). 
Overall, weighted population prevalence of parasitae-
mia using smear diagnosis was 30.6 % (CI 26.2–35.0 %), 
relative to a weighted prevalence of 80.2  % (CI 79.2–
84.2 %) by 18S-NASBA (Fig. 1). Parasite density was low 
for many smear-negative samples tested, with 31.5  % 
(267/848) NASBA positive samples below one parasites/
µL of blood. The distribution of parasite density among 
smear-positive and smear-negative individuals is shown 
in Additional file 1 , panel A. 

Overall, 531 out of 996 (53.3  %) samples tested 
were gametocyte positive by Pfs25-NASBA (Table  1). 
Weighted population prevalence of gametocytaemia was 
estimated to be 2.6  % (CI 1.3–3.9  %) by smear diagno-
sis, relative to 44.0 % (CI 39.0–49.0 %) by Pfs25-NASBA 
(Fig.  1). Distribution of gametocyte density by Pfs25-
NASBA in smear-positive samples had a wide range from 
10−2 to 103gametocytes/µL, while maximum gametocyte 
density in smear-negative samples did not exceed 102 
gametocytes/µL (Additional file 1, panel B).

Gametocyte diversity assessed by Pfg377 RT‑PCR 
in Asembo
Pfg377 positivity was detected in 124 of 221 (56.1  %) 
smear-positive and in 6 of 225 (2.7  %) smear-negative 
individuals tested in Asembo. Six single gametocyte 
alleles were identified based on band size (range from 
273–378  bps) (Fig.  2a). Out of the 130 Pfg377 positive 
samples, the single allele infections accounted for 76.2 % 

Table 1 Positivity of Plasmodium falciparum parasitaemia and gametocytaemia among samples tested by study areas

Assay Overall (n = 996) Asembo Karemo

Smear‑positive  
(n = 221)

Smear‑negative  
(n = 225)

Smear‑positive  
(n = 295)

Smear‑negative 
(n = 255)

18S-NASBA, n (%) 848 (85.1) 220 (99.6) 135 (60) 294 (99.7) 199 (78.0)

Pfs25-NASBA, n (%) 531 (53.3) 177 (80.1) 24 (10.7) 259 (87.8) 71 (27.8)
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(n = 99) and 31 samples were multiple alleles including 
two alleles (n = 19), three alleles (n = 10) and four alleles 
(n =  2) within an infection (Fig.  2b). Both single band 
and multiple bands from the different combination of the 
six single alleles were seen on agarose gel (Fig. 2c, d).

Risk factors for the presence of parasitaemia 
and gametocytaemia
Adjusted odds ratios (aOR) for parasite or gametocyte 
presence and association with predictors were calculated 
based on the data of parasite and gametocyte presence 
in 996 individuals tested (Additional file 2). Overall, age 
influenced the presence of parasites and gametocytes. 
Older children (5–15  years old) were more likely to be 
parasitaemic than individuals >15 years old (OR 2.80, CI 
1.46–5.38). Young children (<5 years old) were less likely 
to be parasitaemic than older children (OR 0.52, CI 0.29–
0.95), but not different compared to individuals >15 years 
old (OR 1.47, CI 0.93–2.31) (Table  2). Similarly, among 
18S positive individuals, school aged children were more 
likely to be gametocytaemic than individuals  >15  years 
old (Pfs25: OR 3.37 CI 2.12–5.36), and young children 
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were less likely to be gametocytaemic than older children 
(OR 0.42 CI 0.28–0.64). Young children were not differ-
ent compared to individuals  >15  years old in odds for 
gametocytaemia (OR 1.43, CI 0.95–2.12) (Table 2).

Anaemia was associated with higher odds of gametocy-
taemia (OR 2.11, CI 1.52–2.94) (Table 2). Reported fever 
was also associated with higher odds of gametocytaemia 
(OR 1.65 CI 1.11–2.46) (Table 2). ITN use was associated 
with lower odds for parasitaemia in Asembo (OR 0.26, 
CI 0.1–0.68), but not in Karemo (OR 1.08, CI 0.60–1.93) 
(Table 2). Anti-malarial (AM) use within the past 2 weeks 
was associated with lower odds of gametocytaemia by 
Pfs25 (OR 0.32, CI 0.21–0.50) (Table 2). No other signifi-
cant predictors were observed in the models predicting 
parasite or gametocyte presence.

Risk factors for density of parasitaemia 
and gametocytaemia
The density of parasitaemia and gametocytaemia 
decreased with age, with individuals >15 years old having 
the lowest density for both measures (18S and Pfs25 all 
p < 0.001) (Fig. 3a). Parasite density did not differ between 
children under 5 and those 5–15 years of age (p = 0.76), 
but gametocyte density was lower in older children rela-
tive to younger children (p =  0.013). Anaemia was not 
associated with gametocyte density (p = 0.77) (Fig. 3b). 
Geometric mean parasite density by 18S-NASBA was 
7.9 times higher among individuals who had fever in the 
past 24  h (p  <  0.001), but gametocyte density by Pfs25-
NASBA was not influenced by fever (p = 0.68) (Fig. 3c). 

There was no significant association between ITN use 
and parasite density (p  =  0.06) or gametocyte density 
(p =  0.57) (Fig.  3d). Parasite density was lower among 
those who had received anti-malarials (AM) in the past 
2  weeks (p  <  0.001), while gametocyte density was not 
significantly different between individuals using AM and 
not using AM (p = 0.067) (Fig. 3e).

Risk factors for multiplicity of gametocyte infection 
in Asembo
Among Pfg377 positive individuals, age, anaemia and 
recent anti-malarial treatment did not influence the 
probability of having multiple gametocyte alleles. How-
ever, the odds of having multiple gametocyte alleles were 
lower in individuals using ITNs than in those not using 
ITNs (OR 0.22, CI 0.07–0.68, p = 0.0088) (Fig. 4). High 
parasite density evaluated by 18S-NASBA (each 10-fold 
increase relative to the mean of 4  ×  102  parasites/µL) 
was associated with higher probability of having multiple 
gametocyte alleles (OR 2.78, CI 1.25–6.19, p =  0.0126) 
(Fig. 4), but high gametocyte density by Pfg377 was not 
associated with multiple gametocyte alleles (p = 0.63).

Discussion
This study was conducted to estimate submicroscopic 
infection and gametocyte carriage of P. falciparum 
measured by sensitive RNA-based detection methods 
and to further assess the risk factors and interventions 
influencing gametocyte carriage in a community-based 
cross-sectional survey carried out in western Kenya in 

Table 2 Adjusted odds ratios (aOR) of parasite and gametocyte presence stratified by risk factor and intervention

Adjusted odds ratios accounting for multivariate comparisons (18S included age, fever, ITN use, anti-malarial use, study area; Pfs25 included age, fever, ITN use, 
anti-malarial use, study area, and anaemia). Age was stratified by set age categories (<5, 5–15, >15) in an adjusted analysis. Values were presented by overall for all 
parameters except for ITN vs No ITN for 18S where there was an interaction by study area and risk factor, reporting by area
a Statistically significant
b Not analysed because parasitaemia causes anaemia

aOR Factor Overall Asembo Karemo

18S Age: <5 vs >15 1.47 (0.93–2.31)

Age: 5-15 vs >15 2.80 (1.46–5.38)a

Age <5 vs 5–15 0.52 (0.29–0.95)a

Anaemia vs No Anaemia NAb

Fever vs No Fever 1.21 (0.75–1.95)

ITN vs No ITN 0.26 (0.10–0.68)a 1.08 (0.60–1.93)

AM vs No AM 1.02 (0.61–1.70)

Pfs25 Age: <5 vs >15 1.43 (0.95–2.12)

Age: 5–15 vs >15 3.37 (2.12–5.36)a

Age: <5 vs 5–15 0.42 (0.28–0.64)a

Anaemia vs No Anaemia 2.11 (1.52–2.94)a

Fever vs No Fever 1.65 (1.11–2.46)a

ITN vs No ITN 0.78 (0.54–1.14)

AM vs No AM 0.32 (0.21–0.50)a
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2012 during peak malaria transmission season. Using 
a subset of samples from the survey, this study revealed 
an overall high level of submicroscopic parasitaemia 
(69.6  % of randomly selected smear negative samples) 
and gametocytaemia (53.3 % of all 18S positive samples 
tested). When population level estimates were further 
calculated taking into account of multiple-layer sampling 
scheme, again a large proportion of infections were sub-
microscopic. Overall, 80.2 % of the weighted population 
sample was parasite positive by 18S-NASBA vs 30.6  % 
by smear diagnosis and 44.0  % of the population was 
gametocyte positive by Pfs25-NASBA vs 2.6 % by smear 
diagnosis. Risk factors for gametocyte carriage included 
being 5–15  years old, anaemia and self-reported fever. 
The study further showed that the use of anti-malarials 
within the past 2 weeks was associated with lower odds 
of gametocytaemia, but not gametocyte density, relative 
to untreated individuals. Use of ITNs the night before the 
survey was associated with lower odds of parasitaemia 

and lower odds of multiple allele gametocyte infection in 
Asembo.

The overall high level of submicroscopic infection and 
gametocyte carriage observed in this study was mainly 
attributed to using the sensitive 18S- and Pfs25-NASBA 
methods. NASBA is an isothermal nucleic acid amplifi-
cation reaction that amplifies mRNA in a dsDNA back-
ground [51]. The risk of carry-over contamination in 
NASBA is minimized by the advantage of performing 
the entire assay in one step closed-tube-format [52]. 
NASBA is also unique for direct detection of abundant 
mRNA transcripts, which increases sensitivity compared 
to DNA-based detection methods [53, 54]. Moreover, 
gametocyte prevalence assessed by Pfs25-NASBA can 
be 3.3- to 8-fold higher compared to those assessed by 
microscopy [9, 10, 55]. Results from the present study 
were consistent with these previous studies. Although 
NASBA is highly sensitive in detection of parasites and 
gametocytes, exact quantification of mRNA by NASBA 

Fig. 3 Density of parasites and gametocytes and association with risk factors. Mean densities (± 95 % CI) of parasitaemia by 18S (grey filled bars) 
or gametocytaemia by Pfs25 (white open bars) were estimated by GLM, and presented using observed marginals. Left Y axis is parasites/µL, while 
right Y axis is gametocytes/µL. The brackets indicates the columns compared. Asterisks indicates that the column is significantly different (p < 0.05) 
than the second column with same colour for all panels. a Density of parasite and gametocyte was lower in individuals >15 years old than young 
or old children by 18S and Pfs25 (p < 0.001 for all comparisons). b Gametocytaemia density did not differ between anaemic and non-anaemic 
(NoAnaemia) individuals. c Parasite density was higher in individuals with fever. d There was no associations of ITN use on density of parasitaemia or 
gametocytaemia. e Parasite density was lower among individuals who had received anti-malarials (AM) in the past 2 weeks, but gametocyte density 
was not significantly different between receiving AM and not receiving AM (NoAM)
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remains a challenge due to mRNA instability and loss 
during storage and extraction process, and inherent 
variability within NASBA amplifications. Therefore, the 
density measured by NASBA approach was served as a 
comparative estimate rather than a precise value.

Previous studies have suggested that a high prevalence 
of submicroscopic gametocytaemia may contribute to 
malaria transmission [20, 22, 26, 56]. However, there is an 
argument that transmission is much less likely to occur 
at submicroscopic gametocyte levels [57]. The impact of 
extremely low gametocyte density detected by the sen-
sitive Pfs25-NASBA on malaria transmission has not 
been established, although the value and usefulness of 
this method has been proven in estimating gametocyte 
prevalence in previous studies [55, 58] as well as in this 
cross-sectional survey. Moreover it is known that mere 
presence of gametocytes does not equate linearly to 
capacity to infect mosquitoes. And also, this study only 
measured mature gametocytes by Pfs25 (infectious stage) 
in blood circulation, not including all immature gameto-
cytes in circulation or sequestered in other tissues. There-
fore, it was not a whole picture of gametocyte reservoir 
in host. In the present study, although there were many 
more NASBA gametocyte positives from smear-negative 
individuals (only a subset of smear-negative individuals 
were selected for this analysis), the majority of NASBA 
gametocyte positive individuals (80  %) were parasite 

smear-positive individuals. These results suggested that 
potential infectious reservoir could be predominantly 
contributed by individuals with smear-positive infections 
during peak transmission in the study areas. Together, 
these results showed a high level of submicroscopic 
infection and a large submicroscopic gametocyte stage 
V reservoir at community level, which may contribute to 
the stagnation in malaria prevalence in western Kenya.

Unlike a clear age-dependent decrease in densities of 
gametocytaemia (Fig.  3), older children (5–15  year old) 
had the highest odds for both parasitaemia and game-
tocytaemia (Table  2). The results from this study were 
not entirely consistent with previous reports of chil-
dren <5 years old bearing the highest prevalence of asex-
ual parasites and gametocytes in high endemic settings 
[17, 19, 59–61]. This new distribution pattern might be 
a result of the decreased EIR over 9–16  years of inter-
ventions in this area. However, the finding that children 
5–15  years old were a significant reservoir for poten-
tial transmission was consistent with the recent malaria 
epidemiology in western Kenya [1, 2, 31]. Many factors 
might account for the unique age patterns for parasi-
taemia and gametocytaemia observed in the present 
study. Most likely, the highest odds of parasitaemia and 
gametocytaemia in older children was attributed to the 
older children not having been specifically targeted for 
malaria control programmes and the lower rates of ITN 
use among this age group [2, 31]. On the other hand, the 
clear age-dependent decrease of density in gametocytes 
(Fig. 3a) most likely represented naturally acquired host 
immunity against both asexual and sexual stage para-
sites [16, 17, 62, 63]. Whatever reasons for the variations 
between risk and density for parasitaemia and gameto-
cytaemia, the results from this study indicated that chil-
dren provided a larger gametocyte reservoir compared to 
adults in the peak transmission season in western Kenya 
assuming similar numbers of children and adults in pop-
ulation and similar mosquito bite rates received by chil-
dren and adults.

Similar to previous studies [11, 64, 65], malaria-asso-
ciated anaemia was related to the presence of gameto-
cytes in this study. Anaemia is a common condition in P. 
falciparum infection due to the destruction of infected 
erythrocytes, shortened survival of uninfected erythro-
cytes and dyserythropoiesis [66–68]. It remains unclear 
to what extent which mechanisms are involved in the 
relationship between anaemia and gametocytogenesis. 
A high proportion of anaemic gametocytaemic indi-
viduals could be due to a longer duration of malarial 
infection [69, 70] or due to reticulocytes [71] and eryth-
ropoietin [72] triggering the pathway of gametocytogen-
esis. In addition, this study showed that high density of 
parasitaemia and presence of gametocytes measured by 

Fig. 4 Association of gametocyte diversity with risk factors among 
Pfg377 positive individuals. Odds ratios for multiple alleles and 95 % 
confidence intervals. Grey bars are non- significant, while dark bars 
indicate significant parameters. Risk factors are on the Y axes and 
odds ratios on the X axis. A 10-fold increased parasite density as 
measured by 18S-NASBA was associated with higher odds of having 
multiple gametocyte alleles, while sleeping under ITNs was associ-
ated with lower odds of having multiple gametocyte alleles
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sensitive molecular tools were associated with fever. A 
previous study has reported that children <15 years old in 
Cameroon with asexual parasitaemia and gametocytes by 
microscopy have significantly higher prevalence of fever 
than those without gametocytes [73], while some other 
studies have reported that gametocyte presence detected 
by microscopy is negatively associated with fever in P. 
falciparum infection [11, 65]. The relationship between 
gametocytes and fever is still incompletely understood 
[74]. But the association of fever with high density para-
sitaemia and presence of gametocytes observed in this 
study suggested that the individuals with fever might not 
get an effective malaria treatment at community level. 
Collectively, current results indicated that individuals 
with clinical malaria might be a major gametocyte reser-
voir in western Kenya.

AL, a highly effective anti-malarial drug with gameto-
cytocidal properties [75], was implemented in western 
Kenya as a first line treatment drug for uncomplicated 
malaria in 2006 [27]. In this study population, more than 
96 % of anti-malarial drugs reportedly used in the previ-
ous 2 weeks were AL. The results showed that, compared 
to individuals not receiving anti-malarial treatment, AL 
use within the past 2  weeks was associated with lower 
odds of gametocytaemia, but not of parasitaemia. In con-
trast, recent anti-malarial use was significantly associ-
ated with lowered parasite density, but not gametocyte 
density. The different responses to the drugs observed in 
this study confirmed that AL was more efficiently killing 
asexual parasites than mature gametocytes in infected 
individuals and then in turn decreased the chance of 
developing gametocytaemia in the infected persons. The 
current results were consistent with previous studies 
showing that ACT did not decrease proportion of indi-
viduals with malaria infection but was associated with a 
lower rate of gametocyte carriage [26, 29, 76].

This study showed that sleeping under an ITN the night 
prior to the survey was associated with lower odds of par-
asitaemia by 18S-NASBA in Asembo, but not in Karemo 
and also did not influence gametocyte presence among 
parasitaemic individuals. The different effect of ITN use 
on the odds of parasitaemia between the two areas could 
possibly reflect relatively lower level of transmission 
in Asembo than in Karemo. Entomologic inoculation 
rates were relatively higher in Karemo in both 2011 and 
2012 although the rates were below 10 infectious bites 
per person per year for both areas (Bayoh, unpublished 
data). However, these EIR measures were subject to high 
variation as they were a combined estimate of mosquito 
densities and sporozoite rates and easily affected by site 
selection and sampling methods. Parasite positivity as 
measured by microscopy and by 18S-NASBA in this 
study was similar between both areas suggesting the 

differences in EIRs were not substantial. Individual analy-
sis and combined analysis were conducted by study area 
to explore if there were varying risk factors in these two 
adjacent areas since they had different ITN implementa-
tion time periods (7 years apart). Results from this study 
confirmed that there were no significant differences in 
risk factors between Asembo and Karemo except for ITN 
use on parasitaemia mentioned above.

This study showed that the higher parasite density 
by 18S NSABA was associated with increased odds of 
gametocyte diversity. Previous studies have reported 
that high multiplicity of infection (MOI) is correlated 
with high malaria transmission level in endemic areas 
[77–79], and, in particular, is positively correlated with 
parasite density [78, 80]. Higher parasite density might 
cause more frequent genetic recombination [80]. Also 
in this study, individuals reporting use of ITNs were less 
likely to have high gametocyte diversity. Interestingly, the 
result from the gametocyte Pfg377 mRNA measurement 
in this study differed from those of a previous study con-
ducted in the same area. The previous study reported an 
increase of parasite diversity 5  years after ITN use [81] 
by assessing a Pfg377 DNA microsatellite locus within a 
coding region located upstream of region 3 of the Pfg377 
gene [82]. It was speculated that the increase in Pfg377 
microsatellite diversity at genomic level was a reflection 
of the parasite population adaptive and survival mecha-
nisms due to reduced transmission [81]. The reason 
for the discrepancy in results between the gametocyte 
mRNA transcripts and genomic DNA remains unclear. A 
recent study in Burkina Faso has shown that only 60 % of 
all Pfg377 positive samples contains at least one match-
ing genotype between mRNA and genomic DNA [54]. It 
will be important to further investigate the relationship 
of gametocyte Pfg377 genetic diversities between stage-
specific mRNA transcripts and genomic DNA in the con-
text of malaria prevention and intervention.

This study had a few limitations. First, the sampling 
strategy of cross-sectional survey in 2012 involved ran-
domly selecting a probability sample of compounds 
with at least one child under 5  years of age. Therefore, 
no weighing for geographical density of households was 
done. Second, self-reported ITN use, fever, recent AL 
treatment might introduce recall bias among study partic-
ipants. Third, due to funding constraints, the total number 
of samples tested for 18S- and Pfs25-NASBA was limited, 
resulting in full coverage of smear positive samples, but a 
random selection of smear negative samples from the sur-
vey. Because of the multi-level stratified sampling scheme, 
complex analysis was employed for determination of 
population prevalence estimates. Both household and 
laboratory selections were addressed by weighted analy-
sis and all weighted estimates were based on the subset of 
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data selected for laboratory analysis. Although this was a 
subset of the entire epidemiological dataset with a com-
plex study design, the statistical correction used in this 
study most likely resulted in representative population 
estimates of the study area. As well, for resource limited 
reason, Pfg377 diversity was tested in the samples from 
the one area with a longer history of ITN interventions 
for exploration. Although the gametocyte diversity was 
only examined in this area, the results clearly showed that 
use of ITNs had a protective role against the gametocyte 
diversity. The exploratory results could lead to further 
investigation of gametocyte diversity in relation to sex 
ratio in context of vector control in future.

Conclusions
This study showed a large proportion of submicroscopic 
parasites and gametocytes in western Kenya, which 
might partially explain stagnation in malaria prevalence 
and suggests that additional interventions are needed to 
target the infectious reservoir. As school aged children 
(5–15 years old) had the highest likelihood for both para-
sitaemia and gametocytaemia, this age group should be 
paid more attention in improving the ITN coverage in 
this area. Gametocyte presence was positively associated 
with fever and anaemia, indicating patients with clinical 
malaria or malaria-associated anaemia might be one of 
major sources for gametocyte reservoir and for poten-
tial malaria transmission in western Kenya. Recent AL 
use reduced parasite density and prevalence of gameto-
cytes, but not the gametocyte density, indicating a limita-
tion of AL in having an impact on transmission reservoir. 
ITN use played a protective role against parasitaemia 
and gametocyte diversity in an area with long-standing 
Asembo area of western Kenya.
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