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Abstract

Background Pyroptosis, an inflammatory form of programmed cell death, has been implicated in the pathogenesis
and progression of several cancers. However, the significance of pyroptosis-related genes (PRGs) in papillary thyroid
cancer (PTC) remains unclear.

Methods Transcriptome and clinical data of PTC patients were obtained from The Cancer Genome Atlas. The
expression patterns of PRGs were identified by consensus clustering. A prognostic model for predicting the thyroid
cancer-free interval (TCFi) employed five machine learning methods. Enrichment and immune-related analyses were
performed to elucidate the role of pyroptosis. The responses to radioactive iodine (RAI), immune checkpoint inhibitors
(ICls), molecular targeted therapy (MTT), and chemotherapy (CTx) were predicted based on pyroptosis-derived
features. Additionally, the expression of prognostic PRGs was validated via six external datasets, 16 cell lines, and 20
pairs of clinical samples.

Results PTC patients were classified into three PyroClusters, C1 exhibited BRFA-like tumors with the highest
invasiveness and the worst prognosis, C2 presented RAS-like tumors, and C3 was characterized by gene fusion.

Nine PRGs (CXCL8, GJAT, H2BCS, IFI27, PRDM1, PYCARD, SEZ6L2, SIGLEC15, TRAF6) were filtered out to construct a
PyroScore prognostic model. A derived nomogram demonstrated superior predictive performance than four clinical
staging systems. A strong correlation between pyroptosis and tumor immune microenvironment (TIME) remodeling
was observed in mechanistic analyses. Patients with a high PyroScore exhibited “hot”tumor immunophenotypes and
had a poorer prognosis but could benefit more from ICls and CTx (such as paclitaxel). Patients with a low PyroScore
were more sensitive to RAl and MTT (such as pazopanib and sorafenib).

Conclusions PyroScore model can effectively predict TCFi in patients with PTC. Dysregulated expression of PRGs is
associated with the TIME modeling. Pyroptosis features have potential significance for developing novel therapeutic
strategies for PTC patients.
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Introduction

Thyroid cancer (THCA) is the most prevalent endocrine
malignancy, and its annual incidence rate continues to
rise, papillary thyroid cancer (PTC) accounts for over
85% of THCA cases [1]. While most PTCs have a favor-
able prognosis with a five-year survival rate of 80%~95%,
approximately 15%~40% of patients experience recur-
rence or progression after initial treatment. This not only
complicates primary tumor management but also leads
to a marked increase in the mortality rate (to over 60%)
[2, 3]. Therefore, a key issue in managing PTC patients is
to minimize the morbidity and mortality associated with
recurrence and to find more effective treatment modali-
ties to improve the prognosis.

Pyroptosis is a newly discovered form of programmed
cell death characterized by the formation of mem-
brane pores, subsequent cell swelling and lysis, and the
release of proinflammatory substances [4]. Its role in
various human diseases and its potential as therapeutic
targets have been widely studied [5, 6]. Emerging evi-
dence reveals that pyroptosis plays dual roles in cancer.
On the one hand, pyroptosis within the tumor immune
microenvironment (TIME) generates inflammasomes
and cytokines that may promote tumorigenesis, immu-
nosuppression, angiogenesis, and metastasis [5, 7]. On
the other hand, pyroptosis triggers antitumor immunity
by activating cytotoxic T cells, augmenting macrophage
phagocytosis, and transforming “cold” tumors into “hot”
tumors, thereby amplifying treatment-induced tumor
cell death [6, 8]. This is similar to the dual role of thyroid
autoimmune disease in the pathogenesis of THCA. Some
studies suggest that chronic inflammation is a risk factor
or precursor of PTC [9, 10], others indicate that strength-
ening the immune response may reduce tumor aggres-
siveness, leading to more favorable clinical outcomes [11,
12]. Accordingly, we speculated that pyroptosis, charac-
terized by its proinflammatory nature, plays a role in the
development of PTC. However, the molecular mecha-
nisms and clinical implications of pyroptosis in PTC
remain largely unknown.

Therefore, the aim of this study was to explore the role
of pyroptosis in PTC and its potential applications in
prognosis and therapy. Firstly, we investigated the expres-
sion patterns and clinical relevance of pyroptosis-related
genes (PRGs) in PTC and then constructed a prognos-
tic model for predicting the thyroid cancer-free inter-
val (TCFi). Subsequently, we sought to further explore
the mechanisms of pyroptosis involved in regulating the
TIME. In addition, we would like to assess its potential
applications in multimodal treatments for PTC.
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Materials and methods

Data acquisition and preprocessing

Transcriptome profiles and clinical data of 572 THCA
samples were downloaded from the TCGA database [13].
Tumor samples without complete prognostic informa-
tion and those with less than four months of follow-up
were excluded. Finally, 477 primary PTC and 59 nor-
mal thyroid (NT) samples were included in this study.
Meanwhile, gene expression data were filtered to exclude
genes with low expression whose average count value was
<100 across all samples. The raw count data were used
for differential gene expression analysis between sample
groups, while the DESeq2-normalized count data were
used for downstream analysis. A total of 226 PRGs were
derived from the MSigDB, the Reactome database, and
the GeneCards (searching with the keyword ‘pyroptosis’
and screening with a relevance score above the median).
Listed in Table S1.

Definition of prognostically relevant events of PTC

Overall survival (OS) is minimal ambiguity in defining
an event; the patient is either alive or dead. Progression-
free survival (PES) is generally considered a more infor-
mative endpoint for THCA studies; however, its events
also include non-thyroid cancer specific events such as
all-cause deaths and new tumor events. Specially, we
defined the period from four months after initial treat-
ment to events including recurrence, distant metastasis,
biochemical evidence of disease and death with tumor as
the thyroid cancer-free interval (TCFi) [14—16].

In the TCGA cohort, 308 PTC patients received
radioactive iodine (RAI) treatment (PTC-RAI), and 169
patients did not undergo RAIL. Combining the definition
of RAI-refractory in the American Thyroid Association
(ATA) guidelines with the limited information in the
TCGA database, PTC-RAI patients were divided into a
RAI-sensitive group (RS, n=268) and a RAl-refractory
group (RR, n=40) according to whether TCFi events
occurred after RAI treatment [17]. Furthermore, we
acquired the GSE151179 cohort from the GEO database
to validate the response to RAI treatment; this cohort
included 4 patients in the RS group and 13 patients in the
RR group [18].

Identification of variants in pyroptosis phenotypes in PTC
Differentially expressed genes (DEGs) between PTC and
NT tissues were identified using the package ‘DESeq2’ To
explore the relationship between the pyroptosis-related
DEGs and PTC subtypes, we then performed unsuper-
vised consensus clustering via the k-means method using
the package ‘ConsensusClusterPlus. The correlations
between the individual cluster and clinical characteristics
were analyzed and presented using the packages ‘survival,
‘survminer’ and ‘ComplexHeatmap’
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Construction and validation of a PyroScore prognostic
model

A total of 477 PTC patients were randomly split into
training (n=344) and testing (n=143) sets at a ratio of 7:3
using the package ‘caret’ (Table S2). First, univariate Cox
analysis was performed to assess the association between
the expression of each PRG and the TCFi of patients in
the training set. The cutoff value for the P value was set at
0.2 to avoid omissions. Then, random forest, least abso-
lute shrinkage and selection operator regression, gradient
boosting machine, decision tree, and extreme gradient
boosting analyses were applied to rank the prognostic
PRGs by importance using the ‘randomForest, ‘glmnet,
‘ebm; ‘rpart’ and ‘xgboost’ packages. Next, multivariate
Cox regression analysis was performed on the convergent
PRGs for achieving coefficients, and the PyroScore was
calculated using the predict() function.

The median score was taken as the cutoff value for
stratifying patients into different PyroScore subgroups.
Kaplan—-Meier (KM) curve with log-rank test and
receiver operating characteristic (ROC) curve analysis
based on TCFi were performed using the ‘survminer’
and ‘timeROC’ packages. Principal component analy-
sis (PCA) and t-distributed stochastic neighbor embed-
ding (t-SNE) were used to visualize the separation of
the PyroScore subgroups using the ‘Rtsne’ package. The
prognostic value of the PyroScore was also verified in the
testing set and the entire cohort by the same methods.

Development and evaluation of the predictive
performance of a nomogram

In the entire TCGA cohort, univariate and multivariate
Cox regression analyses were applied to determine the
independent prognostic value of the PyroScore. Sub-
sequently, a nomogram integrating the PyroScore and
clinicopathological factors was developed to investigate
the probability of 1-, 3-, and 5-year TCFi using the ‘rms’
package. The time-dependent ROC, concordance index,
calibration curves, and decision curve analysis (DCA)
curves were used to assess the consistency, accuracy and
net utility of the nomogram. Meanwhile, the availability
of the nomogram was compared with that of the four
THCA staging systems commonly used in clinical prac-
tice. These are the risk stratification system of ATA, the
Metastases, Age, Completeness of Resection, Invasion,
Size (MACIS), the American Joint Committee on Cancer
(AJCC) 8th edition tumor, node, metastases (TNM) and
the European Organization for Research and Treatment
of Cancer (EORTC) [17, 19, 20].

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were
performed between PyroScore subgroups using the
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‘clusterProfiler’ package. Gene set variation analysis
(GSVA) was performed to determine the correlation with
pyroptosis features and 50 hallmarks of cancer [21]. In
addition, we compared the enrichment scores of 27 thy-
roid-related signatures via single sample gene set enrich-
ment analysis (ssGSEA) using the ‘GSVA’ package, and
the reference gene sets were derived from MSigDB and
previous publications (Table S3).

Assessment of immunological characteristics

The ‘estimate’ package was used to estimate the tumor
microenvironment scores representing the proportion
of immune and stromal cells and tumor purity. TIMER,
XCELL, QUANTISEQ, MCPCOUNTER, EPIC, and
CIBERSORT algorithms were applied to calculate the rel-
ative abundance of infiltrating immune cells. Meanwhile,
the absolute enrichment level of 13 immune function
pathways in each sample was quantified by ssGSEA. In
addition, the TIP database precalculated the activities of
the seven-step cancer-immunity cycle, and we obtained
the scores for these steps to assess antitumor immunity
[22]. Finally, the association between pyroptosis features
and various immunomodulators was determined. The list
of co-inhibitors, co-stimulators, HLA molecules, chemo-
kines, interleukins, interferons and other cytokines was
collected from previous publications (Table S4).

Assessment of response to multiple therapeutics

We performed ROC curve analysis to predict RAI
response based on the PyroScore in both the TCGA and
GSE151179 cohorts. For immunotherapy, the score of
tumor immune dysfunction and exclusion (TIDE) could
predict the response to immune checkpoint inhibitors
(ICIs) by estimating several published biomarkers, with
a lower TIDE score indicating a better response to ICIs
[23]. We also used the immunophenoscore (IPS) obtained
from the Cancer Immunome Atlas (TCIA) to predict the
response to anti-CTLA4 and anti-PD1 [24]. For molecu-
lar targeted therapy (MTT) and chemotherapy (CTx),
the ‘oncoPredict’ package was used in conjunction with
the Genomics of Drug Sensitivity in Cancer (GDSC) and
Cancer Therapeutics Response Portal (CTRP) datasets
for drug sensitivity analysis. The half-maximal inhibitory
concentration (IC50) values for all drugs were predicted
using a ridge regression model.

External validation of PRGs in PTC

Six datasets containing information on PTC and NT
samples were exported from the GEO database for exter-
nal validation, including GSE29265 (20 PTC and 20 NT),
GSE33630 (49 PTC and 45 NT), GSE60542 (33 PTC and
30 NT samples), conducted on the GPL570 platform,
and GSE27155 (51 PTC and 4 NT samples), GSE5364
(35 PTC and 16 NT), GSE58545 (27 PTC and 18 NT),
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conducted on the GPL96 platform [25]. The batch effect
between the different arrays was eliminated using the
ComBat function of the ‘sva’ package. Protein expres-
sion of each candidate PRG in PTC and NT tissues was
verified by immunohistochemical (IHC) staining from
the HPA database [26]. The patient’s information and the
antibodies used in IHC are listed in Table S5. In addition,
gene expression profiles of 16 thyroid cancer cell lines
were obtained through the CCLE database to verify the
expression of PRGs at the cellular level [27].

Quantitative real-time polymerase chain reaction
(RT-PCR)

With the approval of the Ethics Committee of
China-Japan Union Hospital of Jilin University
(No0.20220804014), a total of 20 paired PTC and NT tis-
sues were collected from the Thyroid Surgery Depart-
ment of the China-Japan Union Hospital. Total RNA was
extracted using RNAiso Plus (TaKaRa, Japan), followed
by reverse transcription into ¢cDNA using GoScript™
Reverse Transcription (Promega, USA). QRT- PCR was
performed using GoTaq® qPCR Master Mix (Promega,
USA). The reaction procedures were as follows: initiated
by a 10 min incubation at 94 °C, followed by 40 cycles
(95 °C, 15 s; 60 °C, 60 s). The mRNA levels were normal-
ized to GAPDH as an internal control using the 2—AACt
method. The primers used in this study are listed in Table
Sé6.

Statistical analysis

All statistical analyses and graphical visualizations were
carried out using R software and RStudio. The unpaired
Student’s t test or the Mann-Whitney U test was used
to compare normally or nonnormally distributed vari-
ables. The Kruskal-Wallis H test was used to compare
several groups. The chi-square test was used to analyze
the contingency table. Spearman analysis was used to
determine the correlation between variables. A two-
tailed P value <0.05 was determined to indicate statistical
significance.

Results

Three PyroCluster phenotypes were identified in PTC
patients

Based on the results of the DEG analysis between PTC
and NT tissues from the TCGA cohort, a total of 35
PRGs were identified as DEGs (fold change>1.5, false
discovery rate<0.05); 26 were upregulated and 9 were
downregulated (Fig. 1A). To investigate the relation-
ship between the PRGs and the clinical subtypes of PTC,
consensus clustering analysis was performed. As shown
in Fig. 1B, the clustering variable (k)=3 had the highest
clustering stability from k=1 to 9, indicating that PTC
patients could be classified into three clusters (designated
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as C1, C2, and C3) with high intragroup and low inter-
group correlations (Fig. 1C). The three PyroClusters
exhibited significant differences in terms of clinicopath-
ologic, molecular and prognostic features (Fig. 1D). C1
appeared to be more invasive, with a higher proportion
of patients with advanced T and N category, aggressive
histological variants and extrathyroidal extension (ETE),
and molecular changes mainly involving BRAF and other
gene mutations, resulting in a worse prognosis (more
RAl-refractory and new tumor events). C2 was charac-
terized by a follicular variant, RAS family mutations,
more patients over 55 years of age with nodular hyper-
plasia, fewer cases of ETE and lymph node metastasis
but also some deaths. C3 consisted mainly of younger
patients with the classical histological subtype, BRAF
mutation with gene fusion, and moderate tumor inva-
siveness but optimal prognosis.

To clarify the prognostic differences between the Pyro-
Clusters and to select the most representative endpoint
indicators for PTC prognosis, we performed KM analy-
sis for TCFi, PFS and OS. As shown in Fig. 1E-F, C1 pre-
sented the worst TCFi and PFS, while C2 showed the
worst OS. The reason was few patients reached the end-
point for OS (death), which could lead to bias. In addi-
tion, due to interference from all-cause deaths and new
tumor events, the difference in PFS between C1 and C2
was reduced. Overall, we proposed that TCFi was a more
reliable and stable prognostic outcome for PTC than OS
or PFS and that the three PyroClusters could effectively
distinguish prognostic phenotypes.

PyroScore model for predicting TCFi in PTC patients

To converge the PRGs for better quantification of the
level of pyroptosis and to further demonstrate their pre-
dictive value for TCFi, the PyroScore model was con-
structed and validated. In the training set, 12 PRGs were
preliminarily identified as associated with TCFi by uni-
variate Cox regression analysis (Fig. 2A). Subsequently,
five additional machine learning algorithms selected
nine PRGs with the highest weights (TRAF6, SIGLEC15,
H2BC8, CXCL8, GJA1l, IFI27, PRDMI1, PYCARD,
SEZ6L2) for model construction (Fig. 2B). Multivariate
Cox regression yielded the weight coefficients of these
genes for the PyroScore calculation (Fig. 2C). According
to the median PyroScore, patients were divided into high
and low PyroScore subgroups (Fig. 2D). As illustrated
in the KM analysis (Fig. 2E), the high PyroScore group
had a significantly worse TCFi than the low PyroScore
group (HR=6.97, P=2.3e-05). The ROC curves showed
that the AUC values of the PyroScore for predicting
1-, 3-, and 5-year TCFi were 0.813, 0.812, and 0.739,
respectively (Fig. 2F). Furthermore, the results of PCA
and tSNE dimensionality reduction analysis corrobo-
rated that the grouping had good discriminatory power.
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Fig. 1 Expression profile, clinical relevance, and prognostic value of PRGs in PTC. A Volcano plot of 144 differentially expressed PRGs between PTC and
normal thyroid tissues. B Cumulative distribution function of consensus clustering for k=2 to 9. C Consensus clustering matrix shows that the 477 PTC pa-
tients from the TCGA dataset were classified into three PyroClusters (k= 3). D Differences in clinicopathologic, molecular, and prognostic features among
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Fig. 2 Construction and validation of a PyroScore prognostic model. A Univariate Cox regression analyses of PRGs associated with TCFi. The top genes
with a P value <0.2 are presented. B Venn diagram shows that five machine learning algorithms screened nine genes for constructing the prognostic
model. C Coefficients of nine genes identified by multivariate Cox regression analyses. D PyroScore distribution, prognostic status of each patient, and
heatmaps of nine prognostic PRGs. E TCFi KM curves of PyroScore subgroups. F ROC curves present the predictive efficiency of the PyroScore. G, H PCA
plot (G) and t-SNE plot (H) show the separation of PyroScore subgroups. I-L TCFi KM curves and the ROC curves of PyroScore subgroups in the testing
set (I, J) and the entire cohort (K, L)

with TCFi in PTC (HR=2.40, P<0.001), and age and T
and M categories were also related to TCFi (Fig. 3A, B). A
nomogram integrating the PyroScore and clinicopatho-
logical features was then constructed to predict the TCFi
(Fig. 3C). Time-dependent ROC curves showed that the
nomogram had high AUCs for predicting the TCFi at the
1-, 3-, 5-, and 10-year time points (0.851, 0.824, 0.778,

and 0.774, respectively) (Fig. 3D). We further compared
the nomogram with the ATA, EORTC, MACIS, and
TNM staging systems (Fig. 3E-F). The nomogram showed
better discriminatory ability with higher time-dependent
AUCs for 1- to 10-year TCFi and a good C-index for
5-year TCFi (Fig. 3G). The calibration curves depicted
that the nomogram predicted the TCFi well at 1-, 3-, and
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5-year (Fig. 3H). The 5-year DCA curves showed that the
nomogram can achieve a greater net benefit than other
risk stratification for TCFi prediction at a threshold prob-
ability of 0.02 to 0.69 (Fig. 3I). Overall, the PyroScore
nomogram demonstrated considerable ability to improve
prognostic risk prediction for PTC.

Pathway enrichment levels vary among different
pyroptosis patterns of PTC

To elucidate the underlying signaling mechanisms that
may be associated with pyroptosis patterns. GO and

KEGG enrichment analyses were performed on the DEGs
between the PyroScore subgroups. The upregulated
DEGs in the high PyroScore group were mainly enriched
in immune-related GO terms and KEGG pathways
(Fig. 4A, B). The downregulated DEGs were enriched in
various oncogenic signaling pathways (Fig. S2). Within
the 50 cancer hallmarks, the PyroScore showed the
strongest positive correlation with DNA repair, reactive
oxygen species and the G2M checkpoint, while it was
negatively associated with Hedgehog signaling, UV_
Response_DN and KRAS signaling (all P<0.001, Fig. 4C).
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Moreover, the differences in ssGSEA scores of 27 thy-
roid-related signatures among PyroClusters were fur-
ther investigated (Fig. 4D). C2 exhibited RAS-like tumor
characteristics, with a higher thyroid differentiation score
(TDS), lower ERK and greater mTOR signaling pathway
activation. C1 and C3 manifested BRAF-like tumor char-
acteristics, with C1 having the lowest TDS and significant
activation of thyroid autoimmune, MAPK, TP53 and
TERT-related signaling pathways, while C3 showed acti-
vation of the PI3K-Akt and Ras signaling pathways. The
above results suggest that pyroptosis may be involved in
the development of PTC through regulating the immune
response process.

Effect of pyroptosis on TIME remodeling in PTC
To further elucidate the specific impact of pyropto-
sis on immune status, we performed comprehensive
immune analyses. The ESTIMATE algorithm was used to
check the components of the tumor microenvironment
(Fig. 5A, B). The immune score was significantly higher in
the high PyroScore group (P=2e-04) and correlated posi-
tively with the PyroScore (rho=0.186, P=9e-05). How-
ever, there were no differences in stromal score or tumor
purity between the PyroScore groups. Regarding the
abundance of immune cells, the PyroScore was positively
associated with most B cells, T cells, myeloid dendritic
cells, monocytes, etc., and mainly negatively correlated
with endothelial cells and CD8+T cells (Fig. 5C). ssGSEA
showed that several immune function pathways, such
as checkpoint, HLA, and co-inhibition pathways, were
highly enriched in the high PyroScore group (Fig. 5D).
Furthermore, we clarified the antitumor effect of
immune cells by assessing the activity of seven steps
in the anticancer immune cycle. C1 and C3 showed
enhanced activity in step 3 (priming and activation), step
4 (trafficking of immune cells to tumor), and step 5 (infil-
tration of immune cells into tumor) and attenuation in
step 6 (recognition of cancer cells) (Fig. 5E). In addition,
we examined the recruitment of different immune cells
in step 4 in more detail. As shown in Fig. 5F, BRAF-like
tumors (C1 and C3) exhibit a stronger ability to recruit
most immune cells than RAS-like tumors (C2). In par-
ticular, the recruitment activities for Treg cells, Th22
cells, neutrophils, Th2 cells and MDCs increased with
the PyroScore. Moreover, a strong correlation between
the PyroScore and model genes with several immuno-
regulatory molecules was observed (Fig. 5G; Fig. S3).
These results revealed the critical role of pyroptosis in
regulating the TIME and the potential application of
immunotherapy.
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Pyroptosis features predicting the response to multiple
treatments in PTC-RAI patients

Given the pivotal value of pyroptosis in the progression
and prognosis of PTC, we further investigated whether
pyroptosis features could help in determining treatment
strategies. As systemic RAI is still the fundamental treat-
ment for THCA, we compared the PyroScore under dif-
ferent RAI conditions. PyroScore increased dependently
among the non-received, RS, and RR groups (P=1e-07,
Fig. 6A). The AUC for the PyroScore in predicting the
response to RAI was 0.710 (Fig. 6B). The high PyroScore
group had more PTC-RAI patients (70% vs. 58%) and a
higher RR ratio (13% vs. 2%) than the low PyroScore
group (P=5e-04, Fig. 6C). The sankey plot also showed
that most RR cases were from the high PyroScore group
(Fig. 6E). Similarly, validation in the GSE151179 cohort
confirmed the robust power of the PyroScore in discrimi-
nating RR and RS (AUC=0.692, Fig. 6B).

RR patients have an unfavorable prognosis and require
more effective therapies. However, there is limited data
on these patients, so we performed the following analy-
sis in patients of the PTC-RAI subset (n=308), who had
more severe disease and were more likely to be eligible
for multiple therapies than patients without RAI treat-
ment. For immunotherapy, the response to ICIs was
initially predicted via the TIDE algorithm. The high
PyroScore group had a lower TIDE score and more ICI
responders (45% vs. 29%, P=0.006, Fig. 6D, F), and most
ICI responders were from the high PyroScore group
(Fig. 6E). Besides, the high PyroScore group also had
higher IFNG, Merckl8 and CD274 scores, while the low
PyroScore group showed T-cell exclusion characteristics
and lower TAMM?2, CAF and MDSC scores (Fig. 6F). As
shown in Fig. 6G, patients with a high PyroScore pre-
sented a better response to CTLA4-/PD1+, CTLA4+/
PD1-, CTLA4+/PD1+blockers (all P<0.01), indicating
greater benefits from ICIs. For MTT, the low PyroScore
group was more sensitive to pazopanib, sunitinib and
sorafenib (Fig. 6H). For CTx, the high PyroScore group
showed a better response to paclitaxel, docetaxel and
doxorubicin (Fig. 6I). In addition, the high PyroScore
patients benefitted more from zebularine, temozolomide
and azacitidine (Fig. 6]). In brief, pyroptosis features are
ideal predictors of the response to different treatments,
which broadens the choice of new therapeutic strategies
for PTC patients.

Clinical, internal and external validation of PRGs in PTC

As the above analyses were all from public databases,
we collected further clinical samples to validate them in
the real world. The expression of nine prognostic PRGs
was validated by qRT-PCR in 20 pairs of PTC and NT
clinical samples. As shown in Fig. 7A, CXCL8 (P=1e-05),
PRDM1 (P=9e-04), SEZ6L2 (P=4e-06) and SIGLEC15
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Fig. 5 The immune landscape associated with pyroptosis in PTC. A Comparison of ESTIMATE scores between the PyroScore subgroups. B Association
between the ESTIMATE scores and the PyroScore. C Lollipop plot shows the Spearman correlation between immune cell infiltration and the PyroScore.
D Comparison of the ssGSEA enrichment scores of immune function pathways between the PyroScore subgroups. E Heatmap demonstrating the differ-
ence in the seven-step anticancer immunity cycle activity among the three PyroClusters. F Radar plot shows the difference in the ability of PyroClusters
to recruitimmune cells. G Spearman correlation between immunomodulators (co-inhibitors, co-stimulators and HLA molecules) and PRG signatures

(P=2e-06) were significantly upregulated, while GJA1l
(P=0.021) and TRAF6 (P=0.03) were downregulated in
PTC tissue. The comparative results were consistent with
the results of the bioinformatics analysis. There were no
significant differences in H2BC2, IFI27 and PYCARD;
however, the trend was still observed in N1 patients, by
expansion of the sample size may be required to provide

further evidence.

Furthermore, we performed internal validation in the
entire TCGA cohort (Fig. 7B) and external validation in
two GEO collections, namely, the GPL60 sets (Fig. 7C)
and the GPL570 sets (Fig. S4). All genes showed marked
differences between PTC and NT tissues, and the trend
was consistent with previous results. Additionally, these
genes exhibit varying levels of expression in THCA cell
lines, with SEZ6L2 showing higher expression levels in
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cell types of increased malignancy (Fig. S5). In addition,
the protein levels of these nine genes were examined in
more detail. As already observed at the mRNA expres-
sion level, the IHC results showed that CXCL8, H2BCS,
IFI27, PRDM1, PYCARD and SEZ6L2 proteins were
obviously highly expressed in PTC tissues, while GJA1
and TRAF6 proteins were downregulated (Fig. 7D).

Discussion

Our study comprehensively investigated the role of
pyroptosis in the pathogenesis and prognosis evalua-
tion of PTC (Fig. 8). We grouped PTC patients into three
PyroClusters and constructed the PyroScore model to
predict prognosis. Notably, we focused on the prognostic

indicator TCFi, which is more short-term, accurate, and
valuable for PTC prognosis prediction than OS or PES.
We also thoroughly investigated the association between
pyroptosis and TIME remodeling in PTC and con-
firmed the value of pyroptosis features in decision-mak-
ing regarding the application of multimodal treatment
strategies, expanding insights into future therapeutic
approaches for PTC. We verified the expression of nine
PRGs in PTC and NT tissues in six GEO datasets, as
well as by qRT-PCR in 20 clinical samples, and obtained
roughly consistent results as the previous bioinformatics
analysis.

Pyroptosis is a highly inflammatory programmed
cell death that can trigger a cascade of inflammatory
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responses and disrupt the homeostasis of the TIME. It
is involved in many inflammatory diseases, tumors and
immunotherapy effects [4, 6, 8]. The dual role of pyrop-
tosis in pathogenesis is similar to the effect of chronic
inflammation in thyroid diseases. Some studies have
confirmed that excessive iodine induces the activation
of inflammasomes and pyroptosis in thyroid follicular
epithelial cells, which is associated with the occurrence
of autoimmune thyroiditis [28-30]. Cadmium expo-
sure could promote pyroptosis of thyroid follicular cells,
thereby disrupting thyroid tissue structure and endo-
crine function [31]. Lidocaine may ameliorate subacute

thyroiditis by inhibiting the pyroptosis pathway and
curbing the expression of inflammatory factors [32].
Wu et al. constructed a risk model to predict the OS of
THCA patients based on 31 PRGs. The model showed a
significant increase in tumor immune cell infiltration in
the low-risk group. Zhao et al. identified a novel antitu-
mor effect of pyroptosis induced by the combination of
apatinib and melittin in anaplastic THCA [33]. The dis-
tinct effects of pyroptosis in different thyroid diseases
reflect complex molecular regulatory mechanisms. How-
ever, studies on the functions and mechanisms of pyrop-
tosis in THCA remain limited, and there are no studies
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on this topic in PTC. Therefore, our study focused on
exploring the impact of pyroptosis on the clinical phe-
notype of PTC and its value for predicting prognosis and
the response to various treatments.

In this study, PTC patients were classified into three
PyroClusters based on the differentially expressed PRGs
between PTC and NT. According to the results of the
clinical relevance analysis and functional enrichment
analysis, we concluded that C1 and C3 were BRFA-like
tumors and C2 was a RAS-like tumor (Figs. 1D and 4D).
It is known that differentiated THCAs develop from fol-
licular cells and follow two distinct direction: BRAF-like
and RAS-like [34]. Currently, BRAF mutation tests are
widely used in clinical practice to facilitate the diagnosis
of THCA. However, BRAF status alone is not sufficient
to contribute substantially to risk stratification in most
patients [17]. The results showed that C1 had a mark-
edly worse prognosis than C3, even though both clusters
represented BRFA-like tumors. Although some C1 cases
had additional mutations and C2 had the most cases of
gene fusion, these features could not fully explain the sig-
nificant differences between the two clusters of patients
overall. Thus, we speculated that pyroptosis exerts some
influence on the evolution of THCA, as some studies
have confirmed that pyroptosis is also involved in the
regulation of MAPK, ERK and PI3K/Akt signaling path-
ways, which are important signaling pathways related
to the pathogenesis of THCA [35, 36]. Our study first
revealed the considerable ability of pyroptosis features
to distinguish molecular subtypes of PTC, which is
expected to be applied to support precision diagnosis and
risk stratification.

Before further constructing the prognostic model
based on the PRGs, we clarified the value of different
time-to-event endpoints in the prognosis assessment
of PTC. Many prognostic models choose OS as an end-
point, but PTCs are mostly indolent tumors with few
deaths, making OS of limited value for early clinical guid-
ance. PFS is considered more appropriate for THCA
than OS [14], but the PFS events provided by the TCGA
database included new tumors and all-cause deaths;
these events were not closely associated with PTC, and
their inclusion could cause statistical bias. As shown in
Fig. 1G, there was no difference in PFS between C1 and
C2. Therefore, referring to the DATECAN initiative (Def-
inition for the Assessment of Time-to-event Endpoints
in CANcer trials) [16], we propose to select TCFi as the
clinical endpoint for PTC, as it considers events of recur-
rence, metastasis and specific death from THCA. TCFi
could capture more events during follow-up and bet-
ter reflect the prognosis associated with PTC specificity.
Visually, among the potential prognostic indicators, TCFi
presented the most significant differences in the KM
curves of the PyroClusters (Fig. 1E).
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Next, we constructed a PyroScore signature consist-
ing of nine PRGs, and then integrated the PyroScore
and clinical features to develop a nomogram model that
had better discrimination and net benefit than the ATA,
TNM, MACIS and EORTC staging systems. Of the
nine model PRGs, four (H2BC8, CXCL8, PYCARD, and
SEZ6L2) were upregulated in PTC and related to a poor
prognosis; two (GJA1 and TRAF6) were downregulated
and were favorable prognosis factors, implying that they
have a consistent effect on tumorigenesis and progres-
sion of PTC, and can be considered as oncogenes and
tumor suppressors, respectively. Additionally, three genes
(PRDM1, IFI27 and SIGLEC15) were highly expressed
in tumor tissues but were also favorable prognostic fac-
tors, suggesting a paradox: they promote carcinogenesis
but inhibit tumor progression. PRDM1 regulates all lym-
phocyte lineage cells and induces exhaustion modules
in antigen-specific T cells [37]. It is expressed in almost
all cases of Hashimoto’s thyroiditis and is involved in
lymphoid tissue formation [38]. Hou et al. found that
THCA patients with high SIGLEC15 expression mani-
fested immune exhaustion, and immune cells in par-
ticular (especially monocytes and macrophages) express
SIGLEC15 and thus could induce an immune escape
environment [39]. IFI27 participates in innate immunity
and apoptosis processes, reflecting an increase in immu-
nopathology (either local or systemic). It has recently
been identified as a biomarker for the early diagnosis and
outcomes of COVID-19 that is involved in preexisting
memory T-cell responses [40, 41]. Adam et al. noted that
IFI27 could distinguish between different types of ICI-
associated renal problems, as these entities have a high
degree of inflammatory molecular overlap [42]. Hence,
we hypothesize that these three genes may participate in
chronic inflammation of the thyroid gland mediated by
immunosuppression and T-cell exhaustion. Overall, the
dysregulation of pyroptosis might play divergent roles at
different stages of THCA.

Furthermore, in-depth functional analysis revealed sig-
nificant enrichment of various signaling pathways associ-
ated with the immune response. To elucidate the intricate
relationship between pyroptosis and immune regulation,
we initially assessed the overall differences in the TIME
across pyroptosis subgroups. Notably, the high PyroScore
group exhibited a higher immune score, while there were
no discernible differences in terms of tumor purity and
stroma score (Fig. 5A). This finding confirms the speci-
ficity and strong correlation of pyroptosis in regulating
the TIME. Regarding the infiltration of immune cells, we
observed an increased abundance of phagocytic immune
cells (such as myeloid dendritic cells, monocytes, and
MO/M1 macrophages) as pyroptosis intensified. This
phenomenon could be linked to the heightened produc-
tion of reactive oxygen species and consequential DNA
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damage [43], consistent with our GSVA results (Fig. 4C).
In addition, the infiltration of cytotoxic CD8+T cells
showed a decreasing trend, potentially leading to a
diminished capacity for killing tumors [44]. These dual
factors may underlie the poorer prognosis observed in
patients with a high PyroScore. Remarkably, we also
uncovered substantial activation of checkpoint, HLA,
and co-inhibition pathways in the high PyroScore group.
This strong association between the PyroScore and vari-
ous immunomodulators further solidifies these findings.
A broader understanding of the interactions between
PTC progression and the TIME holds the potential to
usher in novel therapeutic approaches for aggressive
PTC. Most PTC patients experience favorable outcomes
following standard surgical procedures, TSH suppres-
sion and RAI therapy, but approximately 20%~30%
exhibit resistance to RAI and/or recurrent events, and
the 10-year OS rate remains below 10% [17, 45, 46]. Our
PyroScore has demonstrated its ability to discern the
response of PTC patients to RAI treatment in both the
TCGA and GSE151179 cohorts, with respective AUC
values of 0.710 and 0.692. Notably, the high PyroScore
group exhibited a higher proportion of RR patients.
Several studies have highlighted the potential of induc-
ing and activating pyroptosis as a means to transform
‘cold’ tumors into ‘hot’ ones, thereby enhancing their
responsiveness to immunotherapy [47, 48]. In our study,
patients with a high PyroScore were found to have more
antitumor lymphocytes, indicative of a ‘hot’ tumor
phenotype, whereas those with a low PyroScore dem-
onstrated a significantly higher degree of immune exclu-
sion, characteristic of ‘cold’ tumors. The results derived
from the TIDE and TCIA algorithms further confirm
that the high PyroScore group is more likely to benefit
from ICIs, including PD1/PDL1 and CTLA4 blockade.
Numerous ongoing clinical trials are exploring the effi-
cacy of MTT for THCA patients [49]. Our findings indi-
cate that currently approved targeted drugs for THCA,
such as sorafenib and pazopanib, offer greater benefits
to patients with a low PyroScore, providing valuable
insights for drug selection. Additionally, we identified
potentially effective agents, such as ibrutinib and bosuti-
nib, which could exhibit increased sensitivity in patients
with high PyroScore. It is widely recognized that PTC is
insensitive to CTx [17]. Our study assessed the respon-
siveness of PTC to four common CTx agents and found
that patients with a high PyroScore tend to derive greater
benefits, particularly from paclitaxel. Zhang et al. have
previously demonstrated paclitaxel’s capacity to limit
tumor proliferation and metastasis by inducing pyropto-
sis [50]. We also presented some new potential options
for CTx agents, namely, zebularine, temozolomide, and
azacitidine, which are linked to DNA methylation, syn-
thesis and repair processes. Niu et al. inhibited tumor
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proliferation by inducing cancer cell pyroptosis with
DNA methylation inhibitors [42]. Further foundational
research will be necessary to validate their applicability in
PTC treatment.

There are several limitations in the present study. Our
predictive model lacks external validation, as currently,
only the TCGA-THCA dataset contains prognosis infor-
mation for PTC. Although we conducted internal valida-
tion by randomly splitting samples, it is still necessary
to verify the model’s reliability with multicenter cohorts
that includes larger sample size and adequate follow-
up period. Meanwhile, further experimental studies are
expected to elucidate the underlying mechanisms of
PRGs and potential drugs in PTC. In addition, given the
association between pyroptotic tumor cells and immune
cells, we will explore their crosstalk effects through sin-
gle-cell sequencing in future research.

Conclusion

In summary, our study demonstrated that a novel
nine PRGs signature has predictive value for the TCFi
(includes recurrence, metastasis and specific death) of
PTC. Pyroptosis exerts a significant influence in the
remodeling of the TIME in PTC, and its derived features
could predict the response to RAI in aggressive patients,
and assist in decision-making regarding ICIs, MTT and
CTx. These findings elucidate the immunological role of
pyroptosis in the development of PTC and highlight its
potential as prognostic biomarkers and therapeutic tar-
gets in the management of PTC patients.
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