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Abstract 

Background:  Scale-up of malaria prevention and treatment needs to continue to further important gains made 
in the past decade, but national strategies and budget allocations are not always evidence-based. Statistical mod-
els were developed summarizing dynamically simulated relations between increases in coverage and intervention 
impact, to inform a malaria module in the Spectrum health programme planning tool.

Methods:  The dynamic Plasmodium falciparum transmission model OpenMalaria was used to simulate health effects 
of scale-up of insecticide-treated net (ITN) usage, indoor residual spraying (IRS), management of uncomplicated 
malaria cases (CM) and seasonal malaria chemoprophylaxis (SMC) over a 10-year horizon, over a range of settings with 
stable endemic malaria. Generalized linear regression models (GLMs) were used to summarize determinants of impact 
across a range of sub-Sahara African settings.

Results:  Selected (best) GLMs explained 94–97 % of variation in simulated post-intervention parasite infection 
prevalence, 86–97 % of variation in case incidence (three age groups, three 3-year horizons), and 74–95 % of variation 
in malaria mortality. For any given effective population coverage, CM and ITNs were predicted to avert most preva-
lent infections, cases and deaths, with lower impacts for IRS, and impacts of SMC limited to young children reached. 
Proportional impacts were larger at lower endemicity, and (except for SMC) largest in low-endemic settings with little 
seasonality. Incremental health impacts for a given coverage increase started to diminish noticeably at above ~40 % 
coverage, while in high-endemic settings, CM and ITNs acted in synergy by lowering endemicity. Vector control and 
CM, by reducing endemicity and acquired immunity, entail a partial rebound in malaria mortality among people 
above 5 years of age from around 5–7 years following scale-up. SMC does not reduce endemicity, but slightly shifts 
malaria to older ages by reducing immunity in child cohorts reached.

Conclusion:  Health improvements following malaria intervention scale-up vary with endemicity, seasonality, age 
and time. Statistical models can emulate epidemiological dynamics and inform strategic planning and target setting 
for malaria control.
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Background
Effective malaria prevention and treatment interven-
tions have been scaled-up substantially with increas-
ing national and donor funding since the early 2000s. 
Between 2000 and 2015, malaria incidence rates fell 37 % 
globally, and malaria mortality rates by 60 %, with even 
greater declines in Africa, the highest-burden region [1]. 
This was likely a combined result of improved malaria 
control and other factors independent of interventions 
[2].

To sustain these improvements, the World Health 
Organization (WHO) Global Technical Strategy for 
Malaria recommends further scale-up to universal cov-
erage with suitable preventive and curative interventions 
[3]. Funding for malaria has now plateaued, however, 
placing more emphasis on prioritizing interventions with 
the most impact. While most countries focus on WHO-
recommended proven effective interventions, national 
strategies and plans vary considerably in budget alloca-
tions across interventions, and rationales for mixes of 
interventions are often not explicit [4]. National malaria 
control strategies and budget allocations should be 
evidence-based and explicitly justified. Field trials can 
directly inform only a sub-set of decisions, while sepa-
rately parameterizing and analysing dynamical transmis-
sion models tailored to each individual setting and policy 
option is prohibitively complex.

For HIV/AIDS, tuberculosis, family planning and other 
health areas, strategic decision-making is supported 
by simple programme planning tools that project the 
impact and cost of user-defined scale-up scenarios. One 
such tool is the Spectrum suite of policy models, used by 
over 120 low and middle-income countries for estima-
tion of burdens, trends, service needs and programme 
impact for family planning, HIV/AIDS and tuberculo-
sis [5–8]. As of 2015, Spectrum did not have a malaria 
module, though a simple linear coverage-impact func-
tion included in the Lives Saved Tool (LiST) can model 
impacts of a sub-set of malaria interventions on under-5 
mortality [9–11].

This article reports improved coverage-impact rela-
tionships developed for a Spectrum malaria impact mod-
ule. Impacts on both morbidity and mortality of scale-up 
of insecticide-treated mosquito nets (ITNs), indoor 
residual spraying (IRS), effective management of uncom-
plicated malaria cases (CM) and seasonal malaria chemo-
prophylaxis (SMC) were analysed using OpenMalaria, an 
individual-based stochastic model of Plasmodium falci-
parum infection and disease dynamics in human popu-
lations exposed to mosquitoes, which has been fitted to 
extensive data on age and exposure patterns of preva-
lence and disease in sub-Sahara African settings with sta-
ble endemic malaria [12, 13]. The simulated impacts (in 

different age groups) were summarized using regression 
models, and the results compared with previous interna-
tional consensus estimates and key empirical data. The 
validity, precision and accuracy of the resulting statistical 
relationships were considered with a view to their use for 
national programme planning.

Methods
Definition of interventions
For each of the four interventions coverage-impact rela-
tionships were simulated for scale up with coverage vary-
ing between 0 and 80 %.

Effective coverage of CM, defined as ‘adherence to and 
completion of a full course of a recommended treat-
ment with a good-quality anti-malarial medication’, was 
expressed in terms of coverage within 14 days of onset of 
the episode, and modelled as described in [14]. A value of 
48  % was assumed for effective coverage of appropriate 
care for severe cases in all simulations [15].

IRS was simulated with the long-acting insecticide 
Actellic CS, which kills mosquitoes up to 12  months or 
longer [16], at the beginning of each year i.e. before the 
peak transmission season. Unlike for other interventions, 
for IRS the coverage simulated was either 0 or 80  % of 
the population at risk protected, without any intermedi-
ate values, to reflect policy-making and practice of IRS 
implementation at district level.

ITNs were modelled as pyrethroid-impregnated long-
lasting nets, assuming full mosquito susceptibility (type 
Zeneti) [17, 18]. The proportion of mosquitoes whose 
biting is potentially impeded by ITNs and IRS (πi), based 
on patterns of night-time versus day-time biting and 
human behaviours, was set at 0.65 [19, 20]. ITN coverage 
was defined as the proportion of people of any age at risk 
of malaria who slept under an ITN the previous night. 
In OpenMalaria, this coverage was achieved simulating 
annual deployments of ITNs, each assumed to be effec-
tive for 1 year without decay.

SMC was represented as three rounds of presump-
tive anti-malarial treatment per year, at start of months 
2, 3 and 4, which correspond to the peak transmission 
season, to a specified proportion of resident children 
3–59  months old, in line with the WHO recommenda-
tion of a maximum of four courses delivered at monthly 
intervals in areas with highly seasonal malaria trans-
mission across the Sahel region [21, 22]. The simulated 
drug was amodiaquine plus sulfadoxine-pyrimethamine, 
which clears blood stage infections, and has a pre-eryth-
rocytic prophylactic effect. While in most countries, four 
monthly rounds are scheduled, three monthly courses 
were modeled to account for children missing a course. 
The simulation selected these children randomly from 
the simulated population as a cohort, with the specified 
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coverage proportion of children receiving all three SMC 
rounds, and the remaining non-covered children receiv-
ing no SMC at all. In OpenMalaria, SMC acts as an effec-
tive short-acting drug treatment, clearing any malaria 
infections (whether symptomatic or not) over the 10 days 
following drug administration, and lowering acquired 
immunity, similar to the effect of vaccination [23].

Simulation of status quo
Simulated populations had an age distribution as in rural 
Tanzania [24]. All simulations included a low level of 
imported infections (1 per 1000 people per year) to pre-
vent stochastic malaria extinction. Six different variants 
(calibrations) of OpenMalaria were used [25], differing 
in assumptions about immunity decay, heterogeneity in 
transmission, and co-morbidity [13]. These contributed 
uncertainty to the statistical impact functions. All pos-
sible combinations of parameter values listed in Table 1 
comprise a total of 165,888 scenarios. Each scenario 
was simulated once for a population of 50,000 individu-
als, which was judged adequate to minimize undesired 
stochastic noise in case incidence. Simulations were run 
using OpenMalaria Schema version 32 [26].

Differing endemicity was simulated by varying both 
the level and seasonality of the annual entomological 
inoculation rate (EIR). Six baseline transmission levels, 
covering the EIR range from 1 to 300 infectious bites 
per person-year (Table  1), were modelled. Seasonality 
in transmission was parameterized as the coefficient of 
variation (CV) in EIR over a year, defined as the stand-
ard deviation divided by the year-average of monthly EIR 
[27], and simulated at three values (Table 1):

• • Low seasonality, as the 5th percentile of CV across 
malaria-endemic sub-Saharan Africa, based on a 

map of seasonality estimates provided by the Malaria 
Atlas Project (MAP) [2, 28]; such a seasonality might 
be expected in Equatorial Guinea;

• • High seasonality, as the 95th percentile of CV, repre-
senting for example northern Burkina Faso;

• • Intermediate seasonality, corresponding to the 50th 
percentile.

Populations were simulated with long warm-up 
phases so that intervention scale-up started at endemic 
equilibrium prevalence of infection with P. falciparum 
(PfPR) with the assigned EIR and initial coverage of CM 
(Table 1) applied throughout the warm-up [29]. The sim-
ulations were run forward with the 2015 coverage of IRS 
added in, to reach a new approximate steady state. ITN 
scale-up to the initial (2015) coverage was simulated as 
a linear increase from 0  % of people sleeping under an 
ITN in 2004 up to the defined initial coverage in 2014 
(Table 1) in line with ITN scale-up patterns in sub-Saha-
ran Africa [1].

Simulation of scale‑up
Target coverage levels of interventions are given in 
Table  1. The 80  % maximum coverage target corre-
sponds to projections used by WHO’s Malaria Global 
Technical Strategy [3], with universal coverage of core 
malaria interventions interpreted as 80–90  % for ITNs, 
80–90  % for SMC as well as 80–90  % for artemisinin-
based treatment of laboratory-confirmed malaria cases in 
the public sector [30]. Scale-up to target coverages was 
implemented as a one-off step increase at the start of 
2016, maintained until the end of 2025.

Health outcomes
The outcomes analysed were:

Table 1  Design of simulations in OpenMalaria dynamic transmission model

Parameter Parameter values specifying simulations

Transmission seasonality
Coefficient of variation in EIR over a year

Low seasonal: 0.121
Moderately seasonal: 1.31
Highly seasonal: 2.66

Pre-intervention annual EIR (infectious bites per person per year) during simulation’s warm-up phase 
before IRS intervention starts

1, 3, 10, 30, 100 and 300

ITN coverage: people sleeping under ITN the previous night Initial: 0, 30, 60 %
Target: 0, 30, 60, 80 %

IRS coverage: people protected Initial: 0, 80 %
Target: 0, 80 %

Case management: uncomplicated cases treated effectively Initial: 0, 30, 60 %
Target: 0, 30, 60, 80 %

Seasonal malaria chemoprophylaxis: children 3–59 months old receiving three courses within a malaria 
season

Initial: 0 %
Target: 0, 30, 60, 80 %
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• • Incidence of malaria episodes (including uncom-
plicated and severe episodes), in 0–4  year olds, 
5–14 year olds and 15+ year olds;

• • Malaria-attributable mortality rate, in 0–4 year olds, 
5–14 year olds and 15+ year olds;

• • PfPR in 2–9  year olds, which is the age group for 
which most PfPR data are available.

Impacts were analysed as proportional reductions in 
case incidence, malaria-attributable mortality and PfPR, 
relative to ‘counterfactual’ scenarios with zero coverage of 
the intervention concerned over the same time period, to 
characterize the full impact of each intervention. Impacts 
were modelled separately for three time horizons: 
1–3 years following intervention scale-up, and 4–6 years 
and 8–10  years after intervention scale-up in year ‘1’ 
(denoted 2016 in calendar time). Simulation outcomes 
were recorded at monthly intervals, and aggregated to 
annual averages or totals for statistical modelling.

Statistical analysis
Relationships between intervention coverage, endemicity 
and the following health burden outcomes in OpenMa-
laria simulations were fitted using polynomial regres-
sions. Outcome variables (i.e. dependent variables) were:

• • Incidence rate of malaria episodes/cases (uncompli-
cated and severe), in 0–4  year olds, 5–14  year olds 
and 15+ year olds in the population (whether or not 
diagnosed in a health facility);

• • Direct malaria-attributable death rate, in 0–4  year 
olds, 5–14 year olds and 15+ year olds;

• • PfPR (a ratio), in 2–9 year olds.

Each outcome in each age group was assessed sepa-
rately for three different time periods within the time 
horizon most relevant to strategic planning, i.e. 10 years 
from intervention start. The three time periods were 
taken as multiple-year averages, to reduce stochastic 
noise: years 1–3, years 4–6 and years 8–10.

Outcome variables were logit-transformed. Outcomes 
that can take values greater than one were rescaled by 
dividing each value by the maximum value across all 
simulations. To allow well-defined regressions on logit-
transformed outcomes, all zero outcomes (i.e. an aver-
age of zero over years 1–3, years 4–6 or years 8–10) 
were replaced by half of the minimum rate in any other 
simulated scenario-year for that outcome. This was done 
for <0.01 % of simulation-year data points for PfPR and 
case incidence in all time periods and age groups, for 
18–24 % of for malaria-attributable mortality data points 
in 0–4 year olds (across the three horizons), for 7–11 % 

of data points for 5–14 year olds and for 5–10 % of data 
points for 15+ year olds.

Explanatory (i.e. independent) variables (all continu-
ous; Additional files 1, 2) were:

• • Simulated PfPR in 2–9 year olds averaged over 2000–
2002, and PfPR in 2–9 year olds averaged over 2000–
2002 to the power of one-third (1/3);

• • Simulated annual EIR, averaged over 2000–2002 at a 
log10 scale, as well as a coefficient for the one-third 
power of simulated EIR at a log10 scale;

• • OpenMalaria model variant;
• • Seasonality CV;
• • Initial (2015) coverages for ITN, IRS and CM;
• • Target coverages (2016 and onwards) for ITN, IRS, 

CM and SMC.

Model and predictor variable selection was done 
using Akaike’s Information Criterion (AIC) [31], for 
the impact functions for each of the seven outcomes at 
the 2019–2021 time horizon. All potential predictors, 
including simulated PfPR and EIR, and their second-
order (quadratic) terms, together with the interaction 
effects were included in an initial model. The stepwise 
(bidirectional elimination) AIC procedure was then 
applied to select models. The seven resulting regres-
sion structures for this (years 4–6) time horizon were 
then imposed and applied to the corresponding seven 
outcomes for years 1–3, and to the seven outcomes for 
years 8–10 models for each of the health outcome and 
age group combinations, so as to obtain standardized 
statistical impact models for each of the seven combina-
tions of health outcomes and age groups, that are easily 
interpreted and compared in terms of the pattern over 
the overall 10-year horizon.

Statistical modelling was performed using the R-sta-
tistical package [32] version 3.1.3, using the linear model 
function ‘lm’ in R. The R code is available from Avenir 
Health upon request.

Both the OpenMalaria model variant and 2000–2002 
annual EIR were retained as explanatory variables in the 
selected statistical models. However, for making pre-
dictions, 2000–2002 annual EIR and the most realistic 
OpenMalaria model variant are not known at country 
and province levels. A further statistical model was used 
to predict 2000–2002 annual EIR based on the country or 
province-level predictor variables (Additional file 2, sheet 
‘EIR coefficient +  p value’). Health impact predictions, 
using EIR thus estimated (with R2 of 98 %), were made for 
each of the six OpenMalaria model variants, and results 
for each intervention scenario presented and analysed as 
the average of these six predictions.
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Statistical predictions
The selected statistical models and their parameteriza-
tions were applied to predict health impacts of inter-
vention scale-up (and scale-down) for four hypothetical 
provinces, covering the range of endemicity situations 
occurring in sub-Saharan Africa with respect to base-
line endemicity and seasonality. Seasonality values at the 
2.5th and 97.5th percentiles of seasonality CVs across 
Admin1 units in sub-Saharan Africa [2, 28] were selected; 
for each of these two seasonality CV values, selected 
PfPR values were the 10th and 90th percentile of distri-
butions of simulated PfPR in 2–9  years averaged over 
2000–2002 in the subset of OpenMalaria scenarios with 
0  % baseline coverage of all interventions: i.e. for a low 
seasonality CV of 0.2, PfPR values of 11 and 82  %; and 
for the high seasonality CV of 2.5, PfPR values of 0.3 and 
71 %, respectively.

Prediction results were presented as proportional 
reductions in the burden rate, based on burden rates pre-
dicted following intervention scale-up, compared with 
burden rates at the same time horizon for a ‘counterfac-
tual scenario’ without that intervention’s (or combination 
of interventions) scale-up. Unless otherwise indicated, 
predictions assumed 0  % coverage of all interventions 
before 2016. Proportional reductions were the focus out-
come instead of absolute reductions, because OpenMa-
laria burden levels were not calibrated on burden levels 
as estimated by the WHO, which have different defini-
tions. The Spectrum programme planning tool will apply 
the predicted proportional reductions to WHO ‘baseline 
burden’ estimates to predict future burdens as a function 
of intervention scale-up.

Assessing internal and external validity of statistical 
models
Internal validity of the statistical models was assessed 
based on adjusted coefficient of determination (R2), for 
the selected models described above and several alterna-
tive models, differing in the treatment of simulated zero 
outcomes, in the transformation applied to simulation 
outcomes before regressions, or in predictor variables 
included.

For each model, furthermore, out-of-sample predic-
tions were performed, by drawing random samples of 
100,000 simulations to inform the regression functions. 
Prediction errors were then assessed by estimating the 
mean squared error (MSE), evaluated using the remain-
ing 65,888 simulations. This process was repeated 25 
times and the average of their MSE was expressed and 
evaluated relative to the variance in the simulated health 
outcome of interest.

External validity was assessed by comparing patterns 
of predicted proportional health impacts as a function of 

endemicity, age, time, coverage levels, and interactions 
among interventions with earlier simulations by Open-
Malaria and other dynamic transmission models.

In addition, predictions were performed for three 
cluster-randomized ITN trials conducted in the 1990s in 
Western Kenya, coastal Kenya and Ghana that observed 
estimated community-level ITN impacts on parasite 
infection prevalence, case incidence and mortality in chil-
dren under-5  years [33], which are considered the gold 
standard for earlier global, regional and country-level 
ITN impact estimations [10, 11, 34–36]. These predic-
tions, in contrast to those for the hypothetical provinces, 
used separate regression functions for only years 1 and 2 
following ITN scale-up, to match the two-year duration 
of the trials. Predictor variables for the three trial predic-
tions were based on endemicity as estimated by MAP, and 
trial data on coverage of ITNs and CM (Additional file 3). 
For mortality, since trials used as key observed outcome 
all-cause under-5 mortality, trial predictions included not 
only direct malaria-attributed mortality, but also indirect 
malaria-related mortality, which in OpenMalaria simula-
tions for African settings occurs at similar rates as direct 
malaria-attributable mortality [15]. For comparison with 
trial data, predicted direct and indirect malaria mortality 
reductions were converted into all-cause under-5 mortal-
ity reductions and an overall malaria-related mortality 
reduction applying the one-cause-one-death framework 
and calculation proposed by the UN Child Epidemiology 
Reference Group [10, 11] (Additional file 3).

Results
Statistical models: internal validity
Statistical impact functions fitted OpenMalaria simula-
tions reasonably well, with the proportion of explained 
variation (adjusted R2, in the logit scale) ranging 94–97 % 
for PfPR and 86–97 % for case incidence across the three 
time horizons and age groups (Additional file 2). R2s were 
74–95  % for malaria mortality, a slightly less good fit, 
likely reflecting stochastic noise in the simulations asso-
ciated with small numbers of deaths. For each outcome, 
R2s were similar across the three horizons, but generally 
higher for younger age groups (where larger numbers of 
burden events reduced stochastic noise).

Statistical models: epidemiological patterns
Statistical regression functions predicted large impacts 
following scale-up of especially CM and ITNs, followed 
by IRS, across all three age groups and across the three 
time horizons (Figs.  1, 2). For any given effective popu-
lation coverage, CM averted most infections, episodes 
and deaths, with somewhat lower (similar) impacts for 
ITNs and IRS. Impacts of SMC were largely limited to the 
targeted children. The ranking in proportional burden 
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reductions across the four interventions was stable across 
hypothetical Admin1 units that differ in baseline ende-
micity and seasonality (Fig. 1).

Proportional burden reductions were larger at lower 
baseline PfPR (red lines in Figs.  1, 2) and, within low-
endemic settings, larger at lower seasonality (solid red 
lines in Fig.  1). An exception is SMC, for which (as 
expected) proportional impacts were always larger 
under high seasonality, at both low and high baseline 
PfPR.

Proportional burden reductions were typically slightly 
larger for parasite prevalence and case incidence than for 
malaria mortality (Fig. 2).

Across interventions, the maximum impact (lowest 
burden rate ratios) were generally achieved 4–6  years 
after reaching target coverage levels, with some partial 
rebounds over years 7–9, notably for mortality in children 
5–14 years of age, due to reduced acquired immunity. For 
the simulated one-off coverage increases implemented 
instantaneously and then sustained, 70–90  % of long-
term impacts were reached within the 1–3 year horizon 
(Fig. 2).

Across age groups, the proportional burden reductions 
achieved by ITNs, IRS and CM were similar at 1–6 years 
after scale-up, although at 7–9  years after scale-up 
the mortality reductions were slightly less in older age 
groups.

SMC, in contrast, reduced burdens of PfPR, case inci-
dence and mortality only in the targeted age group 
of 0–4  year olds, and slightly increased mortality for 
5–14  year olds starting from years 4–6 after scale-
up onward, reflecting reduced acquired immunity 
among the cohort of children who received SMC at age 
0–4  years. Impacts of SMC were highest in areas with 
high malaria seasonality (dashed lines in Fig. 1d), but also 
considerable in areas with non-seasonal malaria (solid 
lines in Fig. 1d).

For CM and especially ITNs (the interventions with 
the largest impact), the proportional burden reduc-
tion for a given coverage percentage increase started to 
gradually diminish with increasing coverage, noticeably 
from a coverage of about 40 % (Fig. 1). In contrast, SMC 
impacts, which were smaller, increased linearly through-
out the coverage increase. IRS impacts were near-linear 
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Fig. 1  Proportional reductions in malaria case incidence in 0–4-year-olds, 1–3 years after intervention scale-up. a ITNs, b IRS, c case manage-
ment, d SMC. The four hypothetical provinces had seasonality values at the 2.5th and 97.5th percentiles of seasonality CVs across Admin1 units in 
sub-Saharan Africa [2, 28]; for each of these two seasonality CV values, selected PfPR values were the 10th and 90th percentile of distributions of 
simulated PfPR in 2–9 years averaged over 2000–2002 in the subset of OpenMalaria scenarios with 0 % initial coverage of all interventions: i.e. for a 
low seasonality CV of 0.2, PfPR values of 11 and 82 %; and for the high seasonality CV of 2.5, PfPR values of 0.3 and 71 %, respectively
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with coverage as well, which may, however, be an arti-
fact of the regression being based on only two simulated 
extreme coverage levels.

When combining CM and ITNs, their overall impact 
was slightly larger than the sum of the individual inter-
ventions for settings with high baseline endemicity 
(Fig.  3), reflecting that proportional burden reductions 
increase with decreasing endemicity (Fig.  1), and com-
bined interventions more powerfully reduce endemic-
ity from high baseline endemicity. For settings with low 
baseline endemicity, in contrast, the proportional impact 

of either intervention did not vary with the coverage level 
of the other intervention.

External validity: predicted impacts against ITN trial data
Predicted proportional burden reductions in the ITN tri-
als were generally comparable to those observed, with 
the largest proportional reductions for malaria mortality, 
followed by case incidence, and lesser reductions in PfPR 
and all-cause post-neonatal under-5 mortality (Fig.  4; 
Additional file  3). In line with trial results, impacts 
were generally largest in Kilifi, followed by Asembo and 
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Ghana, reflecting the ranking of the sites in baseline 
endemicity i.e. PfPR (lowest in Kilifi, highest in Ghana). 
For nine of the ten health outcomes that could be evalu-
ated across the three trials, the model-predicted relative 
risk was within the 95 % confidence interval (CI) of the 
observed data (Fig.  4). Simulations agreed with the tri-
als in that PfPR in Ghana had the smallest proportional 
reduction of all outcomes across the three trials, but the 
model-predicted reduction of 17 % in this outcome was 
outside the 95  % CI of the observed reduction (a point 
estimate of only 4 %).

Sensitivity analysis
In out-of-sample predictions, regression models for 
health outcomes that had smaller simulated values, and 
thus more simulated zero outcomes (e.g. mortality in 
15–99 years), generally gave higher MSE, higher ratio of 
MSE to variance, and lower R2.

Alternative regression models with outcome variables 
that dropped instead of imputed zero values, or that 
applied log instead of logit transformation on simulated 
outcomes, or that dropped the OpenMalaria model vari-
ant and simulated EIR as predictor variables, generally 

had lower R2 and higher MSE-to-variance ratios than the 
selected best models (Table 2).

Nevertheless, across all alternative statistical models 
explored, the ranking of proportional burden reductions 
between interventions (for a given population coverage), 
between age groups, between health outcomes, between 
hypothetical Admin1 areas, and over time horizons was 
unchanged compared to the selected best model (Addi-
tional file 4). Excluding data with zero values made little 
difference to predicted risk ratios, with risk ratios vary-
ing between −6 and +2 % (median <0.0000 %) relative to 
the selected best model. Dropping EIR and Model Vari-
ant as predictor variables caused larger differences, with 
risk ratios varying −26 to +17  % (median −5  %) from 
the selected best model. The method of transformation 
had the largest influence, with risk ratios varying −51 to 
+17 % (median −6 %) from the selected best model.

Discussion
Methodology
This analysis shows that micro-simulations of complex 
patterns of health impacts following scale-up of malaria 
control in endemic African settings can be emulated by 
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fitting fairly simple regression models to the simulated 
outputs. The emulations can use data on malaria ende-
micity and baseline intervention coverage to project 
the impact of alternative scale-up strategies for specific 
locations.

The high explanatory power of regressions attests to 
good internal validity against OpenMalaria simulations 
(Table 2; Additional file 2). The somewhat lower R2s for 
mortality outcomes may be explained by random noise 
in simulation results for mortality, since deaths are much 
rarer than positive infection status or cases. The impu-
tation (or dropping) of zero simulation outcomes, the 
(logit) transformations applied to all outcomes before 

regression modelling, the re-scaling of health outcomes 
which did not naturally fall in the range 0–1 in order to 
allow logit transformation, and the implementation of 
predictor variables simulated in discrete steps as con-
tinuous in the regression (needed for predictions for a 
range of provinces) may have led to sub-optimally speci-
fied models. However, external and internal validities 
suggested that the potential bias introduced by this is 
minimal.

Added value for programme planning projection tools
The impact functions thus developed for the Spectrum 
programme planning tool considerably improve on 
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earlier malaria planning tools (notably the LiST child 
survival model), by: (i) predicting morbidity reductions, 
which accrue faster and are in the long term proportion-
ally larger than mortality reductions; (ii) simulating dif-
ferent age groups, with proportional burden reductions 
in adults not much less than in young children; (iii) cap-
turing variations in impacts over time, including partial 
rebounds. These rebounds result from the achieved ende-
micity reductions and consequent declines in acquired 
immunity, and become apparent from around 7  years 
after scale-up, in particular for mortality for people older 
than 5 years, as previously described in dynamic simula-
tion studies of ITNs and SMC scale-up [23, 37, 38].

The incorporation of dependence of health impacts on 
baseline endemicity is another improvement. Modeled 
burden reductions are proportionally larger in settings 
with lower baseline malaria infection prevalence rates, 
and less seasonality in malaria transmission. This is con-
sistent with observations from ITN trials [33] (Fig. 4) and 
with models of the dynamics induced by various malaria 
interventions [27, 39–41]. The absolute health gains—
in terms of cases and deaths averted for a given cover-
age increase—are generally larger for higher-endemic 
settings, due to the larger baseline burden compared to 
lower-endemic settings. Existing programme planning 
tools, in contrast, have typically assumed fixed burden 
reductions at any time after intervention scale-up, in all 
countries and areas of Africa irrespective of endemicity.

Furthermore, the regression models capture non-lin-
earity in the incremental health impact from progres-
sive coverage increases, with some degree of saturation 
(diminishing returns) at high coverage levels. They also 
capture the synergy apparent in dynamic modelling stud-
ies [17] of higher-endemic settings between impacts of 
CM and ITNs.

Consistent with dynamic model-based assessments 
[30], impacts for a given population effective coverage 
level are larger for CM than for ITNs and IRS. However, 
it is often easier to achieve high-level coverage for vec-
tor control interventions (often delivered through verti-
cal programmes, as campaigns) than for effective CM 
(through complex multi-layer health systems), so this 
ranking does not imply that CM is necessarily a better 
investment than vector control. The Spectrum-Malaria 
programme planning tool, by linking the current statis-
tical effectiveness predictions with its costing module 
OneHealth Tool, will enable evaluation of both impacts 
and costs of malaria interventions and their trade-offs in 
short- and longer-term.

The models did not consider age differences in ITN and 
CM coverage, but these are likely to have only second-
ary effects since the burden reductions are partly driven 
by transmission effects which depend—especially in the 

longer term—mainly on average population-wide cover-
age and not just the coverage in people directly accessing 
the intervention.

There remains a need to refine these impact func-
tions to incorporate drug and insecticide resistance, and 
extend them to impacts on Plasmodium species other 
than P. falciparum, such as P. vivax malaria (for countries 
with high prevalence of this species), which has very dif-
ferent dynamics from P. falciparum [42].

Consistency with effectiveness data
These predictions of vector control impacts were gener-
ally consistent with best available data, as also used by 
WHO, the Roll Back Malaria partnership and interna-
tional malaria donors [4, 34–36]. In particular, the pre-
dicted proportional burden reductions in young children 
following ITN scale-up were generally in line with those 
observed in cluster-randomized trials and other field 
studies and evaluations.

Also, the statistical predictions were consistent with 
recent ecological estimates of average ITN field impacts 
across sub-Saharan Africa based on synthesis of cli-
matic, entomological, epidemiological and programmatic 
data across Africa, including larger proportional burden 
reductions at lower baseline PfPR [2]. For malaria-related 
mortality in under five-year old children, the predicted 
36–64 % reduction within 2 years for settings resembling 
the ITN trials in Kenya and Ghana, is similar to the esti-
mate used in the LiST model of child survival of a fixed 
55 at 100  % household ITN ownership (irrespective of 
endemicity or seasonality) [10, 11]. Predicted longer-
term impacts were somewhat higher than the LiST time-
fixed 55 % reduction, which reflects additional long-term 
transmission dynamic effects.

The external validation against trial data is complicated 
by imprecision and measurement challenges in ITN trial 
data: (i) The observed case incidences vary and are poten-
tially biased across the trials by intensity of active case 
surveillance and treatment access, and the parasite den-
sity threshold used in case definition. (ii) The infection 
prevalence reductions depend strongly on heterogene-
ity in transmission [43]. If transmission is concentrated 
in a small subset of highly exposed individuals, then 
interventions will have little effect on prevalence, while 
if exposure is rather homogeneous, prevalence may be 
considerably reduced by the same intervention package. 
This can lead to deviations from the expected impacts in 
specific locations. (iii) For mortality, because of limita-
tions in attributing child deaths (mostly in rural homes 
without medical confirmation) to malaria through verbal 
autopsy based on mostly a-specific symptoms, ITN tri-
als focused on observed reductions in all-cause under-5 
mortality. OpenMalaria simulated direct and indirect 
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malaria-related deaths, but not other-cause deaths, and 
extrapolations from OpenMalaria predicted direct and 
indirect mortality reductions to either all-cause under-5 
or reductions in malaria-attributable mortality involved 
some uncertain assumptions (Additional file 3).

The ITN and IRS type and effectiveness modelled 
were judged the most relevant generic representation of 
ITN and IRS as recommended for African programmes 
[44, 45]. The relative efficacies of ITNs and IRS reflect 
measurements from experimental hut studies using the 
insecticide Actellic CS recommended by the WHO’s Pes-
ticide Evaluation Scheme for African programmes (for 
settings with mosquitoes fully susceptible to the insecti-
cides used [18, 46]). These data drive the typically larger 
proportional burden reductions for ITNs than for IRS, 
which align with the recommendation of the WHO 2015 
Global Technical Strategy to prioritize ITNs for vector 
control. However, absolute and relative effectiveness of 
ITN and IRS will vary among settings depending on local 
insecticide product choice (with the duration of protec-
tion sometimes less than the assumed 12  months), and 
site-specific insecticide resistance and ITN decay and 
usage and adherence patterns [47]. Current simulations 
and statistical functions did not capture these features, 
although they can be simulated in OpenMalaria through 
reduced effects on mosquito survival, and extent of per-
sonal protection [18]. There is also variation across Africa 
in the tendency of vector species to bite humans and to 
bite indoors. Highest ITN and IRS effectiveness and 
impact are expected in settings where highly anthropo-
philic (human biting) and indoor biting mosquitos (e.g. 
Anopheles gambiae, more so than Anopheles arabiensis) 
are responsible for most of the transmission.

For SMC, based on seven relevant trials in highly sea-
sonal settings, the WHO has estimated a 75 % reduction 
in malaria case incidence, and considerable child mortal-
ity reduction within the year of implementation, but with 
unknown longer-term impacts [21]. The external valid-
ity of model results for SMC, therefore, remains to be 
assessed following future programme evaluations upon 
large-scale, long-term implementation.

The authors are not aware of any field studies of the 
effect of prompt and effective treatment of uncompli-
cated disease on incidence of severe malaria and mortal-
ity. Correspondingly, the models of the impact of scale-up 
of CM on burden are highly uncertain in OpenMalaria. 
Projections of impacts of scale-up of CM at country level 
face further uncertainty in estimates of effective cover-
age of treatment, which are typically available only from 
caregiver’s recall of treatment of febrile children under 
5 years of age without stratification between malarial and 
non-malarial fevers, and without clear distinction of inef-
fective and effective treatment regimens [48, 49].

Conclusions
In conclusion, predictions of health improvements fol-
lowing scale-up of malaria control interventions in 
varying P. falciparum-endemic areas in Africa, from 
computationally expensive transmission dynamic mod-
els, can to a large extent be emulated by regression mod-
els. The regression models developed in this study can be 
used to improve the simplistic effectiveness assumptions 
currently used in malaria programme planning and eval-
uation tools, despite substantial remaining uncertainties 
in the dynamic models underpinning the predictions.
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