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Abstract 

Background:  The approach of using transgenic rodent malaria parasites to assess the immune system’s response to 
antigenic targets from a human malaria parasite has been shown to be useful for preclinical evaluation of new vac-
cine formulations. The transgenic Plasmodium berghei parasite line [PvCSP(VK210)/Pb] generated previously expresses 
the full-length circumsporozoite protein (CSP) VK210 from Plasmodium vivax. The transgenic parasite expresses one of 
the two most common alleles of CSP, defined by nine amino acids at the central repeat region of this protein. In the 
present study, a transgenic P. berghei parasite line [PvCSP(VK247)/Pb] expressing the full-length PvCSP(VK247), which 
is the alternative common allele, was generated and characterized.

Methods:  The P. berghei expressing full-length PvCSP(VK247) was generated and examined its applicability to CSP-
based vaccine research by examining its biological characteristics in mosquitoes and mice.

Results:  Similar to PvCSP(VK210)/Pb, PvCSP(VK247)/Pb developed normally in mosquitoes and produced infectious 
sporozoites equipped to generate patent infections in mice. Invasion of HepG2 cells by PvCSP(VK247)/Pb sporozoites 
was inhibited by an anti-PvCSP(VK247) repeat monoclonal antibody (mAb), but not by an anti-PvCSP(VK210) repeat 
mAb.

Conclusions:  These two transgenic parasites thus far can be used to evaluate the potential efficacy of PvCSP-based 
vaccine candidates encompassing the two major genetic variants in preclinical trials.
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Background
Malaria is an ancient and life-threatening parasitic dis-
ease, which in 2015 was estimated to have caused 214 
million cases and 438,000 deaths [1]. Of the five human 
malaria parasite species, Plasmodium vivax is currently 

the most widely distributed, with an “at-risk” popula-
tion of almost three billion people (a third of the global 
population) [2, 3]. Although the importance of a vaccine 
against infection with P. vivax is recognized, the lack of a 
long-term in vitro culture system in red blood cells and 
suitable animal models of the disease as well as the com-
plex life cycle of this parasite has hindered the develop-
ment of a potent vaccine [4, 5].

The circumsporozoite protein (CSP), which covers 
the surface of Plasmodium sporozoites, underlies the 
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most advanced protective malaria vaccine candidate to 
date [6, 7]. Plasmodium vivax CSP-derived subunit vac-
cine formulations have been shown to be safe, well tol-
erated, and immunogenic in malaria-naïve volunteers, 
and have, therefore, enabled progression of this vaccine 
candidate to protective efficacy trials [4, 8]. However, 
one complication impeding the development of a P. vivax 
vaccine is that, in contrast to Plasmodium falciparum, 
there are two common PvCSP alleles; these alleles con-
sist of nine amino acids at the central repeat regions, 
GDRA[D/A]GQPA and ANGAGNQPG, thereby defin-
ing the sequence variants known as VK210 and VK247, 
respectively [9, 10]. Because VK210 and VK247 variants 
are both globally distributed [11–16], PvCSP-based vac-
cines need to induce protective immune responses to 
them both.

Recently, Espinosa et  al. developed chimeric Plasmo-
dium berghei parasites bearing the central repeat region 
of PvCSP(VK210) [17] and showed that antibodies 
against this central repeat region play an important role 
in protective immunity. The same authors speculated 
that full-length PvCSP vaccines would enhance the qual-
ity, magnitude, and breadth of protective antibody and 
T cell responses. More recently, a transgenic P. berghei 
parasite expressing the full-length PvCSP(VK210) allele 
[PvCSP(VK210)/Pb] has been developed and showed 
that the newly developed PvCSP vaccine elicited protec-
tive efficacy against infection with this transgenic para-
site line [18].

In the study described here, a transgenic P. berghei 
parasite expressing the full-length PvCSP(VK247) allele 
[PvCSP(VK247)/Pb] was generated and character-
ized. The infectivity of the PvCSP(VK247)/Pb parasite 
line was comparable to that of the wild-type P. berghei 
ANKA 2.34 strain (WT-Pb) in  vivo. PvCSP(VK247)/Pb 
sporozoites reacted strongly with an anti-PvCSP(VK247) 
mAb specific for the repeat region, and sporozoite inva-
sion of HepG2 cells by PvCSP(VK247)/Pb was inhibited 
by the same mAb. These results suggest that these two 
transgenic parasites can be used to evaluate the poten-
tial efficacy of the two PvCSP-based vaccine candidates 
encompassing the two major genetic variants, making 
clinical trials of the two alternative forms of the CSP-
based vaccine possible using a murine model of P. vivax 
infection.

Methods
Ethics statement
The experimental protocols used and all care and han-
dling of the animals were in accordance with the guide-
lines for animal care and use prepared by Kanazawa 
University (Ref. no. 22118–1) and Obihiro University of 
Agriculture and Veterinary Medicine (Ref. no. 26–109).

Cell lines and abs
HepG2 cells were maintained as described previously 
[19]. The monoclonal antibodies (mAbs) used were 
as follows: 2F2, mAb specific for the repeat sequence 
[DRA(D/A)GQPAG] of PvCSP(VK210) (MRA-184; 
Malaria Research and Reference Reagent Resource 
Center [MR4], Manassas, VA, USA); 2E10E9, mAb 
specific for the repeat sequence (ANGAGNQPG) of 
PvCSP(VK247) (MRA-185; MR4); 3D11, mAb specific 
for the repeat sequence of PbCSP of the ANKA strain 
(PbCSP) (MRA-100; MR4).

Plasmid construction and parasite transfection
To construct the transfer plasmid for generating the 
PvCSP(VK247)/Pb transgenic parasite line in place of 
native PbCSP, the DNA sequence corresponding to 
amino acids His24-Asp370 of the entire PvCSP VK247 gene 
(GenBank accession number M69059) minus its signal 
peptide and glycosylphosphatidylinositol (GPI)-anchor 
sequence was amplified from pEU3-PvCSP(VK247) 
using pPvCSP-VK247-F4 and pPvCSP-VK247-R1 prim-
ers (Table  1). The PCR product was then cloned into 
pENTR (Invitrogen life Technologies, Carlsbad, CA, 
USA) to construct pENTR-PvCSP-VK247-MunI. Our 
previous study confirmed that the GPI anchor of the 
PfCSP moieties derived from PvCSP(VK210) were 
able to function in the transgenic rodent parasites [18]. 
The DNA sequence corresponding to amino acids 
Lys372-Asn395 of the GPI anchor of PfCSP (Accession 
number AAN87615) was amplified from pBS-5′UTR-
PfCSP-Tcell [20] using pPvCSP-VK247-F1 and pPfCSP-
R7 primers (Table  1), and then cloned into pENTR to 
construct the pENTR-PvCSP-VK247-XmaI/MunI plas-
mid. A 1.1-kb fragment of PvCSP(VK247) was excised 
from pENTR-PvCSP-VK247-MunI by digestion with 
XmaI and MunI and then inserted into the XmaI/MunI 
sites of pENTR-PvCSP-VK247-XmaI/MunI to con-
struct pENTR-PvCSP-VK247-R1. A 1.7-kb fragment 
of the PvCSP(VK247) nucleotide sequence and GPI 
anchor nucleotide sequence of PfCSP was excised from 
pENTR-PvCSP-VK247-R1 by digestion with XmaI 
and SfuI and then inserted into the XmaI/SfuI sites of 
pBS-5′UTR-PvCSP(VK210)-dihydrofolate reductase 
(DHFR)-3′ [18] to construct pBS-5′UTR-PvCSP(VK247)-
DHFR-3′-R1. The transgenic PvCSP(VK247)/Pb para-
site was generated by transfection of WT-Pb with the 
linearized pBS-5′UTR-PvCSP(VK247)-DHFR-3′ plas-
mid, as described previously [21]. For genotype analy-
sis, genomic PvCSP(VK247)/Pb DNA was extracted 
from PvCSP(VK247)/Pb-infected mouse blood using 
a QIAamp DNA Blood Mini kit (Qiagen, Hilden, Ger-
many). The replacement of Pbcsp gene with the Pvcsp 
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gene was confirmed by PCR using a set of forward and 
reverse gene-specific primers (Table 1).

Western blotting
Sporozoites were separated by 10 % sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis, transferred to 
an Immobilon-FL PVDF membrane (Merck Millipore, 
Guyancourt, France) and then probed with either of the 
following mAbs: 3D11, 2F2, or 2E10E9. Blots probed with 
the appropriate secondary Abs conjugated to IRDye 800 
(Rockland Immunochemicals, Gilbertsville, PA, USA) 
with the same membranes were visualized using an 
Odyssey infrared imager (LI-COR, Lincoln, NE, USA).

Indirect immunofluorescence assay (IFA)
Sporozoites isolated from mosquito salivary glands were 
loaded onto glass slides and fixed as described previ-
ously [18]. Each slide was stained with an Alexa Fluor 
488-conjugated 2E10E9 mAb and mounted with a drop 
of VECTASHIELD containing 4′, 6′-diamidino-2-phe-
nylindole (Vector Laboratories, Burlingame, CA, USA). 
An LSM710 inverted laser scanning microscope (Carl 
Zeiss, Tokyo, Japan) was used for image acquisition.

Infectivity and fitness of PvCSP(VK247)/Pb parasites
Anopheles stephensi mosquitoes (SDA 500 strain) were 
allowed to feed either on WT-Pb, PvCSP(VK210)/Pb, 
or PvCSP(VK247)/Pb parasite-infected mice. The infec-
tivity of these parasites from mice to mosquitoes was 
assessed at day 14 post-feeding. Mosquito midguts were 
dissected in sterile PBS and stained with mercury chro-
mate solution as described previously [21], after which 

the prevalence and numbers of oocysts were recorded. 
Sporozoite development in the mosquito salivary glands 
was assessed on day 21 after the blood meal was taken. 
Mice, bitten by three to seven mosquitoes infected with 
either PvCSP(VK210)/Pb or PvCSP(VK247)/Pb were 
checked for the development of blood-stage parasites by 
microscopic examination of Giemsa-stained thin blood 
smears.

Inhibition of sporozoite infectivity in vitro
HepG2 cells were seeded at a density of 5 × 104 cells/well 
in a collagen type I-coated 48-well plate 48 h prior to the 
addition of PvCSP(VK247)/Pb sporozoites. Sporozoites 
(2  ×  103), isolated from mosquito salivary glands and 
then incubated with 100-fold dilutions of 2F2 or 2E10E9 
mAbs, were added to the HepG2 cells. The sporozoites 
were incubated with the cells for 72 h, the culture media 
was changed every 24  h, and total RNA was extracted 
from the cells using a QIAamp RNA blood mini kit (Qia-
gen). First-strand cDNA synthesis was carried out using 
MultiScribe™ reverse transcriptase (Applied Biosystems, 
Life Technologies, Foster City, CA, USA) with random 
primers. Semi-quantitative PCR was performed with P. 
berghei 18s rRNA and human β-actin primers (Table 1). 
P. berghei 18s rRNA copy numbers reflect the exoeryth-
rocytic forms (EEF) numbers in the HepG2 cells [22].

Statistical analyses
Statistical significance was assessed using the Kruskal–
Wallis test to examine differences in oocyst or sporozoite 
counts per mosquito. Fisher’s exact probability test was 
used to examine differences in the infection prevalence 

Table 1  List of primers used in this study

Locus Primer name Sequence (5′–3′) Purpose

PvCSP(VK247) pPvCSP-VK247-F4 CACCCGGGCACAATGTAGATCTGTCCAAGGCCATA Generation of PvCSP(VK247)/Pb

pPvCSP-VK247-R1 CAATTGAACTATTTACGACATTAAACACACTGGAACACT-
TATCCATTGTACAAACATCAGTCTCAAGGTCATTCAA

pPvCSP-VK247-F1 CACCCGGGAATGTCGTAAATAGTTCAATTGGATTAATAATG-
GTA

pPfCSP-R7 GTCGACTGTTAAATGAACTTCGAAGAATTCATTTTTTGTG

PbCSP pPbCSP-F3 ATGAAGAAGTGTACCATTTTAGTTGTAGCG Confirmation of integration by recombination for PvCSP 
genespPbCSP-R3 TACAAATCCTAATGAATTGCTTACAATATT

PvCSP(VK210) pPvCSP-VK210-F4 CACCCGGGCACAATGTAGATCTGTCCAAGGCCATA

pPvCSP-VK210-R1 TCCATCTGCTCTGTCTCCTGGTTG

PvCSP(VK247) pPvCSP-VK247-F4 CACCCGGGCACAATGTAGATCTGTCCAAGGCCATA

pPvCSP-VK247-R3 ATTGCCAGCCCCATTTGCTCCTGGTTG

Pb 18 s rRNA p18 s rRNA-F1 AAGCATTAAATAAAGCGAATACATCCTTAC Confirmation of integration by recombination for PvCSP 
genes and invasion assayp18 s rRNA-R1 GGAGATTGGTTTTGACGTTTATGTG

Human action pHA067803-F TGGCACCCAGCACAATGAA Invasion assay

pHA067803-R CTAAGTCATAGTCCGCCTAGAAGCA
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rates (mosquitoes and mice). The Mann–Whitney test 
was used to examine differences in the parasitaemia of 
the mice. Values where P was <0.05 were considered sta-
tistically significant. Statistical analyses were performed 
using Prism version 6 (GraphPad Software Inc., La Jolla, 
CA, USA).

Results
Generation and biological characterization 
of PvCSP(VK247)/Pb parasites
Using a plasmid encoding the full-length Pvcsp(VK247) 
gene and the dihydrofolate reductase (DHFR) gene 
(which confers resistance to pyrimethamine) to transfect 
the parasites, the PvCSP(VK247)/Pb parasite was gener-
ated (Fig.  1). Briefly, the full-length Pvcsp(VK247) gene 
consists of the regions encoding the N-terminal signal 
peptide and C-terminal GPI anchor, both of which are 
derived from Pfcsp. The P. vivax replacement cassette 
represents the CSP sequence of the P. vivax VK247 strain, 
from amino acids 24–370. WT-Pb blood stage parasites 
were transfected in vitro with a plasmid linearized by the 
XhoI restriction enzyme, as described previously [21]. 
The transfected parasites, injected intravenously into 
BALB/c mice, were selected under pyrimethamine treat-
ment. Ten days later, drug-resistant parasites were recov-
ered and cloned by limiting dilution.

Characterization of PvCSP(VK247)/Pb sporozoites 
with mAbs
Gene replacement by genetic recombination and genomic 
integration of the Pvcsp(VK247) gene cassette was con-
firmed in the transgenic parasite, PvCSP(VK247)/Pb 
(Fig.  2a). The western blotting data showed clearly that 
the PvCSP(VK247)/Pb sporozoites stained positive with 
the 2E10E9 mAb and negative with the 3D11 mAb or the 
2F2 mAb (Fig.  2b). The relative molecular mass (Mr) of 
the PvCSP(VK247) protein is 37.0 kDa (Fig. 2b), a value 

lower than its predicted molecular weight (~50 kDa), and 
possibly resulting from cleavage of the precursor because 
cleavage of CSP occurs on the sporozoite surface when 
parasites contact hepatocytes [23, 24]. No cross-reactiv-
ity was observed between the 2E10E9 mAb and either 
WT-Pb, PvCSP(VK210)/Pb or PvCSP(VK247)/Pb sporo-
zoites. IFAs showed that the PvCSP(VK247) protein was 
expressed on the surface of each sporozoite isolated from 
the salivary glands of PvCSP(VK247)/Pb-infected mos-
quitoes (Fig. 2c).

Infectivity of PvCSP(VK247)/Pb parasites in mosquitoes 
and mice
Oocyst and sporozoite counts for the PvCSP(VK247)/
Pb transgenic parasite were compared with those of 
the WT-Pb or the transgenic PvCSP(VK210)/Pb para-
site lines. On day 14 post feeding, the PvCSP(VK247)/
Pb-infected mosquito midguts contained approximately 
150 healthy-looking oocysts per midgut. Oocyst inten-
sity and prevalence in the PvCSP(VK247)/Pb line were 
not reduced compared with those of the WT-Pb or the 
PvCSP(VK210)/Pb parasite lines (Table  2; Fig.  3a). On 
day 21, after dissecting the mosquito salivary glands, 
the total number and percentage prevalence of sporozo-
ites from PvCSP(VK247)/Pb were comparable to those 
of the WT-Pb and the PvCSP(VK247)/Pb lines (Table 2; 
Fig.  3b). To examine whether PvCSP(VK247)/Pb trans-
genic parasites had adapted to their in  vivo environ-
ment, BALB/c mice were challenged through the biting 
of three to seven PvCSP(VK247)/Pb- or PvCSP(VK210)/
Pb-infected mosquitoes. At 5 and 7 days post-infection, 
the parasite prevalence and parasitaemias of the subse-
quent blood-stage infections were monitored. Although 
the percentage of the infected mice differed between 
the PvCSP(VK210)/Pb and the PvCSP(VK247)/Pb lines 
on day 5, there was no statistically significant differ-
ence between them (Fig.  4). All the mice (7/7) became 

Fig. 1  Schematic of the genomic region targeted by the PvCSP(VK247)/Pb cassette. The gene cassette consisted of the PbCSP signal sequence (SP) 
and the PvCSP(VK247) [PvCSP(VK247)24–370] genomic region fused to the region encoding the N-terminus of the glycosylphosphatidylinositol (GPI) 
anchor of PfCSP. The numbers indicate the amino acid positions of the SP, PvCSP(VK247), and GPI. SP: signal peptide of the PbCSP region corre-
sponding to amino acids 1–20; PvCSP(VK247)24–370: PvCSP(VK247) region corresponding to amino acids 24–370; GPI: GPI anchor of the PfCSP region 
corresponding to amino acids 372–395. The PbCSP gene was replaced with the PvCSP(VK247) cassette and the dihydrofolate reductase (DHFR) 
selectable marker
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infected 7 days after being bitten by PvCSP(VK247)/Pb- 
or PvCSP(VK210)/Pb-infected mosquitoes. There was no 
significant difference between the parasitaemias attained 
by the mice from either parasite line on day 5 and 7. Thus, 
these results indicate that the PvCSP(VK247)/Pb and 
the PvCSP(VK210)/Pb lines were comparable in terms 
of their parasitaemias and infectivity profiles in mice. 
Figures  3 and 4 show that the PvCSP(VK247)/Pb para-
site line behaved sufficiently similar to the WT-Pb or the 
PvCSP(VK210)/Pb lines in the mosquito and the mouse 
stages to allow it to be used for measuring the protective 
efficacy of CSP-based vaccines.

The 2E10E9 mAb inhibits PvCSP(VK247)/Pb sporozoite 
invasion of HepG2 cells in vitro
To evaluate the utility of the transgenic PvCSP(VK247)/
Pb parasite line as a tool for assessing the efficacy 
of future vaccines, the neutralization capabilities of 

anti-PvCSP mAbs in  vitro were tested. Figure  5 shows 
that PvCSP(VK247)/Pb sporozoite invasion of HepG2 
cells was inhibited by the 2E10E9 mAb, but not by the 
2F2 mAb. This result indicates that PvCSP(VK247)/Pb 
sporozoite invasion of HepG2 cells is inhibited by the 
mAb targeting the PvCSP repeat region of VK247.

Discussion
In the present study shown the successful development, 
characterization, and applicability to CSP-based vaccine 
research of P. berghei parasites expressing the full-length 
PvCSP(VK247). The infectivity levels of PvCSP(VK247)/
Pb from mosquitoes to mice and vice versa were com-
parable to those of WT-Pb or PvCSP(VK210)/Pb para-
site lines. PvCSP(VK247)/Pb sporozoite invasion of 
HepG2 cells was inhibited by 2E10E9, a mAb that spe-
cifically recognizes the repeat sequence (ANGAG-
NQPG) of PvCSP(VK247). These results suggest that the 

Fig. 2  PvCSP(VK247) expression in PvCSP(VK247)/Pb sporozoites. a Replacement of the wild-type PbCSP gene with the PvCSP(VK210) gene or the 
PvCSP(VK247) gene in the PvCSP(VK210)/Pb or PvCSP(VK247)/Pb parasite lines was verified by PCR using genomic DNA from WT-Pb, PvCSP(VK210)/
Pb, or PvCSP(VK247)/Pb, respectively. Pb 18s rRNA was used as a loading control. b The salivary glands from mosquitoes infected with the trans-
genic parasites were lysed and loaded onto 10 % gels, and then immunoblotted with the 3D11, 2F2, or 2E10E9 mAbs. c PvCSP(VK247)/Pb sporozo-
ites were probed with the 2E10E9 mAb conjugated with Alexa Flour 488 (green). Parasite nuclei were visualized by DAPI (blue). Bar = 20 μm

Table 2  Developmental characteristics and infectivity of PvCSP (VK247)/Pb parasites in Anopheles stephensi mosquitoes

Significance was assessed using the Kruskal–Wallis test (oocysts per midgut or sporozoites per salivary gland) or Fisher’s exact probability test (% of midguts or 
salivary glands infected parasites)

120 mosquitoes were examined in each experiment
a  P < 0.05 (Kruskal–Wallis test) compared with the WT-Pb parasite

Parasite Oocysts per midgut (± SEM) % of midgut infected Sporozites per  
salivary gland (± SEM)

% of salivary 
gland infected

WT-Pb 119.49 (11.64) 96.7 4953 (565) 85.8

PvCSP(VK210)/Pb 131.91 (9.15) 96.7 5415 (555) 84.2

PvCSP(VK247)/Pb 150.14 (10.25)a 94.2 4533 (595) 78.3
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PvCSP(VK247)/Pb parasite line can be used in sporozoite 
challenge tests evaluating PvCSP-based vaccines.

Our previous report has shown that the 
PvCSP(VK210)/Pb parasite line is a useful tool for eval-
uating the protective efficacies of new PvCSP-based 
vaccines in a murine model of malarial disease [18]. 
PvCSP(VK247)/Pb sporozoite invasion of HepG2 cells 
was specifically inhibited by the 2E10E9 mAb, but not 

by the 2F2 mAb. Therefore, the PvCSP(VK247)/Pb and 
PvCSP(VK210) parasite lines can be used to evaluate the 
potential efficacies of PvCSP-based vaccine candidates 
encompassing the two major genetic variants prior to 
clinical trials.

Since there is no human malaria parasite-animal chal-
lenge model to test protective or transmission blocking 
efficacy of new vaccine formulations, a murine model 

Fig. 3  Developmental characteristics and the infectivity and fitness of profiles of PvCSP(VK247)/Pb parasites in Anopheles stephensi mosquitoes. 
The number of oocysts per mosquito and the percentage of infected mosquitoes were comparable among the WT-Pb (n = 120), PvCSP(VK210)/
Pb (n = 120), and PvCSP(VK247)/Pb (n = 120) groups. a Midgut oocysts in the mosquitoes were examined 14 days after an infectious feed. Data are 
the mean number of oocysts observed (± SEM). b Salivary gland sporozoites in mosquitoes were examined 21 days after an infectious feed. Data 
are the mean number of sporozoites observed (± SEM). Percentages on top of the panels indicate the infectivity rates. Statistical significance was 
determined by the Kruskal–Wallis test (oocyst or sporozoite intensity) or Fisher’s exact probability test (oocyst or sporozoite prevalence). *P < 0.05

Fig. 4  Parasitaemia in mice infected with PvCSP/Pb transgenic parasites after receiving infectious mosquito bites. Each mouse (five mice/group) 
was bitten by three to seven mosquitoes infected with PvCSP(VK210)/Pb or PvCSP(VK247)/Pb. Giemsa-stained thin smears of mouse tail blood were 
prepared on day 5 and 7 after the mice had received the mosquito bites. Data are the means (± SEM) of the results. The percentages on the top of 
the panels indicate the infectivity rates. Statistical significance was determined by the Mann–Whitney test (percentage parasitaemia) and Fisher’s 
exact probability test (infectivity rates)
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employing transgenic parasites would closely mimic vac-
cination. Furthermore, the use of mice could be more 
informative than the in  vitro sporozoite neutraliza-
tion assay or membrane feeding assay, which are only 
an in  vitro method for assessment of humoral immune 
responses and may not truly represent the in vivo cellular 
immune responses. Based on this concept, several trans-
genic lines {e.g., PfCSP [20, 25–28], PvCSP(VK210) [17, 
18], Pfs25 [29, 30], Pvs25 [31, 32], PfMSP119 [33, 34], and 
PvTRAP [35]} have been successfully established by our 
and other groups to evaluate malaria vaccine candidates 
in murine models. These transgenic lines have proven 
to be an important tool in preclinical optimization of 
malaria vaccines as well as in future testing of sera from 
people vaccinated with the vaccines, without requiring P. 
falciparum and P. vivax cultures in the vaccination field 
sites in areas of endemicity.

Hence, use both of the PvCSP(VK210)/Pb and 
PvCSP(VK247)/Pb should facilitate the appraisal of new 
vaccine candidates with universal coverage of the allelic 
variants of malaria antigens while continuing to provide 
a practical platform for evaluating CSP-based protective 
immune responses against P. vivax.

Conclusions
The present study has been described the successful devel-
opment of the transgenic P. berghei parasite expressing the 
full-length Pvcsp(VK247) in place of the natural P. berghei 
counterpart gene. The infectivity levels of PvCSP(VK210)/
Pb and PvCSP(VK247)/Pb transgenic lines from mos-
quitoes to mice and vice versa were comparable to that 
of WT-Pb. The transgenic parasites expressing either of 
the two allelic versions of full-length PvCSP are power-
ful tools for evaluating the functional in  vivo efficacy of 
PvCSP-based vaccine-induced immune responses and 
identifying protective epitopes in such vaccines.
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