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Abstract
Background  The diagnosis of T-cell lymphomas is typically established through a multiparameter approach that 
combines clinical, morphologic, immunophenotypic, and genetic features, utilizing a variety of histopathologic and 
molecular techniques. However, accurate diagnosis of such lymphomas and distinguishing them from reactive lymph 
nodes remains challenging due to their low prevalence and heterogeneous features, hence limiting the confidence 
of pathologists. We investigated the use of microRNA (miRNA) expression signatures as an adjunctive tool in the 
diagnosis and classification of T-cell lymphomas that involve lymph nodes. This study seeks to distinguish reactive 
lymph nodes (RLN) from two types of frequently occurring nodal T-cell lymphomas: nodal T-follicular helper (TFH) cell 
lymphomas (nTFHL) and peripheral T-cell lymphomas, not otherwise specified (nPTCL).

Methods  From the formalin-fixed paraffin-embedded (FFPE) samples from a cohort of 88 subjects, 246 miRNAs 
were quantified and analyzed by differential expression. Two-class logistic regression and random forest plot models 
were built to distinguish RLN from the nodal T-cell lymphomas. Gene set enrichment analysis was performed on the 
target genes of the miRNA to identify pathways and transcription factors that may be regulated by the differentially 
expressed miRNAs in each subtype.

Results  Using logistic regression analysis, we identified miRNA signatures that can distinguish RLN from nodal T-cell 
lymphomas (AUC of 0.92 ± 0.05), from nTFHL (AUC of 0.94 ± 0.05) and from nPTCL (AUC of 0.94 ± 0.08). Random forest 
plot modelling was also capable of distinguishing between RLN and nodal T-cell lymphomas, but performed worse 
than logistic regression. However, the miRNA signatures are not able to discriminate between nTFHL and nPTCL, 
owing to large similarity in miRNA expression patterns. Bioinformatic analysis of the gene targets of unique miRNA 
expression revealed the enrichment of both known and potentially understudied signalling pathways and genes in 
such lymphomas.

Conclusion  This study suggests that miRNA biomarkers may serve as a promising, cost-effective tool to aid the 
diagnosis of nodal T-cell lymphomas, which can be challenging. Bioinformatic analysis of differentially expressed 
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Introduction
T-cell lymphomas are a distinct subgroup of non-Hodg-
kin lymphomas (NHLs) that originate from mature T 
cells, accounting for approximately 10–15% of all NHL 
cases [1]. The most common clinical presentation of 
T-cell lymphomas is lymphadenopathy, or the abnormal 
enlargement of lymph nodes. The diagnosis of T-cell lym-
phoma involving the lymph nodes is typically established 
through an integration of clinical, morphologic, immu-
nophenotypic, and genetic data, utilizing techniques such 
as light microscopy, immunohistochemistry (IHC), flow 
cytometry (FC), and T-cell receptor (TCR) gene rear-
rangement studies [2]. However, despite the utilization 
of a multiparameter approach, recognizing specific T-cell 
lymphoma entities and distinguishing them from reactive 
lymph node conditions remains a challenging task. This 
is attributed to the low prevalence and heterogeneous 
immuno-morphological features of T-cell lymphomas, 
which could diminish the confidence of even the most 
experienced pathologists in making the correct diagnosis 
[2].

The most prevalent subtypes of T-cell lymphomas that 
involve lymph nodes are nodal T-follicular helper (TFH) 
cell lymphomas (nTFHL) and peripheral T-cell lympho-
mas, not otherwise specified (nPTCL-NOS, but abbrevi-
ated as nPTCL for this paper). Together, these subtypes 
account for over 70% of all T-cell lymphomas that com-
monly involve the lymph nodes. T-follicular helper cell 
lymphomas is a group of T-cell neoplasms of postulated 
TFH cell origin, as reflected by the expression of the TFH 
immunophenotype and gene expression signature [3, 
4]. PTCL-NOS, on the other hand, are defined by their 
T-cell lineage but lack other more distinctive features of 
specific T-cell lymphoma entities [5, 6]. These subtypes 
encompass a wide spectrum of cellular composition, 
cytologic, and immunophenotypic features that overlap 
with each other as well as with reactive lymphoid pro-
cesses, making molecular testing an indispensable part 
of the diagnostic work-up. Recent work has contributed 
to a better understanding of the immunophenotypic and 
genotypic landscape of T-cell lymphomas [7], which will 
be reflected in lymphoma classifications.

In this study, we aimed to investigate the diagnostic 
potential of microRNA (miRNA) expression signatures 
as an adjunctive ancillary test in the classification of 
nodal T-cell lymphomas. miRNAs are a family of small, 
evolutionarily conserved, non-coding RNA molecules 
[8, 9] that have been shown to be promising diagnostic 

biomarkers. Because individual miRNAs can potentially 
regulate thousands of target genes [10], they have been 
implicated in both normal physiological processes as a 
master regulator of post-transcriptional gene expres-
sion [11, 12] and in the development of diseases such as 
cancer [13]. miRNA expression profiling is emerging as 
a valuable tool for tumor classification due to the high 
stability of miRNAs in clinical tissue samples. To achieve 
this goal, we used a novel, high-throughput, quantitative 
real-time PCR (qPCR) platform [14, 15] to profile miRNA 
expression in formalin-fixed paraffin-embedded (FFPE) 
patient samples of nTFHL, nPTCL, and reactive lymph 
nodes (RLN). We aim to evaluate whether miRNA sig-
natures derived from FFPE patient samples can be used 
to differentiate cases of reactive lymph node from T-cell 
lymphomas and effectively distinguish between cases of 
nTFHL and nPTCL. Additionally, we performed func-
tional enrichment analysis to uncover possible mechanis-
tic involvement of these predictive miRNAs in cancer- or 
lymphoma-related pathways to gain further insight into 
the biology of T-cell lymphomagenesis.

Materials and methods
Subject recruitment and sample collection
FFPE tissue samples from RLN and 2 histological sub-
types of nodal T-cell lymphomas were included: nTFHL 
and nPTCL, based on diagnostic criteria as published in 
the World Health Organization (WHO) Classification [6] 
of Tumours of Haematopoietic and Lymphoid Tissues. 
Selected cases were reviewed by pathologists with expe-
rience in hematolymphoid pathology to verify the diag-
nosis. Institutional Review Board approval was obtained 
in accordance with the NHG’s Institutional Review Board 
(IRB) Guidelines.

A total of 88 subjects were included in this study, 
comprising 19 RLN, 49 nTFHL and 20 nPTCL samples. 
Tissue samples were obtained from the Department 
of Pathology, National University Hospital (NUH), Sin-
gapore. The percentage of tumor cells was estimated to 
be 50% or more for each sample. Samples were analyzed 
using miRNA expression profiling and the results were 
compared to the reference diagnosis.

RNA isolation
10  μm FFPE sections were used to RNA isolation. 
Deparaffinization and de-crosslinking was done using 
the DWX, RFTL and RF buffers of the Catchgene 
FFPE miRNA kit (MR23050) in accordance with the 

miRNAs revealed both relevant or understudied signalling pathways that may contribute to the progression 
and development of each T-cell lymphoma entity. This may help us gain further insight into the biology of T-cell 
lymphomagenesis.
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manufacturer’s instructions. After incubation and phase 
separation, the aqueous phase was transferred to a fresh 
tube and subjected to RNA isolation using the Max-
well RSC miRNA Tissue kit (Promega, AS1460) and the 
Maxwell RSC system (Promega) in accordance with the 
manufacturer’s recommendation. A proprietary spike-
in control RNAs (~ 20 nt, MiRXES) was added into the 
sample lysis buffer prior to RNA isolation. Total RNA 
quantity and quality was accessed using NanoDrop 2000 
(Thermo-Fisher Scientific).

miRNA reverse transcription, cDNA pre-amplification and 
qPCR
cDNA synthesis was performed in 4 multiplex pools. For 
each pool, 50 ng of the extracted RNAs was reverse tran-
scribed to cDNAs (25  °C for 10  min, 30  °C for 10  min, 
35 °C for 10 min, 40 °C for 10 min, followed by 95 °C for 
5  min) by conformational restricted miRNA specific-
RT primers and the ID3EAL cDNA Synthesis System 
(MiRXES) on a SimpliAmp thermocycler (Applied Bio-
systems). cDNAs were subsequently split into 8 multiplex 
pools and preamplified ( 25 °C for 10 s, 95 °C for 10 min, 
40 °C for 5 min, followed by 8 cycles of 95 °C for 10 s and 
60 °C for 30 s) by the ID3EAL miRNA Augmentation Sys-
tem (MiRXES) using SimpliAmp Thermocycler (Applied 
Biosystems). qPCR master mix was added to preampli-
fied cDNAs from each sample and precisely aliquoted 
to the ID3EAL PanoramiR microRNA Knowledge Panel 
(MiRXES, FGS0003) via the Integra Assist Plus liquid 
handler, prior to quantitative PCR (qPCR)-based miRNA 
expression profiling using the QuantStudio 5-384-well 
qPCR system (Applied Biosystems).

Upon the completion of miRNA expression profiling, 
raw threshold cycle (Ct) values were determined using 
the QuantStudio Design and Analysis software with 
automatic baseline and threshold settings. Technical 
variations introduced during RNA isolation and the pro-
cess of RT-qPCR were normalized using the spike-in con-
trol RNA (ID3EAL PanoramiR Spike-in RNA Template, 
MiRXES).

Data processing and statistical analysis
MiRNAs that were found to be expressed in less than 10% 
of the samples were first removed from our data analysis. 
The Ct values of miRNAs from each sample were further 
normalized to the global miRNA expression level. For 
each pairwise comparison group to RLN samples, log-2 
transformed fold changes of the normalized miRNA 
expression level were used together with Student’s t-test. 
P-values were calculated with false discovery rate (FDR) 
adjustment. Benjamini and Hochberg method was used 
for FDR adjustment.

Model building
2-class logistic regression was performed with a nested 
cross-validation training method. The model was built 
with 10-fold inner loop and evaluated with 5-fold outer 
loop.

Random forest model was also built with a nested 
cross-validation training method. The model was built 
with a 3-fold inner loop and evaluated with a 5-fold outer 
loop. Confusion matrix was tabulated from the average 
number from the 5 validation rounds. Through permu-
tation-based feature selection, key miRNA features were 
identified.

In the nested cross-validation of both logistic regres-
sion and random forest models, the 10-fold inner 
loop was performed to tune the parameters of the 
model. After building the parameter space, grid 
search with elastic net was used to test different 
parameter combination. AUC was used to evaluate 
the performance with each parameter combination. 
The parameter combination with the highest AUC 
was selected. This was followed by the 5-fold outer 
loop to evaluate the model with the selected param-
eter combination. The final model performance was 
summarised with average AUC scores with 95% con-
fidence intervals.
In logistic regression model, the following param-
eters were optimized in grid search :

1.	 Percentage of selected features : 5,10,20%.
2.	 Inverse of regularization strength : 0.0001, 0.001, 

0.01, 0.1, 1, 10, 100, 1000, 10,000.
3.	 L1 ratio : 0, 0.25, 0.5, 0.75, 1.

In random forest model, the following parameters 
were optimized in grid search :

1.	 The maximum depth of the tree: 2,3,4.
2.	 Bootstraping : true, false.
3.	 The number of features to consider when looking for 

the best split : auto, sqrt, log2, none.
4.	 The function to measure the quality of a split: gini, 

entropy.

Gene set enrichment analysis for miRNA target genes
Associations between miRNAs and mRNAs that have 
strong experimental evidences were curated with miR-
TarBase release 9.0. Target genes or genes associated with 
differentially expressed miRNAs were first identified, fol-
lowed by pathways associated with those genes. Briefly, 
enrichment testing of pathways and transcription factors 
was performed based on hypergeometric distribution 
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and Kolmogorov–Smirnov statistics. The p-value of 
enriched pathway was calculated by randomly permutat-
ing miRNAs, with false discovery rate correction.

Results
MiRNA expression profiling
To assess miRNAs for their potential utility as diagnostic 
biomarkers for diagnosis and subtyping of nodal T-cell 
lymphomas using routine FFPE samples, we profiled a 
total of 88 samples using Mirxes’ curated panel of 376 
high confidence mature miRNAs. During data process-
ing, 130 miRNAs were removed due to the low detection 
rate. We performed hierarchical clustering (using euclid-
ean distance and complete linkage) on the remaining 
246 miRNAs and did not find distinct clusters for both 
subtypes of nodal T-cell lymphomas (Fig. 1A). Principal 
component analysis (PCA) captured 35% (PC1/2) of the 
total variance in miRNA expression in these subtypes 
(Fig. 1B).

Differentially expressed miRNAs between reactive lymph 
nodes and T-cell lymphoma subtypes
We performed a further analysis by comparing reac-
tive lymph nodes (RL) with both lymphoma subtypes 
grouped together. We found 22 miRNAs that were differ-
entially expressed with an FDR corrected p-value < 0.05 
(Fig.  2A-B, Table S1). When comparing the individual 
subtypes of T-cell lymphoma against RL, nTFHL showed 
18 differentially expressed miRNAs (9 downregulated 
and 9 upregulated miRNAs), while 25 miRNAs were 
deregulated in nPTCL (12 downregulated and 13 upregu-
lated miRNAs) (Table S2-S3). All differentially expressed 
miRNAs identified in the grouped lymphoma analysis 
were also identified in either the nPTCL or nTFHL analy-
ses or both. Notably, nPTCL has several unique miRNAs 
that were not identified in the grouped lymphoma analy-
sis nor the nTFHL analysis.

Logistic regression analysis of miRNA expression
We then performed a new analysis using logistic regres-
sion (LR) with nested cross-validation as an alternative 
method to identify miRNAs that can differentiate the 
nodal T-lymphoma subtypes. We were able to identify 
subsets of miRNAs with a ROC-AUC of at least 0.92 
(Table 1, Tables S4-S6, Fig. 3).

Table  1. Logistic regression analysis of miRNAs 
required to accurately differentiate between RLN and the 
comparator T-cell lymphoma subtype.

Looking at the common features, a panel of 9 overlap-
ping miRNAs were able to distinguish the different sub-
types of T-cell lymphoma from RLN (Fig. 4A-B). Notably, 
a miRNA not identified in the earlier differential analysis, 
hsa-miR-28-5p, was identified in this panel.

Random forest model
We have further utilized the random forest model, a pow-
erful prediction algorithm that captures complex depen-
dency patterns, to distinguish T-cell lymphomas from the 
reactive lymph nodes. Figure 5A presents the confusion 
matrix, illustrating the comparison between actual and 
predicted classes. Although the model successfully differ-
entiated T-cell lymphoma samples from reactive lymph 
node samples, it encountered challenges in distinguish-
ing between T-cell lymphoma subtypes. Particularly, dif-
ferentiating nPTCL samples from nTFHL samples proved 
to be difficult. While the majority of the nTFHL samples 
(86.0%) were correctly predicted, only 4% of nPTCL sam-
ples were accurately classified, resulting in 91% of nPTCL 
samples being misclassified as nTFHL samples. This 
highlights the large similarity in miRNA expression pat-
terns between the two lymphoma subtypes. The compar-
ison of miRNAs between nPTCL and nTFHL showed no 
differentially expressed miRNAs, further supporting the 
observation that the T-cell lymphoma subtypes are highly 
similar in terms of their miRNA profiles (Supplementary 
Table S15).

To identify specific miRNAs responsible for these dif-
ferentiating patterns, we performed permutation-based 
feature importance analysis and identified hsa-miR-1246 
as a miRNA marker capable of distinguishing between 
reactive lymph nodes and lymphomas (Fig. 5B-C).

MiRNA expression could infer biological differences 
between subtypes
We identified biological pathways and transcription fac-
tors that may be regulated by the differentially expressed 
miRNAs in each T-cell lymphoma subtype through the 
gene set enrichment analysis of the miRNA target genes. 
As nTFHL and nPTCL have been postulated to be part of 
a spectrum of cancers of T-cell origin, we identified the 
target genes of the dysregulated miRNA subsets unique 
to each subtype in order to pinpoint cellular pathways 
that may be driving each subtype (Fig. 6A). The gene set 
enrichment analysis of the miRNA target genes revealed 
the enrichment of multiple pathways known in literature 
to be dysregulated in nTFHL, such as the Tumor Necro-
sis Factor alpha (TNFα) signalling and inflammatory 
response pathways (Fig. 6B), Vascular endothelial growth 
factor (VEGF) signalling pathway (Fig. 6C) and negative 
regulation of the apoptotic pathway (Fig. 6D) [4].

Discussion
Current diagnostic challenges in T-cell lymphomas
The recognition of nodal involvement by T-cell lympho-
mas can pose a significant challenge for many practicing 
pathologists. The infiltration of neoplastic T cells can be 
difficult to detect and may resemble a reactive process 
due to mild cytological atypia and overlapping features. 
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Fig. 1  MiRNA expression profiling of T-cell lymphoma and reactive lymph node samples. (A) Heatmap showing hierarchical clustering of FFPE samples 
of nTFHL, nPTCL and RLN. (B) PCA plot capturing the variances in global miRNA expression for nTFHL, nPTCL and RLN samples
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As such, an accurate diagnosis requires a comprehensive 
and meticulous morphological examination, immuno-
phenotypic analysis, and, in many cases, an incorpora-
tion of clonality assessment. However, these diagnostic 

methods have several limitations and potential pitfalls, as 
outlined in Table 2.

Due to the widespread demand for COVID-19 testing 
during the global pandemic, the availability of RT-qPCR 

Fig. 2  Differentially expressed miRNAs between T-cell lymphoma and reactive lymph node (RLN) samples. (A) Volcano plot showing the up- and down-
regulated miRNAs in all T-cell lymphomas as compared to RLN. (B) Box plots representing each differentially expressed miRNAs in T-cell lymphomas as 
compared to RLN. (** means p-value < 0.005, *** means p-value < 0.0005)
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machines has significantly increased. Therefore, we 
investigated the feasibility of using a carefully selected 
panel of miRNA-based PCR assays as a cost-effective and 
practical complement to traditional morphological diag-
nosis. Furthermore, miRNA biomarkers may also provide 
adjunctive molecular evidence to increase our confidence 
in distinguishing between reactive and neoplastic T-cell 
proliferation in pathological diagnoses.

In this cohort of nodal T-cell lymphomas, we measured 
246 miRNAs and characterised miRNA biomarker pro-
files by differential expression, logarithm regression and 
random forest model. We found that the unique differen-
tially expressed miRNAs implicates a variety of pathways 
which are both known players in the pathophysiology of 
nodal T-cell lymphomas and potentially novel, under-
studied pathways in this group of lymphoid malignancy.

Biological relevance of miRNA biomarkers
We found a subset of common miRNAs across our anal-
ysis for differentially expressed miRNAs and logistic 
regression that have been implicated in the pathophysiol-
ogy of lymphoma.

MiR-663b has been shown to be the top 3 upregulated 
miRNAs in cutaneous T-cell lymphoma [16], although its 
exact role in the pathophysiology of T-cell lymphomas 
remains unclear. We also observed its upregulation in 
our T-cell lymphoma samples, thus highlighting the rel-
evance and reliability of our miRNA discovery approach.

Hsa-let-7  g has also been shown to be intricately 
involved in T cells. It is highly expressed in naïve T cells 
to maintain quiescence [17] and upon T cell activation, 
its reduction contributes to clonal expansion and an 
effector phenotype [18]. Hence, its downregulation in our 
T-cell lymphoma samples may play a role in their patho-
genesis and aggressive phenotype.

MiR-101, which is upregulated in our samples, has 
been correlated with the Th2 phenotype and shown to 
regulate cell proliferation and apoptosis, albeit in other 
forms of lymphomas [19]. Hence, miR-101 may poten-
tially shape the differentiation program and the prolifera-
tion rate of T-cell lymphomas.

MiR-198 overexpression in CD8 + T cells has been 
associated with dysfunctional immunity and increased 
apoptosis, although in the context of the renal cell car-
cinoma tumour microenvironment [20]. Its upregulation 
in our T-cell lymphoma samples may promote a similar 
pro-oncogenic mechanism.

Table 1  Logistic regression analysis
AUC Best AUC Number of miRNAs

RLN vs. T-cell lymphomas
(nTFHL + nPTCL)

0.92 ± 0.05 0.935 49 (20%)

RLN vs. nTFHL 0.94 ± 0.05 0.95 13 (5%)
RLN vs. nPTCL 0.94 ± 0.08 0.95 25 (10%)

Fig. 3  MiRNA expression as a classifier to distinguish reactive lymphoid 
nodes (RLN) from T-cell lymphomas. Two-class logistic regression was per-
formed with a nested cross-validation training method, resulting in ROC 
curves in differentiating RLN from T-cell lymphomas (A), from nTFHL (B) 
and from nPTCL (C)
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Fig. 4  Common features in logistic regression analysis. (A) Heatmap showing hierarchical clustering of FFPE samples of nTFHL, nPTCL and RLN. (B) Box 
plots comparing the normalised Ct values of the miRNAs identified in logistic regression analysis. ns means not significant, ** means p < 0.01, *** means 
p < 0.001 and *** means p < 0.0001
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MiR-142-5p is known to be a hematopoietic-specific 
miRNA that exclusively regulate T-cell response but not 
T-cell development, and its ablation reduces Graft versus 
Host Disease (GVHD) in murine models [21]. Its down-
regulation in our nodal T-cell lymphoma samples may 
provide to a mechanistic explanation for dysfunctional 
T-cell response.

MiR-150-5p is yet another critical miRNA with tem-
poral regulatory role throughout the complex process of 
hematopeoisis and is frequently dysregulated in hemato-
logical malignancies. The downregulation of miR-150-5p 
in our samples appear to be consistent with the reported 
reduction of miR-150-5p expression in CD4 + T-cells 
when they differentiate into the Th1 and Th2 lineages 
during normal development [22].

MiR-28-5p is a major regulator of the germinal centre 
reaction and is hence more relevant in B-cell lymphoma-
genesis [23]. Its downregulation in our T-cell lymphoma 
samples suggests that miR-28-5p may also play a critical 
role in T-cell lineage determination.

To our knowledge, the remaining miRNA candidates 
that we have identified (such as miR-1246 and miR-612) 
have not been implicated or studied in the context of 
T-cell lymphoma. Future studies can be designed to func-
tionally characterize their roles in promoting T-cell lym-
phoma development.

Overall, we demonstrate that a number of differentially 
expressed miRNAs discovered in this study have been 
implicated in various aspects of hematopoietic function 
and regulation and could play pivotal roles in nodal T-cell 
lymphoma.

Interestingly, the miRNA signatures identified in our 
study are not similar to other miRNA profiling stud-
ies performed on T-cell lymphomas [24–26]. There are 
notable contextual differences between these studies that 
could explain the differing signatures. Most significantly, 
our study specifically compared nodal lymphoma tis-
sues to RLN, hence our miRNA signatures could be more 
contextualized to normal and transformed nodal tissues, 
whereas other studies generally compared T cell lympho-
mas to normal peripheral T cells. Laginestra et al. simi-
larly studied nodal PTCL-NOS samples – however, the 
comparator was normal peripheral T cells, not RLN [26]. 
Another reason could be the differences in the selection 
criteria used for the study cohorts. For example, Lone 
et al. excluded cases with TFH phenotype from their 
miRNA profiling study on PTCL whereas nTFHL cases 
are well-represented in our study [24].

Biological relevance of pathways implicated by miRNAs
Besides their potential utility as biomarkers, deregulated 
miRNAs in tumors may also help us to better understand 
the gene networks that underpin T-cell lymphomagenesis 
and progression. For instance, we performed pathway 

Fig. 5  Random Forest model identified miRNAs that differentiate lympho-
mas from reactive lymph node. (A) Confusion matrix on the classification 
performance of the two nodal T-cell lymphoma subtypes based on the 
random forest model. (B) Permutation importance revealed the variable 
importance of miR-1246 as a differentiating miRNA. (C) Box plots compar-
ing the normalised Ct values of miR-1246 in nTFHL, PTCL-NOS and RLN 
samples. ns means not significant, ** means p < 0.01, *** means p < 0.001 
and *** means p < 0.0001
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Fig. 6  Gene set enrichment analysis of the miRNA target genes identifies biologically-relevant pathways and transcription factors in each subtype. (A) 
The target genes of unique differentially expressed miRNAs were first identified for each subtype (TFHL and PTCL-NOS). The number represents the target 
genes of the miRNAs uniquely found in each analysis. Bar charts showing enrichment for (B) Cancer Hallmarks gene sets, (C) KEGG pathway, (D) GO (Bio-
logical Process) pathways and (E) transcription factors. “Counts” refer to the number of miRNA target genes overlapping to the gene sets
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enrichment analysis on the target genes of unique dif-
ferentially expressed miRNAs to predict key biological 
pathways in promoting T-cell lymphoma development 
and found that our results are consistent with reported 
literature.

TFHL have been well-characterised in terms of muta-
tions and the pathways they affect, especially in in 
angioimmunoblastic T-cell lymphoma (AITL), a major 
subtype of nTFHL [27]. Frequent mutations that have 
been identified in AITL include, among others, RHOA, 
IDH2, TET2 and DNMT3A [4]. The TFHL gene expres-
sion signature has been reported to include, among oth-
ers, TNFα signaling by NFΚB and the production of T 
cell-induced cytokines (IL2, IL15 and IL17) [4]. In con-
gruent to this, synonymous pathways – specifically TNFα 
signalling pathways and inflammatory response pathways 
(which covers pro-inflammatory cytokines) - are identi-
fied as hallmark gene sets enriched in nTFHL (Fig.  4b). 
These findings are supported by evidence in mice mod-
els, whereby loss of TET2 and RHOA G17V – both 
mutations with high co-occurrence frequency in AITL- 
contributed to increased TNFα levels to reinforce the T 
follicular helper (Tfh) signature [28]. The same study on 
co-occurring loss of TET2 and RHOA G17V also demon-
strated an increase in VEGF-A signaling (also identified 
in Fig. 4c), and a decrease in the expression of the pro-
apoptotic receptor gene, Fas, leading to the negative reg-
ulation of the apoptotic signaling pathway as captured by 
Gene Ontology (GO) enrichment analysis (Fig. 5D) [28]. 
Another pathway, MAPK signaling (Table S8), is linked to 
aberrant chromosomal gain associated with IDH2 R172 
mutation [29] and in other cases, RHOA G17V mutation 
[28].

PTCL-NOS, on the other hand, is a group of entities 
that lacks distinctive features of specific T-cell lymphoma 
entities and are hence likely to feature a heterogeneous 
phenotypes featuring a wider range of pathways (Table 
S11-13).

Additionally, as miRNAs regulate essentially all gene-
encoding RNA transcripts, including transcription 
factors, we could enhance the robustness of our path-
way enrichment prediction by supplementing it with 
miRNA-transcription factor interactome. For instance, 
our analysis pointed to the enrichment of the target 
genes of ZBTB1, an important transcription factor in the 
development of conventional CD4/CD8 αβ + T cells [30], 
specifically in nTFHL samples. Interestingly, MED25 
was commonly identified in both nTFHL and nPTCL, 
pointing to a possible unexplored role of this transcrip-
tion factor in both lymphoma subtypes. MED25 is one of 
the many subunits of the co-regulator Mediator complex 
that engages RNA Pol II for general transcription. How-
ever, MED25 itself is required for the transcription ini-
tiation of the rate-limiting gene responsible for retinoic 
acid biosynthesis in macrophages [31]. As retinoic acid 
is also essential for peripheral induction of the helper T 
cell phenotype and and its proinflammatory response, we 
hypothesise that MED25 may be involved in T cell lym-
phomagenesis [32].

Table 2  Current diagnostic challenges in T-cell lymphomas
Diagnostic 
parameter

Supportive 
features of
T-cell 
lymphoma

Limitations and Pitfalls

Morphology ▪ Architectural 
effacement

▪ RLH can have architec-
tural alterations (marked 
interfollicular expansion) that 
resemble T-cell lymphomas.
▪ Some T-cell lymphomas 
exhibit minimal changes to 
tissue architecture that can 
be similar to those seen in 
reactive hyperplasia.

▪ Cytological 
atypia

▪ Cytologic atypia, particu-
larly in nTFHL, may be mini-
mal and display overlapping 
features with reactive T-cell 
proliferation.
▪ On the other hand, 
certain reactive lymph node 
conditions may present with 
increased numbers of large 
nucleolated (immunoblastic) 
cells that can be mistaken as 
neoplastic infiltrate.

Immunophenotype ▪ Aberrant T-
cell immuno-
phenotype, i.e., 
lost, or reduced 
expression of T-
cell antigens.
▪ Aberrant pat-
tern of expres-
sion of normal 
physiological 
markers e.g., 
CD30, TFH 
markers (PD1, 
ICOS, CXCL13) 
etc.

▪ Some T-cell lymphomas 
(particularly nTFHL) may 
retain full expression of T-cell 
antigens.
▪ Difficulty to interpret stain-
ing in small biopsy samples.
▪ Significant inter- and intra-
observer variability.
▪ Quality of lab processing 
and IHC protocol will signifi-
cantly affect results.
▪ A good understanding of 
protein biology and expres-
sion pattern is required for 
accurate interpretation.

Clonality ▪ Monoclonal 
TCRB or TCRG 
gene rearrange-
ments in T-cell 
lymphomas.

▪ Monoclonal TCRB or TCRG 
rearrangements may be 
detected in reactive T-cell 
proliferations, for example in 
viral infections.
▪ Conversely, false negativity 
can occur in some T-cell 
lymphomas with significant 
reactive inflammatory back-
ground, and in small biopsy 
samples with low volume of 
neoplastic T-cells.

*RLH: Reactive lymphoid hyperplasia; nTFHL: nodal T follicular helper cell 
lymphoma; TFH: T follicular helper; IHC: Immunohistochemistry: TCRB: T cell 
receptor Beta; TCRG: T cell receptor Gamma
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Limitations of the study
Firstly, the results of our study should ideally be validated 
in a larger patient and normal cohort as our sample size 
was limited. Secondly, we used a curated panel of 376 
miRNAs, which represents a portion of the entire miR-
NAome comprising 2,600 mature miRNAs [33]. Hence, 
we could be missing out on other biologically relevant 
miRNAs that may potentially distinguish between the 
nTFHL and nPTCL subtypes.

Conclusions
Overall, our results demonstrate that miRNA expression 
profiling may serve as promising biomarkers and a prac-
tical tool to aid the diagnosis of nodal T-cell lymphoma, 
which can be challenging. Specifically, we explored three 
different methods to identify miRNA signatures that 
can help to differentiate nodal T-cell lymphomas (spe-
cifically nTFHL and nPTCL) from RLN. We found that 
miRNA signatures derived from logistic regression may 
potentially be used as a diagnostic adjunct in clinical 
classification of T-cell lymphoma cases from RLN. Using 
logistic regression, we identified miRNA signatures that 
can distinguish RLN from nodal T-cell lymphomas (AUC 
of 0.92 ± 0.05 using a 49-miRNAs signature), from nTFHL 
(AUC of 0.94 ± 0.05 using a 13-miRNAs signature) and 
from nPTCL (AUC of 0.94 ± 0.08 using a 25-miRNAs 
signature). However, because of the similarity of miRNA 
expression patterns between nTFHL and nPTCL, our 
miRNA signatures are not able to distinguish between the 
two subtypes. Bioinformatic analysis of the differentially 
expressed miRNAs also revealed relevant and potentially 
understudied signalling pathways that are unique to each 
T-cell lymphoma entity.

Abbreviations
AUC	� Area under the curve
CML	� Chronic myelogenous leukemia
EMT	� Epithelial-mesenchymal transition
GO	� Gene Ontology
LR	� Logistic regression
MiRNA	� microRNA
nPTCL	� Nodal peripheral T-cell lymphomas, not otherwise specified
nTFHL	� Nodal T-follicular helper (TFH) cell lymphomas
PCA	� Principal Component Analysis
PTCL	� Peripheral T-cell lymphomas
PTCL-NOS	� Peripheral T-cell lymphomas, not otherwise specified
RLN	� Reactive lymph node
ROC	� Receiver Operating Characteristic Curve
TCR	� T-cell receptor
Tfh	� T follicular helper
TGFβ	� Transforming growth factorβ
TNFα	� Tumor necrosis factorα
VEGF	� Vascular endothelial growth factor

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12935-024-03226-3.

Supplementary Material 1

Supplementary Material 2

Author contributions
S.Y.T. & S.S.S.H. conceived the project. S.Y.T., & S.S.S.H. reviewed the histological 
diagnosis and selected suitable cases for this study. G.W.L.E., J.K.C., A.J.J., Y.G. 
and H.C. performed the microRNA expression profiling and data analyses. 
S.S.S.H., M.S.B.M, G.W.L.E., A.J.J. and S.M.L. wrote the manuscript. All authors 
have read and agreed to the published version of the manuscript.

Funding
This study was supported by National Medical Research Council (NMRC) Open 
Fund - Large Collaborative Grant (OF-LCG; award ID MOH-OFLCG18May-0004) 
and the NUSMed ncRNA Core Facility Service Grant awarded to S.Y.T.

Data availability
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Institutional review board statement
Institutional Review Board approval was obtained for all samples in 
accordance with the National Health Group (NHG)’s Institutional Review Board 
(IRB) Guidelines.

Competing interests
A.J.J., Y.G. and H.C. are employed as staff of MiRXES Pte Ltd. The rest of the 
authors declare that they have no competing interests.

Author details
1Department of Pathology, National University Hospital,  
Singapore 119077, Singapore
2Department of Pathology, Yong Loo Lin School of Medicine, National 
University of Singapore (NUS), Singapore 117596, Singapore
3NUS Centre for Cancer Research, Singapore 117599, Singapore
4Department of Biochemistry, Yong Loo Lin School of Medicine, National 
University of Singapore (NUS), Singapore 117596, Singapore
5MiRXES Lab Pte Ltd, Singapore 138667, Singapore
6Advanced Molecular Pathology Laboratory, Institute of Molecular and 
Cell Biology, Agency for Science, Technology and Research (A*STAR), 
Singapore, Singapore 138673, Singapore

Received: 27 October 2023 / Accepted: 12 January 2024

References
1.	 The Non-Hodgkin’s Lymphoma Classification Project. A clinical evaluation of 

the International Lymphoma Study Group Classification of Non-hodgkin’s 
lymphoma. Blood. 1997;89:3909–18.

2.	 Vega F, et al. American Registry of Pathology Expert opinions: recommen-
dations for the diagnostic workup of mature T cell neoplasms. Annals of 
Diagnostic Pathology. 2020;49:151623.

3.	 Huang Y, et al. Peripheral T-cell lymphomas with a follicular growth pattern 
are derived from follicular helper T cells (TFH) and may show overlapping 
features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol. 
2009;33:682–90.

4.	 Dobay MP, et al. Integrative clinicopathological and molecular analyses of 
angioimmunoblastic T-cell lymphoma and other nodal lymphomas of fol-
licular helper T-cell origin. Haematologica. 2017;102:e148–51.

5.	 Agostinelli C, et al. Peripheral T cell lymphoma, not otherwise specified: the 
stuff of genes, dreams and therapies. J Clin Pathol. 2008;61:1160–7.

6.	 Swerdlow S et al. WHO Classification of Tumours of Haematopoietic and 
Lymphoid TissuesIARC,. (2017).

7.	 Alaggio R, et al. The 5th edition of the World Health Organization Clas-
sification of Haematolymphoid Tumours: lymphoid neoplasms. Leukemia. 
2022;36:1720–48.

https://doi.org/10.1186/s12935-024-03226-3
https://doi.org/10.1186/s12935-024-03226-3


Page 13 of 13Bin Masroni et al. Cancer Cell International           (2024) 24:48 

8.	 Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs 
with probable regulatory roles in Caenorhabditis elegans. Science. 
2001;294:858–62.

9.	 Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel 
genes coding for small expressed RNAs. Science. 2001;294:853–8.

10.	 Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are 
conserved targets of microRNAs. Genome Res. 2009;19:92–105.

11.	 Bartel DP, MicroRNAs. Genomics, Biogenesis, mechanism, and function. Cell. 
2004;116:281–97.

12.	 Harfe BD. MicroRNAs in vertebrate development. Curr Opin Genet Dev. 
2005;15:410–5.

13.	 Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 
2011;12:861–74.

14.	 Wan G, Lim QE, Too H-P. High-performance quantification of mature microR-
NAs by real-time RT-PCR using deoxyuridine-incorporated oligonucleotides 
and hemi-nested primers. RNA. 2010;16:1436–45.

15.	 Zou R, et al. Development of a microRNA panel for classification of abnormal 
mammograms for breast Cancer. Cancers (Basel). 2021;13:2130.

16.	 Ralfkiaer U, et al. Diagnostic microRNA profiling in cutaneous T-cell lym-
phoma (CTCL). Blood. 2011;118:5891–900.

17.	 Pobezinskaya EL, et al. Survival of Naïve T cells requires the expression of 
Let-7 miRNAs. Front Immunol. 2019;10:955.

18.	 Wells AC, et al. Modulation of let-7 miRNAs controls the differentiation of 
effector CD8 T cells. eLife. 2017;6:e26398.

19.	 Takashima Y, et al. miR-101, miR-548b, miR-554, and miR-1202 are reliable 
prognosis predictors of the miRNAs associated with cancer immunity in 
primary central nervous system lymphoma. PLoS ONE. 2020;15:e0229577.

20.	 Gigante M, et al. miR-29b and miR-198 overexpression in CD8 + T cells of 
renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to 
immune dysfunction. J Translational Med. 2016;14:84.

21.	 Sun Y, et al. Mature T cell responses are controlled by microRNA-142. J Clin 
Invest. 2015;125:2825–40.

22.	 He Y, Jiang X, Chen J. The role of miR-150 in normal and malignant hemato-
poiesis. Oncogene. 2014;33:3887–93.

23.	 Bartolomé-Izquierdo N, et al. miR-28 regulates the germinal center reaction 
and blocks tumor growth in preclinical models of non-hodgkin lymphoma. 
Blood. 2017;129:2408–19.

24.	 Lone W, et al. Genome-wide miRNA expression profiling of Molecular sub-
groups of Peripheral T-cell lymphoma. Clin Cancer Res. 2021;27:6039–53.

25.	 Shen X, et al. MicroRNA signatures in diagnosis and prognosis of cutaneous 
T-Cell lymphoma. J Invest Dermatology. 2018;138:2024–32.

26.	 Laginestra MA, et al. Pathogenetic and diagnostic significance of microRNA 
deregulation in peripheral T-cell lymphoma not otherwise specified. Blood 
Cancer Journal. 2014;4:e259–9.

27.	 Yu DD, Zhang J. Update on recurrent mutations in angioimmunoblastic T-cell 
lymphoma. Int J Clin Exp Pathol. 2021;14:1108–18.

28.	 Cortes JR, et al. RHOA G17V induces T follicular helper cell specification and 
promotes lymphomagenesis. Cancer Cell. 2018;33:259–273e7.

29.	 Heavican TB, et al. Genetic drivers of oncogenic pathways in molecular 
subgroups of peripheral T-cell lymphoma. Blood. 2019;133:1664–76.

30.	 Siggs OM, Li X, Xia Y, Beutler B. ZBTB1 is a determinant of lymphoid develop-
ment. J Exp Med. 2012;209:19–27.

31.	 Lee B, Wu C-Y, Lin Y-W, Park SW, Wei L-N. Synergistic activation of Arg1 gene 
by retinoic acid and IL-4 involves chromatin remodeling for transcription 
initiation and elongation coupling. Nucleic Acids Res. 2016;44:7568–79.

32.	 Hall JA, et al. Essential role for retinoic acid in the promotion of CD4 + T 
cell effector responses via retinoic acid receptor alpha. Immunity. 
2011;34:435–47.

33.	 Plotnikova O, Baranova A, Skoblov M. Comprehensive Analysis of Human 
microRNA–mRNA interactome. Front Genet 10, (2019).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿MicroRNA expression signature as a biomarker in the diagnosis of nodal T-cell lymphomas
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Subject recruitment and sample collection
	﻿RNA isolation
	﻿miRNA reverse transcription, cDNA pre-amplification and qPCR
	﻿Data processing and statistical analysis
	﻿Model building
	﻿Gene set enrichment analysis for miRNA target genes

	﻿Results
	﻿MiRNA expression profiling
	﻿Differentially expressed miRNAs between reactive lymph nodes and T-cell lymphoma subtypes
	﻿Logistic regression analysis of miRNA expression
	﻿Random forest model
	﻿MiRNA expression could infer biological differences between subtypes

	﻿Discussion
	﻿Current diagnostic challenges in T-cell lymphomas
	﻿Biological relevance of miRNA biomarkers
	﻿Biological relevance of pathways implicated by miRNAs
	﻿Limitations of the study

	﻿Conclusions
	﻿References


