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Abstract 

Background: Malaria transmission, primarily mediated by Anopheles gambiae, persists in Dar es Salaam (DSM) 
despite high coverage with bed nets, mosquito-proofed housing and larviciding. New or improved vector control 
strategies are required to eliminate malaria from DSM, but these will only succeed if they are delivered to the minor-
ity of locations where residual transmission actually persists. Hotspots of spatially clustered locations with elevated 
malaria infection prevalence or vector densities were, therefore, mapped across the city in an attempt to provide a 
basis for targeting supplementary interventions.

Methods: Two phases of a city-wide population-weighted random sample of cross-sectional household surveys 
of malaria infections were complemented by two matching phases of geographically overlapping, high-resolution, 
longitudinal vector density surveys; spanning 2010–2013. Spatial autocorrelations were explored using Moran’s I and 
hotspots were detected using flexible spatial scan statistics.

Results: Seven hotspots of spatially clustered elevated vector density and eight of malaria infection prevalence were 
detected over both phases. Only a third of vectors were collected in hotspots in phase 1 (30 %) and phase 2 (33 %). 
Malaria prevalence hotspots accounted for only half of malaria infections detected in phase 1 (55 %) and phase 2 
(47 %). Three quarters (76 % in phase 1 and 74 % in phase 2) of survey locations with detectable vector populations 
were outside of hotspots. Similarly, more than half of locations with higher infection prevalence (>10 %) occurred 
outside of hotspots (51 % in phase 1 and 54 % in phase 2). Vector proliferation hazard (exposure to An. gambiae) and 
malaria infection risk were only very loosely associated with each other (Odds ratio (OR) [95 % Confidence Interval 
(CI)] = 1.56 [0.89, 1.78], P = 0.52)).

Conclusion: Many small, scattered loci of local malaria transmission were haphazardly scattered across the city, so 
interventions targeting only currently identifiable spatially aggregated hotspots will have limited impact. Routine, 
spatially comprehensive, longitudinal entomological and parasitological surveillance systems, with sufficient sensitivity 
and spatial resolution to detect these scattered loci, are required to eliminate transmission from this typical African city. 
Intervention packages targeted to both loci and hotspots of transmission will need to suppress local vector proliferation, 
treat infected residents and provide vulnerable residents with supplementary protective measures against exposure.
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Background
In the city of Dar es Salaam, considerable progress has 
recently been made to ensure high coverage of stand-
ard interventions like rapid diagnostic tests (RDTs), arte-
misinin-based combination therapy (ACT), long-lasting 
insecticidal nets (LLINs) and other supplementary vec-
tor control measures, such as mosquito-proofed hous-
ing and regular application of microbial larvicides [1–5]. 
Nevertheless, stable residual malaria transmission persists 
(Msellemu et al. pers.comm. and [6]), so new or improved 
strategies for controlling malaria vectors [7–9] and para-
sites [8, 10] will be required to achieve elimination. How-
ever, even the most effective intervention measures can 
only be effective if they are delivered to locations where 
residual transmission persists [11]. Here the study describes 
how hotspots of spatially clustered locations with elevated 
malaria infection prevalence and vector densities were 
mapped across the city of Dar es Salaam, in an attempt to 
provide a basis for targeting supplementary interventions.

Methods
Study area
The study was conducted in the urban and peri-urban 
area of Dar es Salaam city. The city is Tanzania’s com-
mercial and economic capital located on the shores of 
the Indian Ocean (Fig. 1). Dar es Salaam has 4.4 million 
inhabitants [12] and is amongst the world’s ten fast-
est growing cities [13] with an annual growth rate of 
5.6  % [12]. However this growth is unplanned, result-
ing in about 70  % of residents living in informal settle-
ments [14]. At the time of this study, Dar es Salaam had 
a mean human infection prevalence of approximately 
10  %, arising from modest levels of transmission inten-
sity, mediated by remarkably low vector densities, pre-
dominantly Anopheles gambiae sensu stricto [5, 15]. 
Administratively, the city comprises three municipalities 
namely Ilala, Kinondoni and Temeke and it is divided 
into 90 wards [12] (Fig. 1). The study area comprised 71 
out of these 90 wards, covering 498.2 km2 of the city with 
approximately 3.6 million residents. Of the study wards, 
15 were in phase I and all 71 wards were in phase II. The 
initial 15 were central wards to which larviciding was 
originally implemented under the Urban Malaria Control 
Programme (UMCP) [16] and comprehensively scaled up 
by the preceding operational research programme in new 
56 wards [17]. In total the study covered the whole of 
urban and peri-urban area of Dar es Salaam city (Fig. 1). 
Wards are further divided into smaller neighbourhood 
units called mitaa (a Kiswahili word for street, written in 

the singular form as mtaa) [18]. Each mtaa is subdivided 
into ten cell units (TCUs), comprising clusters of approx-
imately 10–20 houses, although some TCUs contain a 
much larger number of houses [17].

With the exception of a break in activities while the 
programme was restructured between October and 
December 2010, Bacillus thuringiensis var. israelensis 
(Bti) was applied over the full course of the study, to the 
same 15 wards previously assessed during the operational 
research phase of the UMCP between 2004 and 2008, 
and this preventative service was scaled up to cover an 
additional 56 adjacent wards in January 2012 (Fig.  2). 
A coated granule formulation was used up to July 2011 
(VectoBac®, Valent BioSciences Corporation), follow-
ing which a pre-diluted aqueous suspension formulation 
(Bactivec®, Labiofam®) was used instead.

Data collection
This study is a secondary analysis of two distinct phases 
of parasitological and entomological survey data (Figs. 1, 
2), the collection of which is described in detail elsewhere 
(Msellemu et  al. pers. commun). Household cross sec-
tional and longitudinal surveys were subsequently used 
to collect parasitological and entomological data respec-
tively. While two different sampling frames were used for 
surveying adult mosquitoes and the infection prevalence, 
the latter was systematically overlaid upon the former in 
the first phase and the former was overlaid on the latter 
in the second phase of surveys because mosquito sur-
veillance sites were reduced when fund for continuously 
monitoring mosquito vector densities ran out [19]. Infec-
tion with blood-stage Plasmodium falciparum parasites 
was tested for using RDTs (MAL-Pf®, ICT Diagnostics, 
Cape Town, South Africa).

The total number of households in each TCU within 
the mapped study area [17] was enumerated by census 
between January 2008 and May 2010. While awaiting 
completion of this enumeration of all the households in 
the study area, for selection of a population-weighted 
representative sample, a first phase of purposively-
sampled household surveys were conducted. This first 
round of household parasitological surveys was carried 
out from March 2010 to September 2010; consisting of 
291 housing compounds (median =  7 households), 156 
of which were subjected to routine collection of adult 
mosquitoes (Msellemu et al. pers. commun), so that this 
novel system [19] for monitoring vector densities at high 
spatial resolution could be evaluated in terms of its epi-
demiological predictive power.
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Following completion of the household enumeration, 
a second phase of household surveys was begun, which 
sampled much smaller numbers of larger population 
clusters, selected randomly as index TCUs. The TCUs 
were weighted according to their population size and 
selected using a weighted sampling strategy (Msellemu 
et al. pers. commun). Between Oct 2010 and May 2012, 
a second phase of surveys was completed which encom-
passed a total of 86 clusters centred on index TCUs 
selected at random in proportion to their estimated 
population size (median =  392 households). Where the 
TCU had less than 20 consenting household heads, a 
neighbouring TCU was chosen at random from where 
the remaining number of households required to com-
plete the sampling cluster were selected and recruited 
in exactly the same way. In this phase 30 of the 86 index 
TCUs were subjected to routine collection of adult mos-
quitoes. Selection of these co-surveyed areas relied upon 
willingness of the index TCU leaders to participate in the 
follow up study to monitor mosquito vector densities and 

also in TCUs where the environment were supportive for 
placement of ITT [20].

Anopheles mosquitoes were correspondingly col-
lected in two different phases. The first phase lasted from 
March to October 2010 and consisted of 615 different 
sampling locations. These locations were set up within 
the previously studied 15 wards of the Dar es Salaam 
UMCP [17], which was designed to establish and evalu-
ate systems for routine larvicide application at program-
matic scales [2, 5, 16]. Following a break in funding, the 
second phase of entomological surveys was initiated in 
May 2011 and sustained through January 2013, with far 
greater scale-up to span a total of 1398 locations across 
the entire study area. The collections of adult mosquitoes 
were routinely conducted at each location on an approxi-
mately monthly basis, using Ifakara Tent Traps (ITT) [20] 
applied through a community-based system as described 
in detail elsewhere [19].

Throughout the study period, only modest levels of 
physiological resistance to pyrethroids, and behavioural 

b

ca

Fig. 1 Map of the study area, epidemiological and entomological survey locations. The background is a relief shade map accessed from ESRI—
online base maps on 30th Aug 2015
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resistance or resilience [15] to indoor vector control 
measures by biting at dawn or dusk, were observed for 
the An. gambiae complex (Chaki et  al. pers.comm.). 

Laboratory analysis of morphologically-identified 
specimens of An. gambiae sensu lato, by polymerase 
chain reaction [21], confirmed that this complex was 

a b

c d

Fig. 2 Densities of Anopheles gambiae vector mosquitoes and malaria infection prevalence amongst humans
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predominantly composed of the nominate sibling spe-
cies An. gambiae s.s. [86  % (328/382)], with the small 
remainder being Anopheles arabiensis [10  % (40/382)]. 
Anopheles gambiae s.s. is the most anthropophagic and 
efficient sibling species from this complex, and very few 
Anopheles funestus [3  % (4/382)] or other Anopheles 
[1  % (10/382)] were caught. Vector density was there-
fore expressed in terms of total numbers of An. gambiae 
complex specimens caught per trap per night per TCU 
for subsequent analyses, and considered representative of 
this dominant, nominate sibling species.

The spatial references for both mosquitoes and cross-
sectional sampling locations were obtained using hand-
held global positioning systems (GPS) at an accuracy of 
5 m. These were the basis for calculating the centroids of 
the sampling clusters. The TCU boundaries were mapped 
using a participatory mapping approach [17, 18].

Statistical analysis
Statistical analyses and data processing were performed 
using STATA (version 10; Statacorp). ArcGIS software 
(version 10; ESRI) was used to create spatial adjacency 
matrices, produce maps and perform exploratory spatial 
data analyses. FleXScan (version 3.1.2), an open source 
software [22] was used for the detection of spatial clus-
ters (hotspots) in malaria infection prevalence and mos-
quito vector densities.

The global Moran’s I statistics (MI) [23] were employed 
to test for any prevailing spatial autocorrelations in mos-
quito vector densities and malaria infection prevalence. 
Spatial autocorrelation occurs when there is clustering 
(+ve Z-score) or dispersion (−ve Z-score) and this is 
significant at p ≤  0.05 [23]. A p value > 0.05 suggests a 
homogeneous spatial pattern (random).

Local spatial clustering (hotspots) in mosquito densi-
ties and malaria infection prevalence were detected using 
the flexible spatial scan statistic (FleXScan) developed by 
Tango and Takahashi [24]. Flexible scan statistics create 
both circular and irregular shaped clusters. Since Dar 
es Salaam is a low transmission area, and these typical 
settings tend to restrict high transmission to patchier 
spatial scales, it was preferred to use flexible scan clus-
tering method to enable detection of actual noncircular 
clusters even at highly focalized spatial scales [25]. This 
method identifies clusters based on a spatial weight 
matrix in which the detected cluster is allowed to be flex-
ible in shape while at the same time confined within rela-
tively small neighbourhoods of each sampling unit [25]. 
In developing the matrix file, spatial relationships were 
conceptualized based on Delaunay Triangulation, with 
Euclidian distance. Similar to Kulldorff’s spatial scan sta-
tistics [26], the method uses a circular moving and sys-
tematically scanning window, in which not only the whole 

area inside the window can be considered as a potential 
cluster, but also spatially connected areas inside the win-
dow, which makes it possible to detect irregular-shaped 
clusters [24]. The analysis parameters were set to purely 
spatial analysis, scanning for clusters with high rates. 
Hotspots were defined as spatially aggregated TCUs with 
significantly higher than average levels of malaria infec-
tion prevalence or An. gambiae mosquito densities [11]. 
The median values of malaria infection prevalence i.e. 
12.05 % for phase 1 and 8.49 % for phase 2 were used as 
cut-off values in stratifying the prevalence data at TCU 
level, to allow analysis based on a binary logistic vari-
able, assuming a binomial distribution for this outcome, 
with prevalence above the median in each phase coded 
as 1 and below the median coded as 0. The likelihood of 
clusters in mosquito densities was calculated assuming 
a Poisson distribution. The numerator was aggregated 
counts of adult female An. gambiae mosquitoes per TCU 
and the denominator was expected population of An. 
gambiae mosquitoes per TCU. Clusters of malaria infec-
tion prevalence were detected using a binomial statisti-
cal model. Statistical significance for the identification of 
both primary and secondary clusters was set at p < 0.05, 
which was explored by means of Monte Carlo replica-
tion of data sets under the null hypothesis with at least 
9999 replications to ensure adequate power for defining 
those clusters [27, 28]. The relative risk (RR) which is the 
standardized risk ratio of observed mean catches of An. 
gambiae or prevalent infections over the expected mean 
or prevalent infections (“expected number of cases within 
the cluster when the null hypothesis is true, that is, when 
the risk is the same inside and outside the cluster”) was 
also presented (Table 2).

Ethical considerations
Only participants giving informed consent were included 
in the study, including the mosquito catchers and the 
house owners where the catches took place, as well as 
the participants in the epidemiological cross-sectional 
parasite surveys. Participants found to be infected with 
malaria parasites during the surveys were treated with 
artemether-lumefantrine (Coartem®; Novartis Pharma 
AG, Basel, Switzerland) following national treatment 
policies and guidelines. Ethical approval for all proce-
dures implanted in this study was obtained from the 
Institutional Review Board of the Ifakara Health Insti-
tute (Approval A.50), the Medical Research Coordination 
Committee of the Tanzanian National Institute of Medi-
cal Research (Approval NIMR/HQ/R.8a/Vol.IX/801), 
the Research Ethics Committee of the Liverpool School 
of Tropical Medicine (09.60) and the Human Research 
Ethics Committee (HSEC) at University of the Witwa-
tersrand (M120835).
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Results
A total of 12,170 person nights (function of number of 
traps per night) of community-based ITT capture were 
conducted from March 2010 to January 2013. A total of 
382 female An. gambiae were caught with an overall aver-
age catch per trap night of 0.024 (in phases I (0.064) and 
II (0.012). Out of 11,187 individuals who were tested for 
malaria infections; 1237 (11.1  %) were positive malaria 
cases and 9950 (88.9  %) were negative cases. The over-
all mean malaria prevalence was (11  %); in phase I the 
mean prevalence was 12.7 % (381/2754) and II was 10.8 % 
(854/8433).

Spatial autocorrelation
Spatial dependences were observed in all outcome vari-
ables (Table  1). The noted positive spatial autocorrela-
tion in both measured outcomes indicated a tendency 
towards clustering, meaning that spatial samples of An. 
gambiae mosquito densities or malaria prevalence that 
were nearby to each other in space were more similar 
than would be expected by random chance (Table 1).

Spatial clustering in Anopheles gambiae mosquitoes
In the first phase of the survey, six spatially aggregated 
clusters of elevated An. gambiae density were found 
in the central, western and southern parts of the city 
(Fig.  2a). These clusters were small in size and highly 
focalized (median =  5 survey locations, range =  1–23), 
with only three out of the six containing more than one 
survey location. Of the detected clusters, only one clus-
ter consisting of a single location occurred outside of 
the 15 wards covered by larviciding (Fig.  2a), confirm-
ing that targeted selection of these wards for the initial 
operational research phase of the UMCP [5, 17] was 
appropriately planned. The clusters of relatively high 
An. gambiae density detected in this phase consisted of 
less than a tenth of all survey locations, but accounted 
for almost one third of all An. gambiae caught (Table 2). 
Nevertheless, the remaining two thirds of all An. gambiae 
were caught outside these clusters (Table  2), and three 
quarters of the locations where any An. gambiae were 
caught (76 %; 95/125) were haphazardly scattered outside 

of these clusters, across a further small minority (9  %; 
57/615) of all sampling units (Fig. 2a).

After one year of continued larviciding and extension 
of the survey sampling frames, all six of the An. gambiae 
hotspots detected in phase 1 could no longer be detected 
(Fig.  2c), consistent with epidemiological analyses indi-
cating larviciding succeeded in suppressing populations 
of these hazardous malaria vectors [3]. Despite this gen-
erally encouraging picture of success for suppression of 
An. gambiae, one new, much larger cluster emerged in 
phase 2 in the north-eastern parts of the city (Fig.  2c) 
within some of the 15 wards with long-established larvi-
cide delivery systems. As in phase 1, the one large clus-
ter observed in phase 2 accounted for only one third of 
all An. gambiae collected (Table 2). In this second phase, 
the majority (73.7 %; 42/57) of scattered survey-locations 
where any An. gambiae were caught occurred outside of 
detected hotspots of spatially-aggregated clusters of ele-
vated vector density.

Spatial clusters of human malaria infection prevalence
In phase 1, two spatially aggregated clusters of elevated 
malaria prevalence were detected (Fig. 2b). The primary 
cluster was a large one, located at the south of the city 
centre on either side of Msimbazi river valley. The only 
secondary cluster occurred immediately to the north of 
the primary cluster, in the eastern wards of Hanna Nas-
sif, Mwananyamala and Kinondoni (Figs.  1, 2b). These 
clusters encompassed approximately two fifths of all sur-
vey locations and slightly more than half of all detected 
cases of malaria infection (Fig. 2b; Table 2). Nevertheless, 
the remaining majority (60 %) of locations with elevated 
(>10 %) prevalence, and almost half (45 %) of all detected 
malaria infections) occurred outside of these clusters 
haphazardly across disparate parts of the city (Fig.  2b; 
Table  2). These consisted of 50.8  % (67/132) of survey 
locations with higher prevalence. More than half (56.8 %, 
37/65) of the survey locations in the clusters of higher 
malaria prevalence detected in phase 1, occurred within 
wards with active larviciding.

Although there was a substantial drop of malaria prev-
alence from the outset of phase 2, consistent with the 

Table 1 Spatial autocorrelation/dependence of  mosquito densities and  malaria infection prevalence in  Dar es Salaam 
city based on global Moran’s I

p < 0.05 indicates tendency towards clustering

Outcome variable Phase 1: March 2010–September 2010 Phase 2: October 2010 – January 2013

Moran’s I  
coefficient

p Mean distance 
between points (m)

Moran’s I  
coefficient

p Mean distance 
between points (m)

Female An. gambiae 0.15 0.002 174 0.11 0.005 210

Malaria infection prevalence 0.17 0.020 208 0.34 0.011 799
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results of detailed epidemiological analyses (Msellemu 
et al. pers. commun), more clusters (six) of malaria prev-
alence were detected (Fig.  2d). The primary cluster did 
not change from its previous location, but was dramati-
cally reduced in size compared to phase 1. The remaining 
five clusters were in small (<1 km across) or consisted of 
long narrow linear pockets, distributed across peripheral 
parts of the city that had not previously been surveyed. 
In this second phase, these clusters of elevated malaria 
prevalence included only one fifth of all survey locations 
but contained almost half of all detected cases of malaria 
infections (Table  2). However, the remaining majority 
of detected infections nevertheless occurred outside of 
these clusters (Table 2), mostly [54.3 % (19/35)] in small, 
haphazardly scattered single locations with relatively 
high malaria prevalence (>10 %).

Association between vector density and human infection 
prevalence
Although the data frames for entomological and epide-
miological surveys used in this study were not entirely 
comparable, it is nevertheless remarkable just how dis-
similar the clustering patterns are for human malaria 
infection prevalence and densities of the main vector 
in both survey phases (Fig.  2). Despite the major dif-
ferences in spatial and temporal resolution of the ento-
mological and parasitological data, it was nevertheless 
possible to examine their mutual association in survey 
locations where both types of surveys were conducted. 
Overall population-wide prevalence at these locations 
was not associated with local vector density (Odds Ratio 
(OR) [95 % Confidence interval (CI)] = 1.56 [0.89, 1.78], 
P = 0.52)). Indeed, in many locations with elevated prev-
alence (>10 %), no An. gambiae were caught despite hav-
ing been surveyed at least 6 times with tent traps (17.7 % 
(20/113) in phase 1 and 13.2 % (10/76) in phase 2). Con-
versely, only a minority of co-surveyed locations (26.8 % 
(11/42)) in phase 1 and 37.5 % (3/8) in phase 2) where An. 
gambiae were detected had human infection prevalence 
exceeding 10 %.

Discussion
The results presented here suggest it may not be possi-
ble to eliminate malaria transmission in Dar es Salaam, 
if interventions are only targeted to spatially clustered 
hotspots that could be detected with current methods 
for cross-sectional household surveys and longitudinal 
entomological surveillance. Even though two very differ-
ent sampling frames were used in the two phases (Fig. 2), 
geographic cluster analysis consistently excluded over 
two thirds of all vectors caught and almost half of all 
malaria infections detected (Table 2). Of course, by defi-
nition, these spatial aggregations of elevated transmission 

account for even lower fractions of all surveyed locations 
(Table 2), so they do represent useful initial priority areas 
for geographically targeting new or improved interven-
tions. However, these detected clusters of vector den-
sity and parasitaemia accounted for insufficient levels of 
aggregation to satisfy the “80–20 rule” [29] that is classi-
cally used to justify targeting of interventions to high-risk 
groups. So while targeting only the clusters of elevated 
vector density or human infection prevalence could 
tackle substantial portions of malaria transmission in Dar 
es Salaam, to achieve the ambitious goal of eliminating 
malaria transmission [30], or even the vector itself [31], 
would also require targeting of all the additional small, 
scattered locations where local transmission persists.

The haphazard distribution of this very sparse vector 
population is fully consistent with the known oppor-
tunistic oviposition habits of An. gambiae generally [32, 
33] and in Dar es Salaam specifically [34–36]. This spe-
cies can complete development from egg to adult in less 
than a week in almost any water body which lasts long 
enough, is exposed to the sun and is not heavily contami-
nated with organic waste [36, 37]. In order to eliminate 
transmission hazard, larval source management, or other 
supplementary vector control measures [7–9], would 
therefore need to not only target the obvious large clus-
ters of high An. gambiae density, but also these smaller, 
haphazardly-distributed pockets of vector proliferation.

The scattered and sporadic distribution of malaria 
transmission hazard and risk in this modestly endemic 
setting is also consistent with previous reports from else-
where in Africa [6, 38, 39]. Elimination of malaria from 
such contexts will therefore require continuous, longi-
tudinal surveillance of both entomological and epide-
miological indicators at fine geographic scales, to give 
dynamic, high-resolution maps of all the small, some-
times transient, hotspots of persistent transmission, so 
new or improved interventions can be delivered in a tar-
geted and timely manner [6, 40]. The need for very fast 
response times to react to the unpredictable occurrence 
of unstable hot spots of largely symptomatic malaria [6] 
is perhaps best illustrated by the recent work from else-
where on the east African coast, showing that targeted 
responses must be implemented within a month of 
occurrence to capture these cases in a meaningful way 
[38].

Remote sensing to map environmental determinants 
of vector proliferation hazard has achieved consider-
able success at local scales [41–45] but often lacks suf-
ficient spatial resolution to detect small habitats of the 
type commonly used by species like An. gambiae [32, 
33]. Locally, in this specific context, quality-assured 
community-based systems for using Ifakara Tent Traps 
have been developed for more directly monitoring and 
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mapping transmission hazard, in terms of adult vector 
densities [19]. Consequently, the entomological indi-
cators monitored here were surveyed at higher spatial 
(mean distance of 174 m in phase 1 and 210 m in phase 
2 between survey locations) and temporal (monthly) 
resolution than was the epidemiological indicator. While 
quality-assured, community-based mosquito-trapping 
schemes at sentinel housing clusters centred on health 
facilities have been evaluated in rural Zambia [46], this 
study in urban Tanzania remains the only example in 
which such comprehensive, high-resolution coverage of 
an entire region has been achieved, so the general appli-
cability of this approach will require further assessment 
in a greater diversity of settings.

The active cross-sectional parasitological surveys used 
here to assess epidemiological trends in Dar es Salaam 
only provided temporal snapshots of malaria dynamics, 
at far too coarse a geographical resolution to guide rou-
tine malaria control operations because they were distrib-
uted across a population exceeding three million people 
and a surface area of almost 500 km2, but yielded results 
that are nevertheless consistent with those of other stud-
ies. On the coast of Kenya, similar annual cross-sectional 
surveys of much smaller populations within three small 
rural communities allowed mapping of stable hot spots of 
transmission that persisted from year to year, while active 
longitudinal cohort surveys to detect febrile malaria 
enabled mapping of sporadic, unstable transmission hot 
spots that occur unpredictably in different locations from 
year to year [34]. Furthermore, a variety of other studies 
using intensively collected cross-sectional [47], incidence 
cohort [39] or health facility [38, 44, 48, 49] data within 
small study areas have all illustrated how hot spots ubiq-
uitously occur at scales far smaller than 1 km.

The inadequate spatial resolution of these active cross-
sectional surveys when deployed on such large, program-
matically-relevant scales is particularly clearly illustrated 
by the results of a recently piloted passive surveillance 
system for mapping of malaria cases in Dar es Salaam, by 
tracing the home residence locations of patients report-
ing to health facilities with acute malaria, which demon-
strated that hot spots of malaria risk in Dar es Salaam can 
be less than 100  m across and associations of risk with 
topographic wetness index can occur at similar scales 
(Mlacha et  al. unpublished). The surprising location of 
the small cluster of high diagnostic positivity identified 
in the ward of Buguruni illustrates how mapping clusters 
by tracing patient’s residence from facilities data could be 
an effective system for detecting enigmatic, haphazardly-
scattered locations of hotspots of transmission (Mla-
cha et al. unpublished), like the ones shown to occur all 
across the city by the study presented in this manuscript. 
Similar approaches to risk mapping using passively 

collected health facility data have also been successfully 
applied in a variety of other resource-limited contexts 
[38, 43–45, 48–50], so this overall strategy may offer an 
affordable and broadly applicable means to map malaria 
transmission, that yields particularly high geographic res-
olution in this urban context where transmission is very 
focal and grass-roots local government systems provide 
very fine-scale geographic reference points that commu-
nity members can readily relate to (Mlacha et al. unpub-
lished). Beyond scaleability and affordability, the other 
major advantage of facility-based mapping of malaria 
cases is the ability to rapidly detect sporadic, unpredict-
ably distributed flare-ups of malaria transmission in suf-
ficient time (≤1  month) to enable effective targeting of 
responsive anti-parasite interventions [38], such as focal 
mass drug administration or mass screening and treat-
ment [8, 10].

As observed elsewhere [51], clusters of malaria infec-
tion prevalence only partially coincided with those of 
An. gambiae in Dar es Salaam (Fig.  2). Indeed, popula-
tion-wide malaria prevalence and An. gambiae densi-
ties in any given location were only loosely associated 
to each other, in spite of malaria primarily being locally 
transmitted in the city, rather than imported (Msellemu 
et al. pers. commun). The lack of an obvious overall rela-
tionship between spatial distribution of malaria and the 
level of hazard presented by local vector densities may, 
therefore, be largely explained by differences in city’s 
population resilience levels, such as housing conditions, 
human behaviour and utilization of interventions [4, 52, 
53]. Indeed more detailed epidemiological analyses of 
these same data confirm that high malaria risk appears 
to require both hazard and vulnerability: prevalence does 
increase dramatically with increasing local vector density 
among the small minority of households living in houses 
without protective window screening, but not among 
more resilient households protected by complete win-
dow screening [4]. It is, therefore, likely that intervention 
packages targeted to both stable and unstable hot spots 
of malaria transmission will need to not only reduce or 
eliminate the hazard represented by local vector prolifer-
ation, presumably with supplementary application of new 
or improved vector population abatement measures, they 
will also need to actively treat all local residents who are 
already infected with malaria [8, 10] as well as improve 
the resilience of the most vulnerable residents by provid-
ing them with protective measures such as bed nets [54], 
window screening [55] or spatial repellents [56, 57].

Study limitations
The sampling frames for mosquito densities and human 
malaria infection prevalence were incomparable due 
to differences in geographic and temporal resolution. 
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Similarly, the differences in sampling frames across the 
two phases made it impossible to compare and track 
temporal/spatial trends within same outcome variables. 
Comparison was only possible in a few sampling loca-
tions which were co-surveyed.

Conclusions
Small scattered locations of elevated malaria transmis-
sion and densities of vector mosquitoes were haphazardly 
scattered across the city, so interventions targeted only 
to hotspots identified by geographic cluster approaches 
with conventional entomological and epidemiological 
survey methods will probably have limited impact. Rou-
tine, spatially comprehensive, longitudinal entomologi-
cal, parasitological surveillance systems, with sufficient 
sensitivity and high spatial and temporal resolution to 
detect those scattered locations with elevated infec-
tions and mosquito densities, will be required to elimi-
nate transmission from this typical contemporary city of 
sub-Saharan Africa. Given the loose association observed 
between vector proliferation hazard and malaria infec-
tion risk, intervention packages targeted to hot spots of 
malaria transmission will need to not only suppress local 
vector proliferation and treat residents who are already 
infected, but also provide the most vulnerable popula-
tion members with supplementary protective measures 
against exposure.
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